

The IceCube Neutrino Observatory

Tim Ruhe Lectures Series on Astroparticle Physics, Winter 2019/2020 tim.ruhe@tu-dortmund.de

AUSTRALIA University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

CANADA SNOLAB University of Alberta–Edmonton

DENMARK University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Ruhr-Universität Bochum RWTH Aachen University Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

THE ICECUBE COLLABORATION

JAPAN
Chiba University

NEW ZEALAND

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms universitet Uppsala universitet

SWITZERLAND Université de Genève University of Oxford

UNITED STATES

Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Lab Marquette University Massachusetts Institute of Technology Michigan State University Ohio State University Pennsylvania State University South Dakota School of Mines and Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of California, Los Angeles University of Delaware University of Kansas University of Maryland University of Rochester

University of Texas at Arlington University of Wisconsin–Madison University of Wisconsin–River Falls Yale University

FUNDING AGENCIES

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education and Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Outline

- Neutrinos, their interactions and IceCube
- High Energy Starting Events
- TXS0506 and Multimessenger Astronomy
- Atmospheric Neutrinos and *Data Science*

Neutrinos

Bildquelle: particlezoo.net

Neutrinos have very small mass and very small interaction cross section.

Atmospheric Neutrinos

Atmospheric Neutrinos

How neutrinos interact

Image: A. Sandrock

Detection Principle

 Neutrino detection via charged leptons:

 $\nu_l + X \longrightarrow l + X'$

- Interaction in the ice or the bedrock
- Detection of Cherenkov light by Digital Optical Modules (DOMs)

Digital Optical Modules (DOMs)

- Downward facing 10" PMT (Hammamatsu R7081-02), 25% Peak QE
- High Voltage Supply
- Electronics
- Flasher LEDs
- Higher QE (34%) for DeepCore DOMs (Hammamatsu R7081MOD)
- Very few DOM failures (mostly during deployment)
- Slightly larger fraction of DOMs with issues (mostly non-standard Local Coincidence)

The IceCube Neutrino Observatory

Event Signatures

Cascade like events:

- *v_e* CC and all flavour NC interactions
- Interaction inside instrumented volume
- Poor angular resolution ≈ 15°
- Good energy resolution

Track like events:

- ν_{μ} CC interactions
- Interaction may happen outside instrumented volume
- Good angular resolution ≈ 1°
- Poor energy resolution

Tau-Neutrino Signatures

- 2 distinct cascades
- First from tau-neutrino interaction
- Second one from tau-lepton decay
- Connected by track caused by taulepton
- Caveat: track length is only 50m/PeV

Number of Events

ICECUBE

400

350

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Ackermann et al., Journal of Geophysical Research 111, (2006)

2000

depth [m]

ICECUBE

High Energy Starting Events (HESE) -1450 m veto region 90 meters fiducial volume ≁-2085 m 80 meters +-2165 m fiducial volume * 10 meters +-2450 m Side

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Тор

- Select events starting inside the detector
- Charge threshold of 6000 pe
- Less than 3 of first 250 pe in veto layer
- ~ 30 TeV deposited inside the detector

Muon Background Estimation

HESE Background Estimation

Main backgrounds are:

- Atmospheric muons
 - Estimated in data-driven method
 - 10.3 in 7.5 yrs. of data
- Atmospheric neutrinos
 - Strongly disfavored by energy and directional distribution
 - 23.2 events in 7.5 yrs. of data

nanosecond

125m

From IC170922A...

Sep. 22nd 2017:

side view

ICECUBE

- High energy neutrino event is observed (IC-170922A),
- Energy: 290 TeV, signalness: 56.5%
- Alert issued within ~1 minute

tòp view

source (blazar)

Source in flaring state for several months

... to TXS 0506 + 056

Many, many more follow-up observations at various wavelength by numerous experiments

... to TXS 0506 + 056

Many, many more follow-up observations at various wavelength by numerous experiments

TXS Time Dependent Analysis

- Unbinned maximum likelihood technique
- Minimal assumptions about time structure of neutrino emission
- Assumption: Emission clustered around some time T₀ with duration T_W
- Time clustering to identify time dependent signal, no characterization of time structure

Sample	Start	End
IC40	2008 Apr 5	2009 May 20
IC59	2009 May 20	2010 May 31
IC79	2010 May 31	2011 May 13
IC86a	2011 May 13	2012 May 16
IC86b	2012 May 16	2015 May 18
IC86c	2015 May 18	2017 Oct 31

Box-shaped and Gaussian time window

Time Dependent Analysis Results

Significant excess of 13 +/- 5 events found in both time windows.

Gaussian Time Window:

- Centered around Dec. 13th 2014
- Duration: 110⁺³⁵₋₂₄ days

Box-Shaped Time Window:

- Centered around Dec. 26th 2014
- Duration: **158** days

Atmospheric Neutrinos

ICECUBE

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

ICECUBE

Two Complementary Approaches to Atmospheric Neutrinos

1. Likelihood Analysis

2. Reconstructed Spectrum

IceCube Coll., PRD 91, 122004 (2014)

Llh-Fit

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Spectral Analysis

- Requires less stringent assumptions on spectral shape (model independent)
- Allows for comparison between experiments
- Does not give any answers on flux normalizazion or spectral index
 - Requires the use of deconvolution

Deconvolution in a Nutshell

- Production of charged lepton in neutrino interaction is governed by stochastical processes
- Additional smearing, due to several detector effects

ICECUBE

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Mathematically: Fredholm integral equation of the first kind:

$$g(y) = \int_{E_{min}}^{E_{max}} A(E, y) f(E) dE$$

Deconvolution in a Nutshell

 Additional smearing, due to several detector effects

ICECUBE

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Mathematically: Fredholm integral equation of the first kind:

$$g(y) = \int_{E_{min}}^{E_{max}} A(E, y) f(E) dE$$

32

Picture: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.p hp?curid=14260

General Background Rejection Strategy

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Feature Selection

Except for the choice of the classifier, this is fairly straighforward!

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Random Forests (Ensemble Methoden)

- Ensemble of many decision trees
- Every tree is build in a randomized way
- Every tree's classification is independent from all other trees
- Forest Classification is average over classification of individual trees

$$c_{Signal} = \frac{1}{n_{trees}} \sum_{i}^{n_{trees}} c_i$$

Cut on Classifier Output Number of Events 01 05 01 05 Aartsen et al., EPJC 75, 116 (2015) 10⁵ Sum of simulated ν_{μ} and simulated μ atmospheric ν_{μ} simulated Cut atmospheric μ simulated 10^{4} 🕂 IC79 Data Events / Bin 01 10² 59 strings 10^{2} Data 10^{1} 10 Atmospheric Neutrinos Atmospheric Muons Aartsen et al., EPJC 77, 692 (2017) Muons + Neutrinos 10⁰ 0.75 0.80 0.85 0.90 0.95 1.00 CSignal 1

~ 200 neutrino candidates per day

~ 80 neutrino candidates per day

~ 300 neutrino candidates per day!!!

M. Börner, PhD thesis (2018)

and zenith.

General Background Rejection Strategy

Atmospheric Neutrino Spectra

Tau-Neutrino Signatures, Double Cascade

Double Pulse ντ Single Cascade Ve é

Single- and Double-Pulses

T. Ruhe, Lecture Series on Astroparticle Physics, Winter 2019/2020

Tau-Neutrino Search with Machine Learning

 10^{1} 1.0Purity ν_{τ} CC events Single cascade events 0.8 10^{0} Performance parameter $10^{-1} \stackrel{1-01}{\swarrow}$ 0.60.40.2 10^{-3} IceCube preliminary 0.0 0.00.20.40.60.81.0Double Pulse score cut

Random Forest #1

Score Cut: 0.2

Purity increases to 97%

Random Forest #2

Score Cut: 0.62 (optimized via Model Rejection Factor)

Tau-Neutrino Search with Machine Learning

