The mass of the neutrino ... KATRIN (and beyond)

Beyond the Standard Model of particle physics

- Theoretical view
 - Symmetry → Matter and Antimatter are produced in equal amounts but the universe only consists of matter
 - The Standard Model cannot predict masses of particles
 - Extrapolation of coupling constants don't meet at *E*_{GUT}
 - Why three generations of quarks and leptons?

- Experimental status
 - Standard Model describes all observations at man made accelerators
 - No Magnetic Monopoles, Neutralinos, HNLs, CHAMPs, ... found
 - Indirect hints from Dark Matter and Dark Energy ... may be "just" gravity beyond GRT on cosmological scales
 - Neutrino is not massless!

Neutrinos oscillate

SuperK 1998 atmospheric neutrinos

DayaBay, 2015 $\bar{
u}_e
ightarrow \bar{
u}_e, \ \langle L
angle \sim 2 \ {
m km}$

All the second s

KamLAND 2006

 $\begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ L_0/E_{\overline{v}_e}(\text{km/MeV}) \end{array}$

T2K, 2015 $u_{\mu}
ightarrow
u_{\mu}, \left\langle L
ight
angle \sim$ 295 km

Kajita outreach talk: If neutrinos were massless they were traveling with c \rightarrow proper time does not pass any more, hence they cannot change

The Standard Model flavor puzzle

Lepton mixing:

 $heta_{12}pprox 33^\circ$ $heta_{23}pprox 45^\circ$ $heta_{13}pprox 9^\circ$

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \epsilon \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}$$

Quark mixing:

 $egin{aligned} & heta_{12} pprox 13^\circ \ & heta_{23} pprox 2^\circ \ & heta_{13} pprox 0.2^\circ \end{aligned}$

$$U_{CKM}=\left(egin{array}{ccc} 1 & \epsilon & \epsilon \ \epsilon & 1 & \epsilon \ \epsilon & \epsilon & 1 \end{array}
ight)$$

Why care about the neutrino mass?

Rumor has it ...

.... "the classic Standard Model can easily be modified to include neutrino mass."

.... well, that's not quite correct!

Reminder: V-A-Theory

- Vector "minus" Axialvector theory:
 - Low energy description of weak interactions (i.e. part of SM)
 - Nuclear physics lecture → W^+ , W^- , Z^0
 - Describes parity violation found in "Wu-Experiment"
 - No right-handed neutrinos
 - No left-handed anti-v

VUPPERTAL

Example/Reminder: Pion decay

Involved anti-neutrinos purely right-handed for massless anti-neutrinos

Probablility for left handed anti-leptons

Phase space factor

The mass of the neutrino

helbing@uni-wuppertal.de | Lecture 2021-01-22 | 7

V-A theory and neutrino helicity

Majorana masses and lepton number violation

- Lepton number conservation is symmetry in SM
- Massive Majorana neutrino \rightarrow neutrinoless double β -decay

- Large neutrino mixing \rightarrow significant decay rates plausible $\tau \rightarrow \mu + \gamma$, $\mu \rightarrow e + \gamma$
 - but has not been observed!

Neutrino versus Standard Model

- Does the Higgs give mass to the neutrinos? Actually Not in SM!
- What are the masses of the known neutrino types?
- Are neutrinos their own antiparticles (Majorana)?
- More than three neutrino flavors (sterile)?
- Why did matter win over anti-matter? Current best fit for Dirac CPV phase: ~ 270° (IO), ~ 195° (NO)

- Neutrinos 250,000 times lighter than electron
 - No simple extension of SM for 3 reasons:
 - No right-handed neutrinos
 → no Dirac mass term
 - Lepton number symmetry of SM
 → no Majorana mass term
 - Only renormalizable terms
 - Neutrino mass lowest order perturbation of BSM?
 - Seesaw mechanism: Neutrino mass suppressed by heavy partner

Seesaw mechanism – a primer

- SM may be effective low energy theory
- Seesaw mechanism: generic model for eV neutrino masses
- Assuming additional righthanded neutrinos and existence of a very large mass scale:
 - grand unification
 - Planck scale

 matrix arising from adding neutrino mass;
 M_D: Dirac mass, *M_N*: Neutrino mass before symmetry breaking

$$A = \begin{pmatrix} 0 & M_D \\ M_D & M_N \end{pmatrix}$$

• Eigenvalues: $\lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2}$ if $M_N \gg M_D$: $|\lambda_{\pm}| \simeq M_N$; $|\lambda_{\pm}| \simeq \frac{M_D^2}{M_N}$

Lower mass shrinks with unification scale

Nobel prices on Neutrinos

- 1979: Glashow, Salam, Weinberg \rightarrow prediction of neutral currents
- 1988: Lederman, Schwartz, Steinberger \rightarrow 2 neutrinos, detection of v_{μ}
- 1995: Reines \rightarrow detection of the neutrino
- 2002: Davis, Koshiba → astrophysical (solar) neutrinos
- 2015: Kajita, McDonald $\rightarrow m_{\nu} > 0$

The absolute neutrino mass

Truly !

		e e e e e e e e e e e e e e e e e e e	Ho Ho He He He He
	Cosmology	Search for 0vββ	β-decay & electron capture
Observable	$M_ u = \sum_i m_i$	$m_{etaeta}^2 = \left \sum_i U_{ei}^2 m_i ight ^2$	$m_eta^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	0.12 – 1 eV	0.2 – 0.4 eV	2 eV
Potential	15 – 50 meV	15 – 50 meV	200 meV
Model dependence	Multi-parameter cosmological model	 Majorana v: LNV BSM contributions other than m(v)? nucl. matrix elements Incl. interferences 	Direct, only kinematics; no cancellations in incoherent sum

VUPPERTAL

helbing@uni-wuppertal.de | Lecture 2021-01-22 | 14

Fermi's Golden Rule: $\underbrace{\prod_{i \to f} = \frac{2\pi}{\hbar} |f| |H| i|^2}_{\text{decay rate}} \cdot \underbrace{p(E_f)}_{\text{density of final states}} = \frac{V^2}{\hbar} e^{-\frac{V^2}{(2\pi)^6} \cdot p_e E_e \cdot p_v E_v} dn = \frac{V^2}{h^3} \cdot p^2 dp \cdot d\Omega$ $p(E_e, E_v, d\Omega_e, d\Omega_v) = \frac{V^2}{(2\pi)^6} \cdot p_e E_e \cdot p_v E_v$ $E := E_e - m_e \quad \text{: kinetic electron energy}$ $E_0 = Q - E_{recoil} \quad \text{: maximal kinetic electron energy}$

Beta-spectra, lab class – How I got attracted \odot –

The mass of the neutrino helbing@uni-wuppertal.de | Lecture 2021-01-22 | 16

Hans-Christian Schultz-Coulon Heidelberg University, LHC, Atlas

Fermi theory of beta decay Fermi's Golden Rule: $\underbrace{\Gamma_{i \to f}}_{\text{decav rate}} = \frac{2\pi}{\hbar} \underbrace{|\langle f|H|i \rangle|^2}_{\text{interaction matrix}} \cdot \underbrace{\rho(E_f)}_{\text{density of final states}}$ $dn = \frac{V}{h^3} \cdot p^2 dp \cdot d\Omega$ $\rho(E_e, E_v, d\Omega_e, d\Omega_v) = \frac{V^2}{(2\pi)^6} \cdot p_e E_e \cdot p_v E_v$ $E := E_{\rho} - m_{\rho}$: kinetic electron energy $E_0 = Q - E_{recoil}$: maximal kinetic electron energy for $m_v \neq 0$ and $E_{recoil} \neq 0$ $\frac{dN}{dE} \propto p_e E_e \underbrace{\left(E_0 - E\right)}_{E_v} \underbrace{\sum_i |U_{ei}|^2 \sqrt{\left(E_0 - E\right)^2 - m^2(v_i)}}_{E_v}$ p_{v_i} Beta-mass: $\left| m^{2}(\mathbf{v}_{e}) = \sum_{i} \left| U_{ei} \right|^{2} m^{2}(\mathbf{v}_{i}) \right|$ Incoherent sum of mass eigenstates!

Why not just determine mass through end point E_0 ?

$$Q(T_2) = E_0 - E_{rec} - m_v$$
; $E_{rec} = \frac{E_0^2 + 2E_0 m_e}{m_{HeT^+}}$

BERGISCHE

WUPPERTAL

Moore's law for direct neutrino mass

Recipe for improving sensitivity

- Improve statistics
 - Luminous beta source (10¹¹ decays/s)
 - Excellent energy resolution (0.93 eV)
 - Low backgrounds (even at sea level)
- Improve systematics
 - Extensive commissioning
 - Molecular physics
 - Column density (activity, scattering)

Powers of Ten

- 5 × 10^{-₅} energy resolution
 - \rightarrow spectrometer volume: 1400 m³
 - \rightarrow 3.5 Tesla superconducting magnets
- 10⁻³ stability of tritium source density
 - $\rightarrow\,$ temp. regulation by dual phase Ne
- 10⁻³ isotope content in source
 - \rightarrow laser Raman spectroscopy
 - \rightarrow rapid circulation and purification system
- **10⁻⁵ non-adiabaticity in electron transport**
 - \rightarrow novel computational code KASSEIPEIA
 - $\rightarrow\,$ pulsed and pointing electron gun
 - 10⁻⁶ monitoring of HV-fluctuations
 - \rightarrow ultra-precision HV divider
 - → ^{83m}Kr energy standard
- 10⁻⁸ remaining ions after source
 - \rightarrow dipole drift electrodes, FT-ICR
 - 10⁻¹⁴ remaining flux of molecular tritium
 - $\rightarrow\,$ 3 Kelvin cryopumping with Argon frost
- **10⁷ dynamic range of rate** \rightarrow electronics and DAQ
- 10⁻¹¹ mbar ultrahigh vacuum
 - \rightarrow huge getter and turbo molecular pumps

KATRIN collaboration

KArlsruhe TRitium Neutrino experiment

- direct v-mass experiment: at Tritium Laboratory (TLK), KIT
- international collaboration ~130 members
 from 6 countries: D, US, CZ, RUS, F, ES
- uniting the world's expertise in tritium beta decy!

NUPPERTAL

helbing@uni-wuppertal.de | Lecture 2021-01-22 | 22

KATRIN beam line: 70 m

KATRIN vacuum

Background reduction

LANESHER HER total background < 1 cps tritium source: 10¹¹ ß-decays/s

MAC-E filter principle

WUPPERTAL

Magnetic Adiabatic Collimation & Electrostatic filter

Electric and magnetic fields

Journey of the main spectrometer

Main spectrometer

molecular Windowless Gaseous Tritium Source (WGTS)

WGTS: tube in long superconducting solenoids \oslash 9cm, length: 10m, T = 30 K Tritium recirculation (and purification) $p_{inj} = 0.003$ mbar, $q_{inj} = 4.7$ Ci/s allows to measure with near to maximum count rate using $\rho d = 5 \cdot 10^{17}$ /cm² with small systematics check column density by e-gun, beam monitors, T₂ purity by laser Raman

Transport, differential and cryogenic pumping sections

Monitoring & calibration system Molecular windowless gaseous tritium source Differential pumping

Cryogenic pumping with Argon snow at LHe temperatures

 \Rightarrow adiabatic electron guiding & T₂ reduction factor of ~10¹⁴

Differential and cryo pumping sections

- active pumping: 4 TMPs
- Tritium retention: 10⁵
- magnetic field: 5.6 T
- Ion monitoring by FTICR and ion manipulation by dipole and monopole electrodes inside

The mass of the neutrino helbing@uni-wuppertal.de | Lecture 2021-01-22 | 32

- based on by cryo-sorption at Ar snow at 3-4 K
- Tritium retention: >10⁷
- magnetic field: 5.6 T

12

aroon snow stainless steel

Tracking the beta-electrons

Beam monitoring: What I had thought of ...

Fluorescent screens to be flipped into > ~ GeV beams at moderate vacuum.

... what it actually is

Stepper motors & encoders

2 m long bellow

- Rate stability required: 0.1 %
- Count rate with nominal tritium density: 1 MHz per 1 mm²
- Vacuum: 10⁻⁹ mbar
- Magnetic field: 1.2 Tesla
- Temp.: -190° +150° C

The mass of the neutrino helbing@uni-wuppertal.de | Lecture 2021-01-22 | 34

Flectrons from source

with spiral motion

Exchangeable &

2D movable (0.1mm)

detector board

First tritium spectra

First v-mass result

NUPPERTAL

What is Lokhov-Tkachov ?

Blindness strategy

 Final-state distribution (FSD) for transitions from decay of T₂ to He₃T in electronic ground state (below 4 eV) and bound rovibrational molecular states

- Blindness difficult since systematics needs to be studied with full statistics.
 - 1)fix data selection, analysis cuts before fitting on MC.
 - 2)Model blinding rather than data blinding: replace FSD with Gaussian of undisclosed width → inject unknown shift for m²

... and counting

KATRIN is taking data through Corona in 2020

Backgrounds

²¹⁹Rn atoms:

- ²¹⁹Rn emanates from NEG
- bg-rate: ~500 mcps

countermeasure:

cryotraps in front of NEG

- 3 LN2-cooled Cu-baffles

H* Rydberg atoms:

1111111

Н*

- desorbed from walls due to ²⁰⁶Pb recoil ions

100 meV

- bg-rate: ~500 mcps

countermeasures:

isotropic bg for

longer exposure

reduce H-atom surface coverage:

- extended bake-out phase
- strong UV illumination source

... and more challenging ideas ... !

Background and sensitivity

BERGISCHE UNIVERSITÄ1 WUPPERTAL

helbing@uni-wuppertal.de | Lecture 2021-01-22 | 42

The mass of the neutrino

Background is volume effect \rightarrow Flux tube tweaking

Rydberg background

During installation: Ambient air: 222-Rn \rightarrow 210-Pb ($t_{1/2} = 22.3$ year) 210-Pb implanted in main spectrometer steel walls measured 210-Pb surface activity: 1 mcps/m² 210-Pb \rightarrow 210-Po $\rightarrow \alpha$ $\alpha \rightarrow$ probability to eject neutral atoms in a highly excited state ("Rydberg" atoms) into the vacuum passing all electric and magnetic barriers on their way into the relevant magnetic flux tube of the spectrometer.

- Rydberg atoms get ionized by black body radiation (BBR) even at room temperature!
- Resulting free electron gets accelerated towards the detector and counted
- Characteristics of Rydbergs:
 - Recoil nucleus sputters off highly excited Rydberg atoms with high principal quantum number n
 - unknown distribution of *n* and angular quantum number *l*

Semiclassical

Rydberg atom

5 (2=0)

5 (*l*=1)p

5 (ℓ=2)d

5 ({=3)f

orbits of a

for *n*=5

Rydberg R&D Angular electron separation

R&D: Active deexitation with THz/MW radiation

Idea inherited from ASACUSA & Anti-Hydrogen community

Pursued now for KATRIN in Wuppertal

Rydberg R&D THz radiation for deexcitation

Effect of Black Body Radiation

Effect of THz radiation

Summary

- Direct neutrino mass experiments focus on the single failure of the Standard Model of particle physics.
- Extremely diverse range of technologies (atomic, laser, vacuum, theory detector physics) need all be pushed beyond current applications.
- Next steps:
 - KATRIN discovers Nu-Mass \rightarrow Stockholm ! reconsider \land CDM !
 - ... in the remote chance, it is not found: KATRIN is not scalable
 - Squeeze it: new ideas wrt backgrounds and tweaks on spectral analysis
 - new experimental concepts: ECHo, Project-8

Thank you for your attention!

Sterile keV Neutrino result

ECHo: ¹⁶³Ho electron capture with metallic magnetic calorimeters

Project 8 goal: Measure coherent cyclotron radiation of tritium β electrons

General idea:

VIIPPERTAI

helbing@uni-wuppertal.de | Lecture 2021-01-22 | 52

Project 8: Single electron detection from ^{83m}Kr

