
technische universität
dortmund

Master Defense on
Optimization of Opposite-Side Flavor-Tagging

Algorithms for the LHCb Upgrade

Supervisors: Dr. Quentin Führing and Dr. Vukan Jevtic

TU Dortmund University
Working group Albrecht

29.09.2025

Thomas-Christopher Ogasa



Flavor Tagging: Goal and Motivation
∘ LHCb physics program includes time-dependent studies of 𝐵0

and 𝐵0
𝑠

∘ Including meson oscillation and some 𝐶𝑃-violation studies
∘ Requires production flavor
∘ Not ascertainable from decay products

∘ Goal of Flavor Tagging: Reconstruct the production flavor of
𝐵0 and 𝐵0

𝑠
∘ performance directly impacts statistical uncertainty of the

measurements
∘ Algorithms from Run 2 available, for Run 3 in development [1]

𝑡
𝑊 −

𝑊 +
𝑡

𝑏

̄𝑑/ ̄𝑠 𝑑/𝑠

𝑏̄ 𝑡
𝑊 − 𝑊 +

𝑡

𝑏 𝑑/𝑠

𝑏̄̄𝑑/ ̄𝑠

Thomas-Christopher Ogasa: Flavour Tagging in Run 3 1 29.09.2025



Flavor Tagging Principle

Figure: Schematic representation of the strategies used for the
Flavor-Tagging algorithms available at LHCb [2].
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Algorithm performance

∘ Performance of FT algorithms depend on two values
∘ Tagging efficiency : 𝜖tag = 𝑁W+𝑁R

𝑁W+𝑁R+𝑁U

∘ Mistag probability : 𝜔 = 𝑁W
𝑁W+𝑁R

∘ Combine into tagging power: 𝜖tag,eff = 𝜖tag(1 − 2𝜔2)
∘ Fraction of events with accurate tagging decision
∘ 𝜎stat ∝ 1

√𝑁𝜖eff

∘ Mistag probabilities of each FT algorithm for an event can be
combined

→ One prediction per event, increased combined tagging power
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Data

Simulation:
∘ Simulated 2024 data with UT
∘ 𝐵± → 𝐽/𝜓𝐾±

∘ Yield: ∼ 3.41 ⋅ 106 Events
Data:

∘ 2024 Data
∘ BDTs for background rejection

→ BDT features from Run 2 sin(2𝛽)
analysis [3, 4]

∘ 𝐵± → 𝐽/𝜓𝐾±

SIG Yield [106] BKG Yield [106]

Pre BDT 1.95 ± 0.02 3.71 ± 0.02
Post BDT 1.855 ± 0.002 0.201 ± 0.002
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LHCb Upgrade I Detector

Figure: Schematic representation of the LHCb Upgrade I detector [5].
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Strategy

1. Each tagger selects a track matching expectations of its
specific process

→ Done by decision tree

2. MVA classifiers, gauging the probability of the tagging
decision being wrong

∘ Neural network trained on MC or Data
∘ Requires a calibration for accurate mistag probabilities

3. Combine OS algorithms
4. Evaluate all Tagging performances on Data and compare
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Track Selection

Figure: Relevant parts of the decision tree, trained previously [1], to
categorize tracks by tagger assignment or exclusion.
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MVA Classifier Training

∘ Neural networks
∘ Previously trained on simulation
∘ In this study trained simulation, data, and mixed approach

∘ 17 features
∘ Particle ID, kinematic, etc.

∘ Hyperparameter space broader and more flexible than in
previous studies

∘ Optimized in grid search
∘ For data: Each sample weighted to further reduce background

contribution
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Performance on Data

Tagging power [%] on 𝐵± → 𝐽/𝜓𝐾± data
Trained on OSKaon OSMuon OSElectron OSCombined

Simulation [6] 1.09 ± 0.02 0.88 ± 0.02 0.37 ± 0.01 2.12 ± 0.03(reference)

Simulation 1.36 ± 0.03 0.76 ± 0.02 0.37 ± 0.01 2.29 ± 0.03
Data 1.80 ± 0.03 0.81 ± 0.02 0.43 ± 0.02 2.66 ± 0.03

∘ Improvement in OSKaon from architecture changes
∘ Training on data improves OSKaon and OSElectron
∘ Performance decreases in OSMuon
∘ OSCombined increased (25 ± 2) %
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Performance on Simulation

Tagging power [%] on 𝐵± → 𝐽/𝜓𝐾± simulation
Trained on OSKaon OSMuon OSElectron

Data 2.48 ± 0.06 0.87 ± 0.04 0.57 ± 0.03
Simulation 2.55 ± 0.06 0.85 ± 0.04 0.57 ± 0.03

∘ Performance differences are smaller or vanish
∘ Simulation-trained models seem to generalize worse

→ minimize impact of simulation-data-differences
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Domain Adaptation by Back-Propagation
∘ Unsupervised learning method
∘ Split the model into feature extractor and label predictor
∘ Add domain classifier with gradient reversal layer

→ Feature extractor extracts domain-agnostic but predictive
features

→ Adds new hyperparameter 𝜆 balancing both objectives

Figure: Scheme of Domain Adaptation with a gradient reversal layer [7]
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Domain Adaptated Models

Metrics [%] of Domain Adapted models
𝜆 = 0 𝜆 = 0.1 𝜆 = 0.5 𝜆 = 1

𝜖eff Data 1.32 ± 0.03 1.38 ± 0.03 1.27 ± 0.03 1.22 ± 0.03
𝜖eff Simulation 2.73 ± 0.07 2.75 ± 0.07 2.71 ± 0.07 2.63 ± 0.07
Domain accuracy 66.5 50.5 50.6 50.4

→ Domain accuracy decreases with introduction of 𝜆 ≠ 0
→ Domain adaptation can increase performance
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Flavor Tagging Asymmetry
∘ Asymmetry seen across architectures, in simulation and data,

mainly in OSElectron and OSMuon
∘ Deviations seem to counteract each other
∘ First seen, currently cause not definitively known
∘ Reason to believe that many Run 3 FT algorithms are affected
∘ Current hypothesis: different OS tracks are not filtered

correctly, example: leptons from 𝑐 → 𝑠 + 𝑙+
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Summary

∘ Improvement of combined OS performance by (25 ± 2) %
∘ Architecture improvements
∘ Training directly on Data
∘ Mainly OSKaon improved

∘ Best OSKaon algorithm trained without labeled data,
achieved using domain adaptation

∘ May allow improvements in SS algorithms
∘ Asymmetry-structures found in several algorithms

∘ May hold back OSElectron and OSMuon performance
∘ Hypothesis about the cause of the asymmetry was postulated
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Outlook

∘ Migrate taggers to new Decision Tree
∘ Train SS taggers

∘ Possibly using domain adaptation with hyperparameter
optimization

∘ Combine taggers
∘ Investigate observed asymmetries

∘ May be addressed by new Decision Tree
∘ Otherwise more sophisticated/additional selection

∘ Possibly: Implement similar tagging algorithms into LHCb
software
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BDT Features
Target Observable Description

𝐵+ 𝜒2
Vtx/𝑛dof Vertex reconstruction quality

𝜒2
IP,PV Reconstruction quality of impact parameter,

with respect to the primary vertex
𝜂 Pseudorapidity of 𝐵+

𝜒2
DTF Quality of the decay tree fit of 𝐵+ with

constrained 𝐽/𝜓 mass and primary vertex

𝐽/𝜓 IPPV Impact parameter of 𝐽/𝜓 with respect to the
primary vertex of 𝐵+

𝜇± IPPV Impact parameter of 𝜇± with respect to the
primary vertex of 𝐵+,
where 𝜇± are the reconstructed decay products
of the 𝐽/𝜓

𝐾+ IPPV Impact parameter of 𝐾+ with respect to the
primary vertex of 𝐵+

𝜂 Pseudorapidity of 𝐾+

min(IP) minimum reconstructed impact parameter of 𝐾+
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Full Decision Tree

Figure: Decision tree, trained previously, to categorize tracks by tagger
assignment or exclusion [1].
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NN Features
Features Description

𝑛tracks Number of tracks in the event
𝑛PVs Number of primary vertices in the event
𝑝𝑇(𝐵) Transverse momentum of the 𝑏-meson
𝑝 Momentum of the track particle
𝑝𝑇 Transverse momentum of the track particle
𝜒2/𝑛dof Quality of track reconstruction
𝑃NN(𝐾) Predicted probability of the track to be of a 𝐾
𝑃NN(𝜋) Predicted probability of the track to be of a 𝜋
𝑃NN(𝑝) Predicted probability of the track to be of a 𝑝
𝑃NN(𝜇) Predicted probability of the track to be of a 𝜇
𝑃NN(𝑒) Predicted probability of the track to be of a 𝑒
GhostProb Predicted probability of the track to be a ghost track
IP Impact parameter of track with respect to primary vertex of 𝐵
IP/𝜎IP Significance of impact parameter
𝐸/𝑝 Energy divided by momentum of the track particle
Δ𝑅 Squared sum of Δ𝜙2 and Δ𝜂2

Δ𝑄𝑋 Amount of change the invariant Mass experiences if
the track was added. Defined for 𝑋 ∈ {𝐾, 𝜇, 𝑒} as
Δ𝑄𝑋 = √(𝐸𝑋 + 𝐸𝐵)2 − |𝑝⃗𝑋 + 𝑝⃗𝐵|2 − 𝑀𝐵 − 𝑀𝑋
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Previous Tagging Algorithms

∘ Neural Networks Trained on MC
∘ Hyperparameters:

∘ learning rate
{0.001, 0.01, 0.1}

∘ Batch size
{32, 128, 1024, 2048}

∘ Architecture
{’Simple’, ’Complex’}

∘ minimum improvement Δmin
{0.0, 0.0001, 0.001, 0.01}

Simple

Hiddenlayers 3, 3
Dropout 0

Activation Elu, Sigmoid

Complex

Hiddenlayers 32, 64, 32
Dropout 0.5

Activation Elu, Sigmoid
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New Tagging Algorithms

∘ Same features
∘ Hyperparameters:

∘ learning rate
{10−4, 10−3, 10−2}

∘ Batch size
{2048, 4096, 8192}

∘ Number of Layers
{2, 4, 6, 8, 16}

∘ Number of Neurons
{8, 16, 32, 64, 128, 256}

∘ For Data: Each sample weighted by
Ratio of PDFs
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FT Combination

𝑝𝑏 = ∏
𝑖

(1 + 𝑑𝑖
2

− 𝑑𝑖(1 − 𝜂𝑖))

𝑝𝑏 = ∏
𝑖

(1 − 𝑑𝑖
2

− 𝑑𝑖(1 − 𝜂𝑖)) .
(1)

𝑃𝑏(𝑝𝑏, 𝑝𝑏) = 𝑝𝑏
𝑝𝑏 + 𝑝𝑏

, (2)

𝑃𝑏 = 1 − 𝑃𝑏. (3)

𝑑comb = sign(𝑃𝑏 − 𝑃𝑏)
𝜂comb = 1 − max(𝑃𝑏, 𝑃𝑏).

(4)
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Calibration

∘ Second order Polynomial
∘ 𝐵𝑘𝑖 matrix of parameters defining the basis with minimum

correlation
∘ Δ𝑝𝑘 allow for asymmetry

𝑃𝑘(𝜂) =
2

∑
𝑖=0

𝐵𝑘𝑖𝑔−1(𝜂)𝑘. (5)

𝜔𝐵(𝜂) = 𝑔 ⎛
⎝

𝑔−1(𝜂) +
2

∑
𝑘=0

(𝑝𝑘 + Δ𝑝𝑘
2

) 𝑃𝑘(𝜂)⎞
⎠

𝜔𝐵(𝜂) = 𝑔 ⎛
⎝

𝑔−1(𝜂) +
2

∑
𝑘=0

(𝑝𝑘 − Δ𝑝𝑘
2

) 𝑃𝑘(𝜂)⎞
⎠

.
(6)
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Simulation trained - Data calibrated

(a): OSKaon trained on
simulation.

(b): OSMuon trained on
simulation.

(c): OSElectron trained
on simulation.
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Data trained - Data calibrated

(a): OSKaon trained on
simulation.

(b): OSMuon trained on
simulation.

(c): OSElectron trained
on simulation.
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Simulation trained - Simulation calibrated

(a): OSKaon trained on
simulation.

(b): OSMuon trained on
simulation.

(c): OSElectron trained
on simulation.
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Data trained - Simulation calibrated

(a): OSKaon trained on
simulation.

(b): OSMuon trained on
simulation.

(c): OSElectron trained
on simulation.
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Domain Adaptation

∘ Field of study in machine learning dealing with distinct data
domains

∘ Source domain: Labeled
∘ Target domain: Unlabeled, inference of this data is the goal

∘ Goal: Train on source data, such that it generalizes to target
data
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