

Master Defense on Optimization of Opposite-Side Flavor-Tagging Algorithms for the LHCb Upgrade Thomas-Christopher Ogasa

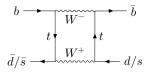
Supervisors: Dr. Quentin Führing and Dr. Vukan Jevtic

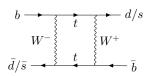
TU Dortmund University Working group Albrecht

29.09.2025

Flavor Tagging: Goal and Motivation

- \circ LHCb physics program includes time-dependent studies of B^0 and B^0_s
 - Including meson oscillation and some CP-violation studies
 - Requires production flavor
 - Not ascertainable from decay products
- \circ Goal of Flavor Tagging: Reconstruct the production flavor of B^0 and B^0_s
 - performance directly impacts statistical uncertainty of the measurements
 - Algorithms from Run 2 available, for Run 3 in development [1]





Flavor Tagging Principle

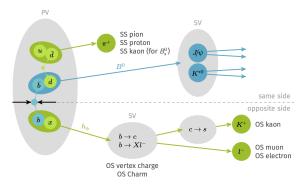


Figure: Schematic representation of the strategies used for the Flavor-Tagging algorithms available at LHCb [2].

Algorithm performance

- Performance of FT algorithms depend on two values
 - $\circ~$ Tagging efficiency : $\epsilon_{\rm tag} = \frac{N_{\rm W} + N_{\rm R}}{N_{\rm W} + N_{\rm R} + N_{\rm U}}$
 - $\circ~$ Mistag probability : $\omega = \frac{N_{\mathrm{W}}}{N_{\mathrm{W}} + N_{\mathrm{R}}}$
- \circ Combine into tagging power: $\epsilon_{\rm tag,eff} = \epsilon_{\rm tag} (1-2\omega^2)$
 - Fraction of events with accurate tagging decision
 - \circ $\sigma_{
 m stat} \propto \frac{1}{\sqrt{N\epsilon_{
 m eff}}}$
- Mistag probabilities of each FT algorithm for an event can be combined
 - ightarrow One prediction per event, increased combined tagging power

Data

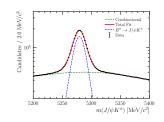
Simulation:

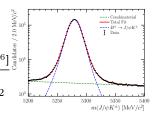
- Simulated 2024 data with UT
- $B^{\pm} \rightarrow J/\psi K^{\pm}$
- ${\color{blue} \circ}$ Yield: $\sim 3.41 \cdot 10^6$ Events

Data:

- o 2024 Data
- BDTs for background rejection
 - ightarrow BDT features from Run 2 $\sin(2\beta)$ analysis [3, 4]
- ${}_{\bullet}\ B^{\pm} \to J\!/\!\psi K^{\pm}$

	SIG Yield [106]	BKG Yield [106
Pre BDT Post BDT	$\begin{array}{c c} 1.95 \pm 0.02 \\ 1.855 \pm 0.002 \end{array}$	$\begin{array}{c} 3.71 \pm 0.02 \\ 0.201 \pm 0.002 \end{array}$





LHCb Upgrade I Detector

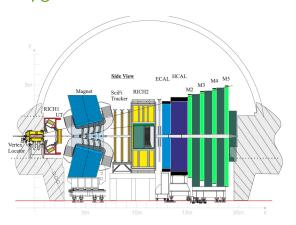


Figure: Schematic representation of the LHCb Upgrade I detector [5].

Strategy

- 1. Each tagger selects a track matching expectations of its specific process
 - \rightarrow Done by decision tree
- 2. MVA classifiers, gauging the probability of the tagging decision being wrong
 - Neural network trained on MC or Data
 - Requires a calibration for accurate mistag probabilities
- Combine OS algorithms
- 4. Evaluate all Tagging performances on Data and compare

Track Selection

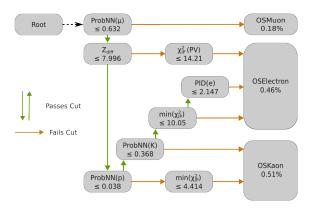


Figure: Relevant parts of the decision tree, trained previously [1], to categorize tracks by tagger assignment or exclusion.

MVA Classifier Training

- Neural networks
 - Previously trained on simulation
 - In this study trained simulation, data, and mixed approach
- 17 features
 - Particle ID, kinematic, etc.
- Hyperparameter space broader and more flexible than in previous studies
 - Optimized in grid search
- For data: Each sample weighted to further reduce background contribution

Performance on Data

	Tagging power [%] on $B^\pm o J\!/\!\psi K^\pm$ data			
Trained on	OSKaon	OSMuon	OSElectron	OSCombined
Simulation [6] (reference)	1.09 ± 0.02	0.88 ± 0.02	0.37 ± 0.01	2.12 ± 0.03
Simulation Data		0.76 ± 0.02 0.81 ± 0.02	0.37 ± 0.01 0.43 ± 0.02	2.29 ± 0.03 2.66 ± 0.03

- Improvement in OSKaon from architecture changes
- Training on data improves OSKaon and OSElectron
- Performance decreases in OSMuon
- OSCombined increased $(25 \pm 2) \%$

Performance on Simulation

	Tagging power [%] on $B^\pm o J\!/\!\psi K^\pm$ simulation			
Trained on	OSKaon	OSMuon	OSElectron	
Data	2.48 ± 0.06	0.87 ± 0.04	0.57 ± 0.03	
Simulation	$\begin{array}{ c c } 2.48 \pm 0.06 \\ 2.55 \pm 0.06 \end{array}$	0.85 ± 0.04	0.57 ± 0.03	

- Performance differences are smaller or vanish
- Simulation-trained models seem to generalize worse
 - ightarrow minimize impact of simulation-data-differences

Domain Adaptation by Back-Propagation

- Unsupervised learning method
- Split the model into feature extractor and label predictor
- Add domain classifier with gradient reversal layer
- → Feature extractor extracts domain-agnostic but predictive features
- ightarrow Adds new hyperparameter λ balancing both objectives

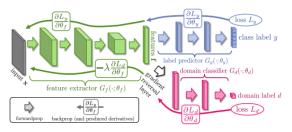


Figure: Scheme of Domain Adaptation with a gradient reversal layer [7]

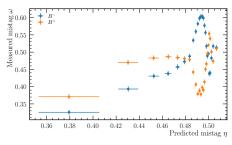
Domain Adaptated Models

	Metrics $[\%]$ of Domain Adapted models			
	$\lambda = 0$	$\lambda = 0.1$	$\lambda = 0.5$	$\lambda = 1$
$\epsilon_{ m eff}$ Data	1.32 ± 0.03	1.38 ± 0.03	1.27 ± 0.03	1.22 ± 0.03
$\epsilon_{ m eff}$ Simulation	$\begin{array}{ c c c } 1.32 \pm 0.03 \\ 2.73 \pm 0.07 \end{array}$	2.75 ± 0.07	2.71 ± 0.07	2.63 ± 0.07
Domain accuracy	66.5	50.5	50.6	50.4

- ightarrow Domain accuracy decreases with introduction of $\lambda \neq 0$
- ightarrow Domain adaptation can increase performance

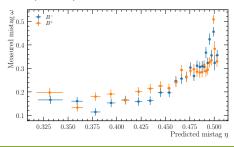
Flavor Tagging Asymmetry

- Asymmetry seen across architectures, in simulation and data, mainly in OSElectron and OSMuon
- Deviations seem to counteract each other
- First seen, currently cause not definitively known
- Reason to believe that many Run 3 FT algorithms are affected
- \circ Current hypothesis: different OS tracks are not filtered correctly, example: leptons from $c \to s + l^+$



Flavor Tagging Asymmetry

- Asymmetry seen across architectures, in simulation and data, mainly in OSElectron and OSMuon
- Deviations seem to counteract each other
- First seen, currently cause not definitively known
- Reason to believe that many Run 3 FT algorithms are affected
- \circ Current hypothesis: different OS tracks are not filtered correctly, example: leptons from $c o s + l^+$



Summary

- \circ Improvement of combined OS performance by $(25\pm2)\,\%$
 - Architecture improvements
 - Training directly on Data
 - Mainly OSKaon improved
- Best OSKaon algorithm trained without labeled data, achieved using domain adaptation
 - May allow improvements in SS algorithms
- Asymmetry-structures found in several algorithms
 - May hold back OSElectron and OSMuon performance
 - Hypothesis about the cause of the asymmetry was postulated

Outlook

- Migrate taggers to new Decision Tree
- Train SS taggers
 - Possibly using domain adaptation with hyperparameter optimization
- Combine taggers
- Investigate observed asymmetries
 - May be addressed by new Decision Tree
 - Otherwise more sophisticated/additional selection
- Possibly: Implement similar tagging algorithms into LHCb software

Bibliography I

- [1] S. Celani, Q. Führing, and M. Olocco. "Single-track flavour-tagging algorithms for Run3". Work in Progress LHCb internal Analysis note. 2025.
- [2] J. Wishahi. Flavour Tagging Plots for Conference. 2016. URL: https://twiki.cern.ch/twiki/bin/view/LHCb/FlavourTaggingConferencePlots.
- [3] V. Jevtić. "Measurements of the CKM parameter $\sin(2\beta)$ in $B^0 \to J/\psi K_S^0$ decays with the LHCb experiment". PhD thesis. Technische Universität Dortmund, 2024. DOI: http://dx.doi.org/10.17877/DE290R-24785.
- [4] V. Jevtić et al. "Measurement of CP violation in $B^0 \to J/\psi K_S^0$ decays". LHCb internal Analysis note. 2023.

Bibliography II

- [5] LHCb Collaboration. "The LHCb Detector at the LHC". In: JINST 3.08 (Aug. 2008), S08005. DOI: 10.1088/1748-0221/3/08/S08005.
- [6] M. Olocco. Private communication with the main developer of the Run 3 Flavor-Tagging algorithms. 2025.
- [7] Y. Ganin, and V. Lempitsky. "Unsupervised Domain Adaptation by Backpropagation". In: Proceedings of the 32nd International Conference on Machine Learning. Vol. 37. Proceedings of Machine Learning Research. PMLR, 2015, pp. 1180–1189.

Backup

BDT Features

Target	Observable	Description
B^+	$\chi^2_{ m Ytx}/n_{ m dof}$ $\chi^2_{ m IP,PV}$ η $\chi^2_{ m DTF}$	Vertex reconstruction quality Reconstruction quality of impact parameter, with respect to the primary vertex Pseudorapidity of B^+ Quality of the decay tree fit of B^+ with constrained J/ψ mass and primary vertex
$J\!/\psi$	IP_{PV}	Impact parameter of $J\!/\!\psi$ with respect to the primary vertex of B^+
μ^\pm	$\mathrm{IP}_{\mathrm{PV}}$	Impact parameter of μ^\pm with respect to the primary vertex of $B^+,$ where μ^\pm are the reconstructed decay products of the $J\!/\!\psi$
K^+	${\rm IP_{PV}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Impact parameter of K^+ with respect to the primary vertex of B^+ Pseudorapidity of K^+ minimum reconstructed impact parameter of K^+

Full Decision Tree

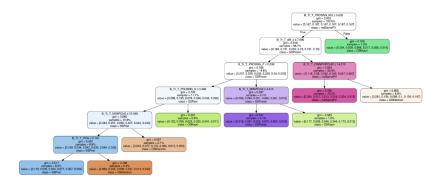


Figure: Decision tree, trained previously, to categorize tracks by tagger assignment or exclusion [1].

NN Features

Features	Description	
n_{tracks}	Number of tracks in the event	
$n_{ m PVs}$	Number of primary vertices in the event	
$p_T(B)$	Transverse momentum of the b -meson	
p	Momentum of the track particle	
p_T	Transverse momentum of the track particle	
$rac{p_T}{\chi^2/n_{ m dof}}$	Quality of track reconstruction	
$P_{NN}(K)$	Predicted probability of the track to be of a K	
$P_{\mathbf{N}\mathbf{N}}(\pi)$	Predicted probability of the track to be of a π	
$P_{NN}(p)$	Predicted probability of the track to be of a p	
$P_{\mathbf{N}\mathbf{N}}(\mu)$	Predicted probability of the track to be of a μ	
$P_{NN}(e)$	Predicted probability of the track to be of a e	
GhostProb	Predicted probability of the track to be a ghost track	
IP	Impact parameter of track with respect to primary vertex of \boldsymbol{B}	
$\mathrm{IP}/\sigma_{\mathrm{IP}}$	Significance of impact parameter	
E/p	Energy divided by momentum of the track particle	
ΔR	Squared sum of $\Delta\phi^2$ and $\Delta\eta^2$	
ΔQ_X	Amount of change the invariant Mass experiences if	
	the track was added. Defined for $X \in \{K, \mu, e\}$ as	
	$\Delta Q_X = \sqrt{(E_X + E_B)^2 - \vec{p}_X + \vec{p}_B ^2} - M_B - M_X$	

Previous Tagging Algorithms

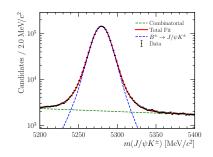
- Neural Networks Trained on MC
- Hyperparameters:
 - learning rate $\{0.001, 0.01, 0.1\}$
 - Batch size {32, 128, 1024, 2048}
 - Architecture {'Simple', 'Complex'}
 - \circ minimum improvement Δ_{\min} $\{0.0, 0.0001, 0.001, 0.01\}$

Simple		
Hiddenlayers	3,3	
Dropout	0	
Activation	Elu, Sigmoid	

Complex		
Hiddenlayers	32, 64, 32	
Dropout	0.5	
Activation	Elu, Sigmoid	

New Tagging Algorithms

- Same features
- Hyperparameters:
 - learning rate $\{10^{-4}, 10^{-3}, 10^{-2}\}$
 - Batch size {2048, 4096, 8192}
 - Number of Layers $\{2, 4, 6, 8, 16\}$
 - Number of Neurons {8, 16, 32, 64, 128, 256}
- For Data: Each sample weighted by Ratio of PDFs



FT Combination

$$p_b = \prod_i \left(\frac{1 + d_i}{2} - d_i (1 - \eta_i) \right)$$

$$p_{\overline{b}} = \prod_i \left(\frac{1 - d_i}{2} - d_i (1 - \eta_i) \right).$$
(1)

$$P_b(p_b,p_{\overline{b}}) = \frac{p_b}{p_b + p_{\overline{b}}}, \tag{2}$$

$$P_{\overline{b}} = 1 - P_b. \tag{3}$$

$$\begin{aligned} d_{\text{comb}} &= \text{sign}(P_b - P_{\overline{b}}) \\ \eta_{\text{comb}} &= 1 - \max(P_b, P_{\overline{b}}). \end{aligned} \tag{4}$$

Calibration

- Second order Polynomial
- \circ B_{ki} matrix of parameters defining the basis with minimum correlation
- Δp_k allow for asymmetry

$$P_k(\eta) = \sum_{i=0}^2 B_{ki} g^{-1}(\eta)^k. \tag{5}$$

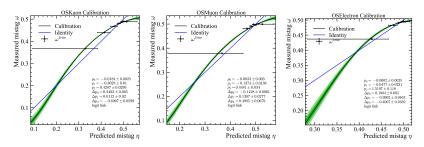
$$\omega^B(\eta) = g \left(g^{-1}(\eta) + \sum_{k=0}^2 \left(p_k + \frac{\Delta p_k}{2} \right) P_k(\eta) \right)$$

$$\omega^{\overline{B}}(\eta) = g \left(g^{-1}(\eta) + \sum_{k=0}^{2} \left(p_k + \frac{\Delta p_k}{2} \right) P_k(\eta) \right).$$

$$\omega^{\overline{B}}(\eta) = g \left(g^{-1}(\eta) + \sum_{k=0}^{2} \left(p_k - \frac{\Delta p_k}{2} \right) P_k(\eta) \right).$$

(6)

Simulation trained - Data calibrated

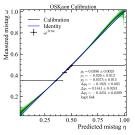


simulation.

(a): OSKaon trained on (b): OSMuon trained on (c): OSElectron trained simulation.

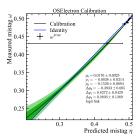
on simulation.

Data trained - Data calibrated



Measured mistag 8 0.0 0.5 Calibration Identity $p_0 = 0.0051 \pm 0.0031$ 0.3 $p_1 = 0.0157 \pm 0.0156$ $p_2 = -0.109 \pm 0.0373$ $\Delta p_0 = -0.103 \pm 0.003$ $\Delta p_0 = -0.4454 \pm 0.006$ $\Delta p_1 = 0.1027 \pm 0.0311$ $\Delta p_2 = 0.9444 \pm 0.0747$ 0.2 Predicted mistag n

OSMuon Calibration

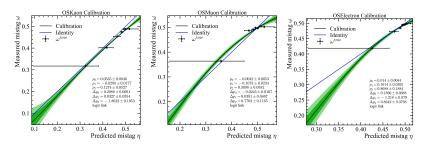


simulation.

(a): OSKaon trained on (b): OSMuon trained on (c): OSElectron trained simulation.

on simulation.

Simulation trained - Simulation calibrated

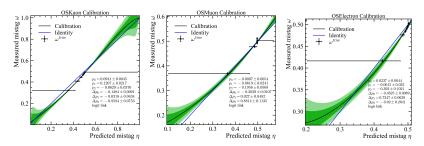


simulation.

(a): OSKaon trained on (b): OSMuon trained on (c): OSElectron trained simulation.

on simulation.

Data trained - Simulation calibrated



(a): OSKaon trained on simulation.

(b): OSMuon trained on (c): OSElectron trained simulation.

on simulation.

Domain Adaptation

- Field of study in machine learning dealing with distinct data domains
 - Source domain: Labeled
 - Target domain: Unlabeled, inference of this data is the goal
- Goal: Train on source data, such that it generalizes to target data

