Rare Decays: The Sharpest Tools for New Physics at LHCb

Debashis Sahoo

October 2, 2025

Current Understanding

Standard Model of Elementary Particles

- Fundamental Interactions:
 - Electromagnetic \rightarrow photon (γ) as carrier
 - Strong \rightarrow gluon (g) as the carrier
 - Weak $\to W^{\pm}, Z^0$ as the carrier
 - Gravity \rightarrow Graviton (?) as the carrier (Not included in the SM)
- $\mathcal{L}_{\text{gauge}} \rightarrow$ mathematically elegant symmetries $\mathcal{L}_{\text{Higgs}} \rightarrow$ ad hoc Yukawas

Beyond the Standard Model

October 2, 2025

Flavor as a discovery tool

[J. Hewett, LISHEP09]

- Long history of flavor as an "indirect" probe for new heavy particles:
 - weak nuclear β decay \Rightarrow heavy W/Z
 - $-K_L^0 \to \text{GIM suppression} \Rightarrow \text{charm}$
 - $-B^0$ -mixing at ARGUS \Rightarrow heavy top
 - SM-like $\mathcal{B}(B_s^0 \to)$ at the LHC \Rightarrow tight limits on MSSM/SUSY

• Even if $\Lambda_{\rm NP} \gg {
m TeV}$, precision flavor can probe the "desert" via rare loop-mediated processes.

Recent Flavor Anomalies

- Tension is at 3.3σ in $b \to c\ell\nu$ transitions
- BR measurements differ from predictions

Rare b-decays

- $b \to s(d)$ flavor changing neutral currents: loop-suppressed in SM.
- New Physics (NP) can enter both at loop- and tree-levels.
- These kinds of rare decays have a long tradition of discovering new things even before doing the actual observations.

EFT tools for rare decays

- Renormalizability requires the \mathcal{L}_{SM} to have dim $d \leq 4$ operators.
- Eg.: $m_{\phi}^2 \phi^2$, $m_{\psi} \overline{\psi} \psi \Rightarrow (m_{\phi}/E)^2$, (m_{ψ}/E) UV-safe behavior.
- We can include d > 4 operators if we regard the SM as an low energy effective theory. Comes with a cutoff scale, Λ .

$$\mathcal{L}_{\text{eff}}(x) = \mathcal{L}_{\text{SM}}(x) + \sum_{d>4} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}(x)$$
local operators

- Amplitudes will have $(E/\Lambda)^{d-4}$ behavior: bad at high-E, but suppressed at $E \ll \Lambda$. Access to heavy $(\Lambda_{\rm NP})$ fields from NP.
- Relevant for RD: d=6 operators. $\mathcal{A}_{\text{eff}} \sim \frac{C_{\text{SM}}}{m_W^2} + \frac{C_{\text{NP}}}{\Lambda_{\text{NP}}^2}$.

Angular analyses as a tool for NP searches

- Huge LHC statistics allow precision measurements of angular observables in $b \to s \ell^+ \ell^-$ and $b \to s \vec{\gamma}$. Direct access to $C_i^{\rm NP}$.
- Eg., $\vec{\Lambda_b^0} \equiv |[ud]\vec{b}\rangle$ reflects the properties of the *b*-quark, with [ud] as spectator diquark.
- $\bullet \ \vec{\Lambda_b^0} \to \Lambda^*(\to pK^-)\ell^+\ell^- \colon \{ {\bf q^2} \equiv m_{\ell^+\ell^-}^2, {\bf k^2} \equiv m_{pK}^2 \} \, + \, \{ {\theta_\ell, \theta_p, \phi_\ell, \phi_p} \}$

• If Λ_b^0 is unpolarized, $\phi_\ell = 0$, $\chi \equiv \phi_p$. Similar definitions for $B^0 \to K^+\pi^-\ell^+\ell^-$, $B_s^0 \to K^+K^-\ell^+\ell^-$.

LHCb: a discovery tool

[2024 JINST 19 P05065]

- ullet Single forward-arm spectrometer dedicated to c- and b-physics.
- Major Upgrade-I installed during LS2. Copious Run 3 data taking-ongoing.
- In this talk, I will focus on two rare decay analyses:
 - Electroweak: $\Lambda_b^0 \to pK^-\ell^+\ell^-$ using Run 1+2 (2011-18) data
 - Radiative: triggers and $B_c^+ \to D_s^{*+} (\to D_s^+ \gamma) \gamma$ in Run 3 (2024)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

Lepton flavor Universality (LFU) in SM

 \bullet LFU in the SM: Electroweak couplings of gauge bosons to leptons are independent of their flavor \to

$$\Gamma(z \sim \sqrt{\frac{e}{e}}) = \Gamma(z \sim \sqrt{\frac{\mu}{\mu}})$$

$$\Gamma(w^{\dagger} \sim \sqrt{\frac{e}{\bar{\nu}_e}}) = \Gamma(w^{\dagger} \sim \sqrt{\frac{\mu}{\bar{\nu}_{\mu}}})$$

- LHCb is the LFU test industry,
- Thrust has been the ratios:

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu_{\tau})}{\mathcal{B}(H_b \to H_c \mu \nu_{\mu})}, \ R(H_s) = \frac{\mathcal{B}(H_b \to H_s \mu \mu)}{\mathcal{B}(H_b \to H_s e e)}$$

$$\text{ere } H_b \in \{B^0 \ B^+, \ \Lambda^0 \ B^0\} \ H_s \in \{K^{(*)} \ \phi \ \Lambda^{(*)}\}$$

Where
$$H_b \in \{B^0, B_{(c)}^+, \Lambda_b^0, B_s^0\}, H_s \in \{K^{(*)}, \phi, \Lambda^{(*)}\},$$

 $H_c \in \{D^{(*)+,0}, D_s^{(*)+}, \Lambda_c^{(*)-}, J/\psi\}$

LFUV via angular analysis of $\Lambda_{\rm b}^0 o { m pK}^-\ell^+\ell^-$ (Ongoing)

Phys. Rev. Lett. 115, 072001 (2015)

- Wide overlapping resonances is a major complication
- The angular rate for $\Lambda_b^0 \to p K^- \ell^+ \ell^-$

$$\frac{d^4\Gamma}{d\mathbf{q^2}\,d\cos\theta_\ell\,d\cos\theta_\mathbf{p}\,d\chi} = \sum_{\mathbf{i}} \mathbf{I_i}(\mathbf{q^2}) \mathbf{f_i}(\theta_\ell,\theta_\mathbf{p},\phi)$$

• Measure the LFUV observables

$$S_i \equiv \tilde{I}_{i,\mu\mu} - \tilde{I}_{i,ee}$$

Run 1+2 Analysis Chain $\Lambda_{\rm b}^0 \to { m pK}^-\ell^+\ell^-$ (Ongoing)

- Run 1+2 Data and MC samples \checkmark
- Online-Selections ✓
- \bullet Trigger and Pre-BDT selections \checkmark
- Simulation correction Chain $\sqrt{}$ \leftarrow will talk from here
- \bullet Combinatorial background suppression by BDT \checkmark
- Fit to Invariant Λ_b^0 mass (Ongoing)
- Perform Angular analysis
- Systematics calculations and results

Corrections to the simulation

- Data-simulation differences in trigger, kinematic and PID
- Corrections done in two "chains": trigger corrections before (prior) or after (nominal) kinematic corrections.

• Following the strategy of other LFUV LHCb analyses, R_{K,K^*} and $R_{K\pi\pi}$.

- Example: lepton p_T dependence of the L0 trigger corrections
- Prior chain: $w_{L0} = \frac{\epsilon_{data}}{\epsilon_{MC}}$

Corrections to the simulation: HLT

LHCb Unofficial

• Prior chain:
$$w_{HLT} = \frac{\epsilon_{data}}{\epsilon_{MC}}$$

• 2D dependence of weights in bins of Λ_b^0 p_T and track multiplicty.

Kinematic variable corrections, $w_{Multi\&kin}$

LHCb Unofficial

- Use the previously calculated weights
- Correction by a Gradient Boost reweighter
- Separately for each trigger category. Corrections from the resonant channels will be used in both rare and resonant channels.

LHCb Unofficial

• After this, w_{L0} , w_{HLT} and w_{Reco} are obtained in the nominal chain.

BDT training for $\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-)$

• BDT trained on corrected simulation (signal) and upper-mass sideband $m(pK^-\mu^+\mu^-) > 5800$ data (background proxy).

- BDT includes a large number of kinematic, vertexing, PID, and isolation variables
- Excellent performance and data-simulation agreement

BDT training for $\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-)$

LHCb Unofficial

• For ee, due to low statistics, BDT with k-folding and cross-validation

• Good separation and no overtraining despite a large number of variables in the BDT

 Good agreement between corrected simulation and background-subtracted data

• All correlations are preserved between data and simulations

Preliminary resonant channel mass peaks

LHCb Unofficial

• Checks for Run 2 (2016) for one particular trigger (TOS)

 $\Lambda_b^0 \to pK^-J/\psi(e^+e^-)$ Candidates / (9.4118 / MeV<u>/</u>c² 00 00 00 00 00 mean = 5620.27 + 0.27 slope = -0.003469 ± 0.0004 yield_comb = 1002 ± 122 vield lb2pkeepi0 = 65 ± 9 Combinatoria vield signal = 3999 ± 75 5400 5600 5800 6000 $m_{1/w}(pK^{-}e^{+}e^{-})[GeV/c^{2}]$

Signal yield increased by a factor of 2.3 compared to published R_{nK}

Signal yield increased by a factor of 1.5 compared to published R_{nK}

• Need to understand the large improvement.

Preliminary $\Lambda_b^0 \to pK^-e^+e^-$ fits for 2016 data

LHCb Unofficial

- Showing Run 2 2016 comparisons for different triggers
- Good agreement with the published 2020 R_{pK} paper
- Signal yields are of similar order with the same background
- Ongoing work: better constrain the background components

Ongoing...

- Analysis note is being written at the same time
- Finalizing the mass fits for all the years and rare decays
- Next, perform the angular analysis
- We are working on a phenomenology paper to get the angular observables for any Λ spin.

Run 3

LHCb Run 3 Data Flow

[LHCB-TDR-016]

• Level0 hardware trigger bottleneck removed.

LHCb Unofficial

- First time completely software trigger in a high energy experiment!
- I contributed significantly to the HLT2 trigger, which performs the more computationally expensive full reconstruction online during data taking for a specific physics analysis.

Radiative Exclusive HLT2 trigger

LHCb/gitlab/Moore/link

- Built strong radiative program at LHCb in Run 3:
- Designed the following Physics program through HLT2 trigger:

 LHCb Unofficial

$$\bullet B^0_s \to K^+K^-\gamma$$

$$\bullet$$
 $B^0 \to K^+\pi^-\gamma$

$$\bullet \ B^+ \to K^+ \pi^+ \pi^- \gamma$$

$$\bullet$$
 $B^+ \to K^+ \phi \gamma$

$$\bullet \ B^0 \to K_s^0 \pi^+ \pi^- \gamma$$

$$\bullet \ B^0 \to K^0_s \phi \gamma$$

$$b^+ \to K^+ \omega (\pi^+ \pi^- \pi^0) \gamma$$

$$B^0 \to K_s^0 \omega(\pi^+\pi^-\pi^0) \gamma$$

$$\bullet \ B_s^0 \to K_s^0 K^+ \pi^- \gamma$$

$$\bullet \ \Lambda_b \to K_s^0 p \pi^- \gamma$$

•
$$\Lambda_b \to pK^-\gamma$$

$$\bullet \ B^0 \to \pi^+\pi^-\gamma$$

•
$$B_c^+ \to D^*(2010)^+ \gamma$$

$$\bullet \ B_c^+ \to D_s^{*+} \gamma$$

$$\begin{array}{c} \bullet \ B^+ \rightarrow \\ K^+ \eta (\pi^+ \pi^- \pi^0) \gamma \end{array}$$

•
$$B^0 \to K_s^0 \eta(\pi^+\pi^-\pi^0) \gamma$$

• The data collected with these triggers will lead to at least 10 publications.

Radiative B_c^+ decays

• B_c meson contains two heavy quarks, b and $c \to \text{Large number of decay modes}$.

- B_c can decay radiatively as $B_c^+ \to D_s^+ \gamma$ and $B_c^+ \to D_s^{*+}[D_s^+ \gamma] \gamma$
- Together with the EPFL group, we have started looking at $B_c^+ \to D_s^{*+} \gamma$ decays.
- Never Searched experimentally
- Theoretically expected BF:~ $\mathcal{O}(10^{-5})$

Rare $B_c^+ \to D_s^{*+}[D_s^+\gamma]\gamma$

- Only possible at LHCb
- Opportunity to study radiative transitions in the B_c sector
- Many B_c^+ in Run 3
- Challenges:
 - D_s flies, B_c vertex is not reconstructible. Similar to $\Lambda_b^0 \to \Lambda \gamma$
 - 2 photons final state
 - 1 soft photon (γ^s); introduces lots of background, photon identification challenging at low PT

• Samuël Bakker, EPFL project student, looked at 2024 data

- There are D_s^{*+} and D_s^{+} mass peaks in data.
- Next, we will study the misidentified and peaking backgrounds

Neutral PID calibration at LHCb

LHCb Unofficial LHCb-INT-2025-002

- Identification of photons and neutral pions at LHCb is key to several physics analyses.
- Designed LHCb Calo. triggers.
- Decay channels used (large branching fraction) for calibration:

$$B_{(s)}^{0} \to K^{*0}/\phi \gamma$$

$$D^{*+} \to D^{0}[K^{+}\pi^{-} \pi^{0}]\pi^{+}$$

$$D_{s}^{*+} \to D_{s}^{+} \gamma$$

$$\eta \to \mu^{+}\mu^{-} \gamma$$

$$D_{(s)}^{+} \to \eta'[\pi^{+}\pi^{-} \gamma]\pi^{+}$$

• Calibration will be used by the whole LHCb collaboration

Future Plans

- The journey at LHCb has been exciting, received the YSF grant at La Thuile, Italy, for EMTF work
- Recently won the EKOP scholarship in Hungary (additional support to exceptional researchers)
- After finishing the $\Lambda_b^0 \to p K^- \ell^+ \ell^-$ analysis, I plan to focus on radiative decays
- First searches of decays like $B_c^+ \to D_s^{*+} \gamma$, $\Lambda_b \to K_s^0 p \pi^- \gamma$, $B^0 \to K_s^0 \pi^+ \pi^- \gamma$ would be the immediate thrust
- Observation of these decays will open new avenues for TDCPV, photon polarization study
- I would also be interested in contributing to LHCb Upgrade II.

Conclusion

- Study of rare decays is absolutely crucial for new Physics search
- Designed RD HLT2 trigger lines and also added new Semileptonic and B2OC trigger lines
- Also, contributed as RD RTA liaison for 2025 data taking
- $\Lambda_b^0 \to p K^- \ell^+ \ell^-$, planning to enter into RC by the end of this year

October 2, 2025

The Three Frontiers

- At the intensity frontier, rare decays of subatomic particles like b meson, d meson, τ lepton are studied. Their probability of occurrence is very small.
- We compensate for that by having high luminosity, a large number of these particles being produced.

Reduce Combinatorial backgrounds by BDT

List of variables used for BDT training:

- $p_T(\Lambda_b^0)$
- $p(\Lambda_b^0)$
- χ^2_{DTF} prob
- ctau_signif
- k_IP_OWNPV, p_IP_OWNPV
- Lb_IPCHI2_OWNPV, p_IPCHI2_OWNPV, k_IPCHI2_OWNPV, L1_IPCHI2_OWNPV,L2_IPCHI2_OWNPV
- p_ProbNNp, p_ProbNNk, k_ProbNNk
- L1_ProbNNmu, L2_ProbNNmu,

Isolation variables:

- Lb_TRKISOBDTLONG_12, Lb_TRKISOBDTLONG_45
- Lb_TRKISOBDTVELO_12, Lb_TRKISOBDTVELO_45
- Lb_L2_0.50_nc_deltaEta, Lb_Kaon_0.50_nc_deltaEta, Lb_Proton_0.50_nc_deltaEta
- Lb_L2_0.50_nc_IT, Lb_Proton_0.50_nc_IT, Lb_Kaon_0.50_nc_IT

October 2, 2025

Triggers

Mutually exclusive L0-Hardware Triggers:

- TIS: LOHadron_TIS (Lb) || LOMuon_TIS (Lb) || LOElectron_TIS (Lb)
- MTOS: LOMuon_TOS $(\mu 1, \mu 2)$ && !TIS(Lb)
- ullet ETOS: LOElectron_TOS (e1,e2) && !TIS(Lb)

After that, further software-level triggers HLT1 and HLT2 are being applied.

Basis of local operators for $b \rightarrow s$ penguins

• (V - A) LH operators consistent with SM symmetries:

$$\begin{split} \mathcal{O}_1^u &= (\bar{s}\gamma_\mu T^a P_L u) \, (\bar{u}\gamma^\mu T^a P_L b) \\ \mathcal{O}_2^u &= (\bar{s}\gamma_\mu P_L u) \, (\bar{u}\gamma^\mu P_L b) \\ \mathcal{O}_2^u &= (\bar{s}\gamma_\mu P_L u) \, (\bar{u}\gamma^\mu P_L b) \\ \mathcal{O}_2^u &= (\bar{s}\gamma_\mu P_L u) \, (\bar{u}\gamma^\mu P_L b) \\ \mathcal{O}_1^c &= (\bar{s}\gamma_\mu T^a P_L c) \, (\bar{c}\gamma^\mu T^a P_L b) \\ \mathcal{O}_2^c &= (\bar{s}\gamma_\mu P_L c) \, (\bar{c}\gamma^\mu P_L b) \\ \mathcal{O}_2^c &= (\bar{s}\gamma_\mu P_L c) \, (\bar{c}\gamma^\mu P_L b) \\ \mathcal{O}_3^c &= (\bar{s}\gamma_\mu P_L b) \sum_q (\bar{q}\gamma^\mu q) \\ \mathcal{O}_4^c &= (\bar{s}\gamma_\mu T^a P_L b) \sum_q (\bar{q}\gamma^\mu T^a q) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &= \frac{e^2}{16\pi^2} (\bar{r}\gamma^\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_{10}^c &=$$

• $\mathcal{O}_{1,2}$ (4-quark tree), \mathcal{O}_{3-6} (4-quark penguins), \mathcal{O}_8 (gluon penguin)

The three dominant contributions

• The dominant $\mathcal{O}_{7,9,10}$ contributions, as a function of q^2 :

• The primed terms are the RH (quark) operators, suppressed in the SM, but can be enhanced in NP scenarios.

PRL 131 (2023) 051803, PRD 108 (2023) 032002

Compatible to the SM

JHEP 11 (2021) 043

PRL 131 (2023) 15, 151801

BR measurements differ from predictions

BDT training for $\Lambda_b^0 \to pK^-J/\psi(e^+e^-)$

• For the electron case, due to low statistics, BDT k-folding with cross-validation is being used.

October 2, 2025

Background Shapes in MC

- Background samples were generated with flat in m_{KK} and $m_{K\pi}$.
- m_{KK} and $m_{K\pi}$ shapes are corrected.
- Get the expected yield =