Understanding Multimessenger Signatures with Cosmic-Ray Propagation and Interaction in Astrophysical Plasmas

Review articles:

J.K. Becker, High-energy neutrinos in the context of multimessenger astronomy, Phys.Rep. (2008)
 J. Becker Tjus & L. Merten, Closing in on the origin of Galactic cosmic rays using multimessenger information, Phys. Rep. (2020)

Julia Tjus | Ruhr-Universität Bochum | 27.11.20

Astroparticle Physics

 Measurements: photons, cosmic rays & neutrinos

Modeling:

Multimessenger approach \rightarrow explain all signatures at the same time

 Theory: Microphysics (hadronic interactions/radiation), Macrophysics (cosmology, plasma physics)

Figure: JBT & Merten, Phys.Rep. (2020) [legacy of the Wolfgang-Wagner plot, TU Dortmund (2004)]

This talk

Part I: Cosmic-ray propagation – Plasma Physics

 Part II: Local source physics – particle interaction & radiation

Part III: Multimessenger modeling

Figure: JBT & Merten, Phys.Rep. (2020) [legacy of the Wolfgang-Wagner plot, TU Dortmund (2004)]

Reichherzer, JBT, Zweibel, Püschel, Merten, MNRAS (2020)

General rule: system size >> gyro radius: diffusive propagation

RAPP

The transport equation

Leaky-Box Modell

Source spectrum Q(E): stochastic acceleration

- Fermi 2nd order,
- Acceleration by surfing from one magnetized cloud to the next

Fig: JBT & Merten, Phys.Rep. (2020)

Spectral behavior for stochastic acceleration

- Test particle, accelerated at magnetic field inhomogenities
- Energy gain: fraction of initial energy $\Delta E = E E_0 = \boldsymbol{\xi} \cdot \boldsymbol{E}_0$

n acceleration cycles

$$E_n = \left(\xi + 1\right)^n \cdot E_0$$

This leads to a power-law energy behavior

$$N(>E) = \sum_{i=n}^{\infty} (1 - P_{esc})^{n(E)} = \dots \propto E^{-\gamma}$$

Quasi-Linear Theory

Fig: JBT & Merten, Phys.Rep (in prep)

Julia Tjus (RAPP Center) @ Lofar MKSP

Back to the Leaky Box Model

•
$$n \sim \frac{H^2}{D(E,\delta B/B)} \cdot Q(E) \sim E^{-\gamma_{tot}}$$

• $Q(E) \sim E^{-\gamma_{source}}$
• $D(E) \sim E^{\gamma_{diff}}$
• $\gamma_{tot} = \gamma_{source} + \gamma_{diff} \sim 2.4 + 0.3$

•
$$n \sim E^{-2.7}$$

 $\tau_{\text{esc}} = \frac{H^2}{D}$ halo $3 \, \rm kp$ GC disk Ξ SNR, acceleration

Ok, that seems to work well – so can we go home now?

Fig: JBT & Merten, Phys.Rep. (2020)

No! (Sorry...)

Diffusion equation:

$$D(t)\Delta n(x,t) = \frac{\delta n(x,t)}{\delta t} - Q(x,t)$$

For the Green's function of the source term $(Q(x,t) = \delta(x)\delta(t))$, solution is known to be a Gaussian:

$$\mathsf{n}(x,t) = \frac{1}{2\sqrt{\pi D_{xx}t}} \exp(-\frac{x^2}{4D_{xx}t})$$

Schlegel, Frie, Eichmann, Reichherzer & JBT, ApJ (2020) Reichherzer, JBT, Zweibel, Merten, Püschel, MNRAS (2020) Reichherzer, Merten, Dörner, Püschel, Zweibel, JBT, Nature Appl. Sci., invited (2021)

Simulations of the steady-state diffusion coefficient

Schlegel, Frie, Eichmann, Reichherzer & JBT, ApJ (2020) Reichherzer, JBT, Zweibel, Merten, Püschel, MNRAS (2020) Reichherzer, Merten, Dörner, Püschel, Zweibel, JBT, Nature Appl. Sci., invited (2021)

Calculation of the diffusion coefficient for different b/B

Schlegel, Frie, Eichmann, Reichherzer & JBT, ApJ (2020) Reichherzer, JBT, Zweibel, Merten, Püschel, MNRAS (2020) Reichherzer, Merten, Dörner, Püschel, Zweibel, JBT, Nature Appl. Sci., invited (2021)

Simulations show strong dependence on b/B

RAPF Cente

Part II: Local cosmic-ray sources

Powerlaws: How do they come about?

Electrons

- Synchrotron radiation: HE e- meet B-field
- Inverse Compton scattering: LE g (synchrotron/CMB/...) meet HE e-
- Bremsstrahlung: HE emeet nuclei

Hadrons

- Synchrotron radiation: HE p meet B-field
- Pion-decay: HE CR meets gas target

Rule of thumb: I inject primary power-law spectra \rightarrow I receive power-law radiation

Powerlaw for proton-proton

• Pion production rate for power-law injection spectrum $j_p = A_p E^{-\gamma}$

$$q_{\pi^{\pm,0}}(E_{\pi}) = \int_{E_{\text{th}}}^{\infty} dE_p F_{\pi^{\pm,0}}(E_{\pi}(E_p)) \int_0^{\tau} d\tau' j_p \cdot \exp(-\tau)$$

- $\tau = N_H \sigma_{pp}$ (optical depth in column N_H)
- $\sigma_{pp} \approx konst$
- Pion production rate per interaction
- Delta-Approximation: $E_{\pi} \sim \langle E_{\pi} \rangle \sim E_{p}^{\frac{1}{4}}$ $F_{\pi} = \xi_{\pi^{\pm,0}} \cdot \delta(E_{\pi} - \langle E_{\pi} \rangle)$
- Rough (!) approximation for pion multiplicity:

$$\xi_{\pi^{\pm}} = 2 \cdot \left(\frac{E_p - E_{\rm th}}{\rm GeV}\right)^{1/4} \quad \xi_{\pi^0} = \xi_{\pi^{\pm}}/2$$

Powerlaw for proton-proton

• Pion production rate for power-law injection spectrum $j_p = A_p E^{-\gamma}$

$$q_{\pi^{\pm,0}}(E_{\pi}) = \int_{E_{\text{th}}}^{\infty} dE_p F_{\pi^{\pm,0}}(E_{\pi}(E_p)) \int_0^{\tau} d\tau' j_p \cdot \exp(-\tau)$$

- $\tau = N_H \sigma_{pp}$ (optical depth in column N_H)
- $\sigma_{pp} \approx konst$
- Pion production rate per interaction
- Delta-Approximation: $E_{\pi} \sim \langle E_{\pi} \rangle \sim E_{p}^{\frac{3}{4}}$

$$F_{\pi} = \xi_{\pi^{\pm,0}} \cdot \delta(E_{\pi} - \langle E_{\pi} \rangle)$$

Rough (!) approximation for pion multiplicity:

$$\xi_{\pi^{\pm}} = 2 \cdot \left(\frac{E_p - E_{\rm th}}{\rm GeV}\right)^{1/4} \quad \xi_{\pi^0} = \xi_{\pi^{\pm}}/2$$

 $\Rightarrow q_{\pi^{\pm}} \approx 20 \cdot N_H A_p \sigma_{pp} \left(\frac{6 \cdot E_{\pi}}{\text{GeV}}\right)^{-4/3 \,(\alpha - 1/2)}$

Neutrino & γ production:

 $q_{\nu_i}(E_{\nu_i}) = q_{\pi^{\pm}}(E_{\pi})dE_{\pi}/dE_{\nu_i} = 4 \cdot q_{\pi^{\pm}}(4E_{\nu_i})$

• \rightarrow Neutrino and γ spectra:

$$q_{\nu,tot} = q_{\nu_{\mu}}^{(1)} + q_{\nu_{\mu}}^{(2)} + q_{\nu_{e}} \approx 300 \cdot N_{H} \cdot A_{p} \cdot \sigma_{pp} \cdot \left(\frac{24 \cdot E_{\nu}}{\text{GeV}}\right)^{-4\alpha/3 + 2/3}$$
$$q_{\gamma,tot} = 2 \cdot q_{\gamma} \approx 50 \cdot N_{H} \cdot A_{p} \cdot \sigma_{pp} \cdot \left(\frac{12 \cdot E_{\gamma}}{\text{GeV}}\right)^{-4\alpha/3 + 2/3}$$

• \rightarrow for $\alpha \sim 2$, these spectra follow the primary distribution

Photohadronic interactions

- $p_{CR} \gamma_{target} \rightarrow \Delta^{+} \rightarrow \pi^{+/-} N$ $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \overline{\nu_{\mu}} \nu_{\mu}$ $\pi^{-} \rightarrow \mu^{-} \overline{\nu_{\mu}} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu} \overline{\nu_{\mu}}$
- $\pi^{0} \rightarrow \gamma \gamma$ (E~TeV)

Kinematic threshold for pion production $E_p * E_\gamma > (m_\Delta^2 - m_p^2)/4$ Above threshold: simple assumptions \rightarrow follows E^{-p};

Fig: Dermer&Atoyan, New J Phys (2006)

• Frequenzspektrum: Leistung pro Frequenz:

$$\frac{dW}{dtd\omega} =: P(\omega) = C \cdot F\left(\frac{\omega}{\omega_c}\right)$$

mit der von einem Elektron gesamt abgestrahlten Leistung

$$P_{synch} = \int P(\omega) \cdot d\omega$$

• Frequenzspektrum \rightarrow

Ginzburg & Syrovatskii, ARAA 3:297 (1965)

- Elektronverteilung dN/dE = A^*E^{-p} zwischen E_1 und E_2
- → Von allen Elektronen abgestrahltes Synchrotorn-Frequenzspektrum:

$$P_{tot,synch}(\omega) = \int C \cdot F\left(\frac{\omega}{\omega_c}\right) \cdot \frac{dN}{dE} dE \propto \int F\left(\frac{\omega}{\omega_c}\right) \cdot E^{-p} dE$$
$$\omega_c := \frac{3}{2} \cdot \omega_B \cdot \gamma^3 \cdot \sin \alpha$$

• Gyrationsfrequenz:
$$\omega_B = \frac{q \cdot B}{\gamma \cdot m \cdot c} \propto \frac{1}{\gamma}$$

• → Kritische Frequenz:
$$\omega_c \propto \gamma^2$$

Substitution: E = $\gamma mc^2 \rightarrow x = \omega/\omega_c = \omega/\omega_c(\gamma) \rightarrow \omega_c(\gamma)$

Synchrotronstrahlung für dN/dE~E^{-p}

$$P_{tot,synch}(\omega) \propto \omega^{-\left(\frac{p-1}{2}\right)} \cdot \int F(x) \cdot x^{-\left(\frac{p-3}{2}\right)} dx \propto \omega^{-\alpha}$$

$$P_{tot,synch}(\omega) \propto \omega^{-lpha}$$

$$\alpha = \frac{p-1}{2}$$

Example: active Galaxies

- Radio emission from gigantic jets
- Synchrotron emission with powerlaw behavior

Core of Galaxy NGC 426I Hubble Space Telescope Wide Field / Planetary Camera Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk 380 Arc Seconds 17 Arc Seconds 88.000 LIGHT-YEARS 400 LIGHT-YEARS

-1

0

05

1.5

 α_{s}

High synchrotron losses steepen the spectrum?

Example: Supernova remnants

- Blue: X-ray
- Red: Radio
- Yellow (top-right): optical

Example: CasA (SNR)

Radio

Infrared (850 micron)

www.astro.cf.ac.uk/groups/cosmo/SNe/sne.html

Observed frequency spectrum

www.astro.cf.ac.uk/groups/cosmo/SNe/sne.html

450 Micron without synchrotron

Dust regions

850 micron without synchrotron Contours: 450 micron

www.astro.cf.ac.uk/groups/cosmo/SNe/sne.html

Spectral behavior

▪ → ~ 2.2

 Kompatibel mit Schockbeschleunigungs-Szenarium

SN 1006: Observed energy spectrum

High-energy emission: spectral behavior?

1000

- Assumption:
 - E⁻² spectrum
 - Synchrotron spectrum fixed by observations (i.e. product n_e B²)
- Jominant contribution at highi energies changes depending on gas density and B-field of the system

Mandelartz & Becker Tjus, arXiv:1301.2437

Part III: Multimessenger Modeling

AGN with structure relevant for cosmic rays

- **B-field structure** (blue/red): acceleration (shocks/plasmoids), propagation dominantly along fieldlines, diffusion and energy dependence sensitive to $\delta B/B$
- Gas structure/Photon fields (yellow/red): interactions, relevant for γ-ray & neutrino production, gamma absorption

Multimessenger emission from TXS0506+056 – energy domain

Aartsen, ..., JBT, ... et al (IceCube/Fermi/MAGIC Coll), Science (2018)

Multimessenger emission from AGN at the example of TXS0506+056 – time domain

Figure: Emma Kun (Budapest)

Prediction of upcoming ν and GW flares

de Bruijn, JBT, Bartos, ApJL accepted (2020), arXiv:2006.11288

Galactic cosmic-ray gradient: local change in diffusion coefficient?

$$\frac{dN}{dE} \sim \frac{Q(E)}{D_{\parallel}(E)} \sim n_p E^{-\gamma_{tot}} \sim n_p E^{-\gamma_{source} - \gamma_{diff}\left(\frac{\delta B}{B}\right)} \sim n_p E^{-\gamma_{source} - \gamma_{diff}(r)}$$

n

Provident and the second states and the second states

$$\frac{B_{tot} \propto r^{-\beta}}{D \propto B_{tot}^{\gamma}}$$
$$\frac{D_{\parallel}}{D_{\perp}} \sim r^{\beta(\gamma_{\parallel} - \gamma_{\perp})}$$

→ Influence of parallel component increases with galactocentric radius

→ Spectrum becomes steeper

Reichherzer, JBT, Zweibel et al, Nature Appl. Sci. (invited, 2021)

Galactic Center: first PeVatron in the Galaxy

3-dimensional transport in the Galactic Center region

- CR transport sensitive to
 - gas distribution (direct measurements)

RAPE

- B-field (no direct measurements)
- → build B-field model from gas distribution & theoretical arguments:
 - poloidal diffuse & NTF [Ferrière (2009), Ferrière & Terral (2013)]
 - horizontal MC [Euler Ansatz]

Gündüz, JBT, Dettmar, Ferrière, A&A

Cosmic-ray transport: influence of B-field structure

→ distribution becomes significantly broader in realistic field configuration

Gündüz, JBT, Dettmar, Ferrière, A&A, accepted (2020)

Adial 12721,52(020B/RAPP Center) Galactic Center – model & measurement

- H.E.S.S. data (color-contours) can be explained well
- Somewhat too steep decay toward outer edges – possible contribution from diffuse cosmicray flux?
- CTA: will be able to resolve illuminated MCs to high degree
 Junderstanding PeVatron, diffuse component and this way being able to detect dark matter?

Simulation smoothed to CTA resolution

We are on our way of solving the puzzle of the non-thermal Universe... stay tuned!

