

Unique beauty at LHCb

At LHCb, all kinds of b hadrons are produced abundantly, including Λ_b^0 (udb), B_s^0 ($\bar{b}s$) and B_c^+ ($\bar{b}c$)

They can give unique insights into the flavour puzzle!

Unique beauty at LHCb

At LHCb, all kinds of b hadrons are produced abundantly, including Λ_b^0 (udb), B_s^0 ($\bar{b}s$) and B_c^+ ($\bar{b}c$)

They can give unique insights into the flavour puzzle!

On the menu today:

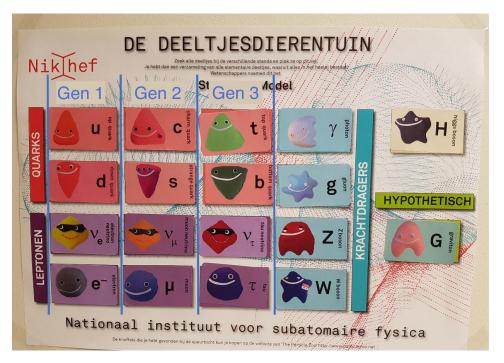
- Semileptonic rare decays: $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^{(\prime)-}$, with $\ell^{(\prime)}$ either μ or e
- Leptonic rare decays: $B_{(s)}^0 \to \mu^+ \mu^-$
- "Regular" leptonic decays: $B_{(c)}^+ \to \tau^+ \nu$

Unique beauty at LHCb

At LHCb, all kinds of b hadrons are produced abundantly, including Λ_b^0 (udb), B_s^0 ($\bar{b}s$) and B_c^+ ($\bar{b}c$)

They can give unique insights into the flavour puzzle!

On the menu today:

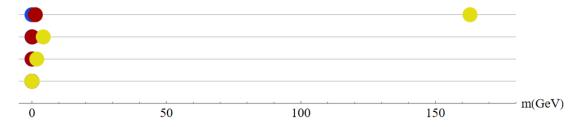

- Semileptonic rare decays: $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^{(\prime)-}$, with $\ell^{(\prime)}$ either μ or e
- Leptonic rare decays: $B_{(s)}^0 \to \mu^+ \mu^-$
- "Regular" leptonic decays: $B_{(c)}^+ \to \tau^+ \nu$

But what is the flavour puzzle?

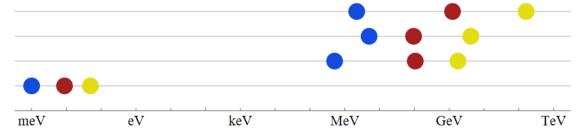
Flavour puzzle: generations

There are three generations of matter: Why exactly three?
Perhaps because at least three are needed for CP violation, i.e. matter-antimatter differences?

Flavour puzzle: masses



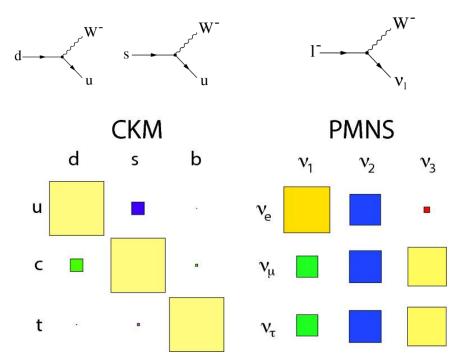
20 out of 26 Standard Model parameters associated with Higgs particle 12 masses, one per fermion


Why are masses so hierarchical for quarks + charged leptons?

Why are neutrino masses so much smaller?

Masses on linear scale for first, second, third gen

Masses on log scale for **first**, **second**, **third** gen

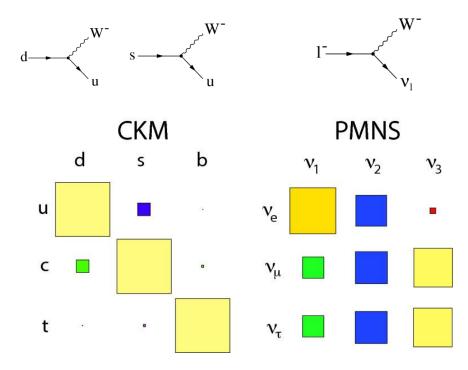

Flavour puzzle: fermion mixing

Quark mixing caused by separate eigenstates for Higgs, weak interaction → 4 parameters for quarks, 4 parameters for leptons

Why do mixing parameters for quarks look hierarchical and anarchical for neutrinos?

To solve flavour puzzle: study third generation → beauty quarks

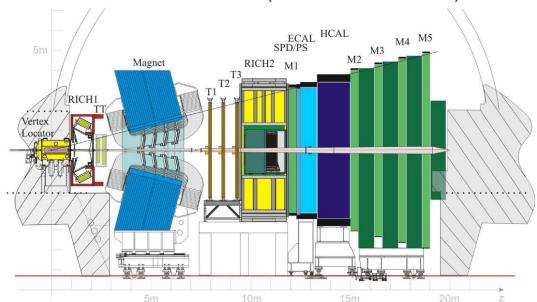
Flavour puzzle: fermion mixing



Quark mixing caused by separate eigenstates for Higgs, weak interaction → 4 parameters for quarks, 4 parameters for leptons

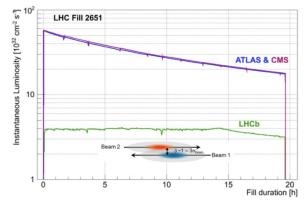
Why do mixing parameters for quarks look hierarchical and anarchical for neutrinos?

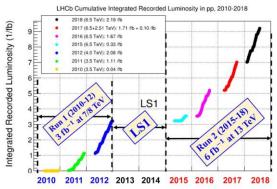
To solve flavour puzzle: study third generation → beauty quarks


Where to study them? LHCb!

LHCb experiment

- Forward spectrometer at the LHC, optimised for b-hadrons
- $b\bar{b}$ cross section = 154.3 \pm 1.5 μb at \sqrt{s} =13 TeV in acceptance 2 < η < 5
- $O(10^5)$ bb pairs/s in LHC Run 1 & 2 (and 20 x more cc)

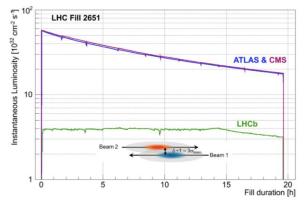


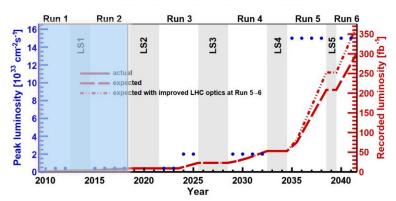

LHCb Run 1 & 2 data taking

LHCP

- Running with LHC luminosity levelling
 (£ = 4 × 10³² cm⁻² s⁻¹, 2x design luminosity)
 → stable data-taking conditions
- Corresponds to 1.5 interactions per bunch crossing

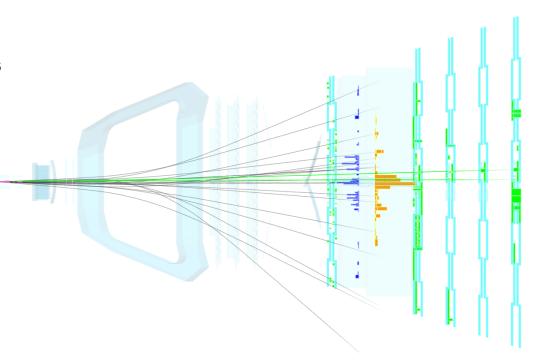
Total of 9 fb⁻¹ collected
 → around 3 · 10¹² bb̄ pairs produced!



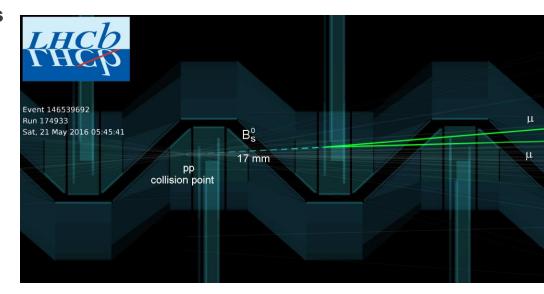

LHCb Run 1 & 2 data taking

- Running with LHC luminosity levelling
 (£ = 4 × 10³² cm⁻² s⁻¹, 2x design luminosity)
 → stable data-taking conditions
- Corresponds to 1.5 interactions per bunch crossing

- Total of 9 fb⁻¹ collected
 → around 3 · 10¹² bb̄ pairs produced!
- Only the beginning!

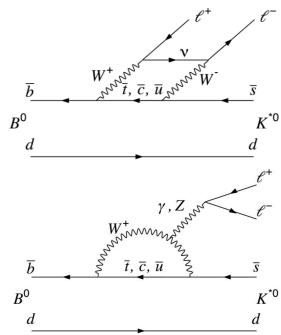


LHCb performance


- Very good momentum resolution $(\Delta p/p = 0.5 1.0\%)$ \rightarrow Sufficient to separate B_s^0 , B^0 decays
- Excellent charged particle identification:
 μ ID ~ 97 % w. 1-3% π → μ mis-id
 e ID ~ 90 % w. ~ 5% h → e mis-id
 → required to reject hadronic B
 decays & separate π, K, p

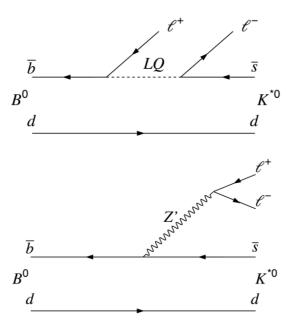
LHCb performance

- Very good momentum resolution $(\Delta p/p = 0.5 1.0\%)$
 - \rightarrow Sufficient to separate B^0_s , B^0 decays
- Excellent charged particle identification:
 μ ID ~ 97 % w. 1-3% π → μ mis-id
 e ID ~ 90 % w. ~ 5% h → e mis-id
 → required to reject hadronic B
 decays & separate π, K, p
- Clear separation of B hadron decay vertex and pp collision:
 45 fs decay time resolution ≅
 3% of B lifetime
 - → essential to reduce backgrounds

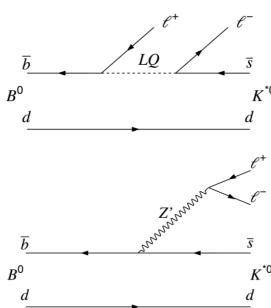


Rare decays

Rare decays: $b \rightarrow s(d)\ell\ell$

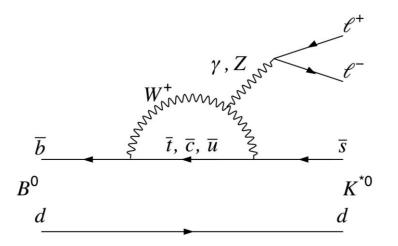

 Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)

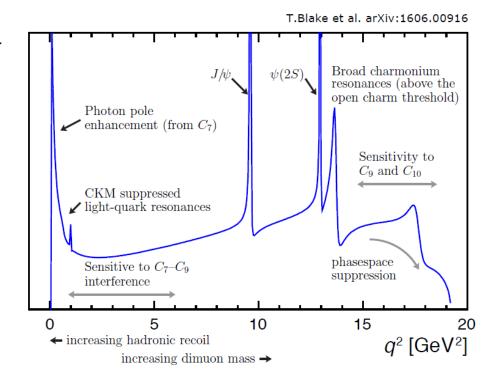
Rare decays: $b \rightarrow s(d)\ell\ell$


- Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)
- Transition uncommon in Standard Model, sensitive to small contributions from heavy new particles!

Rare decays: $b \rightarrow s(d)\ell\ell$

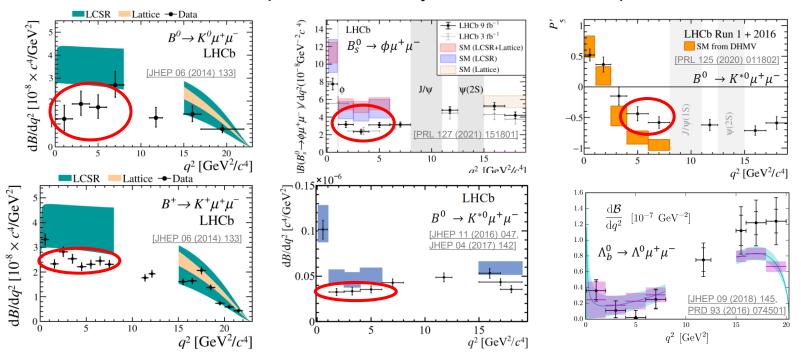
- Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)
- Transition uncommon in Standard Model, sensitive to small contributions from heavy new particles!
- Large variety of channels and observables, such as:
 - Branching fractions
 - Angular distributions
 - Lepton universality (e.g. $\Lambda_h^0 \to \Lambda \ell^+ \ell^-) \to \text{today}$
 - Leptonic decays (e.g. $B_s^0 \rightarrow \mu^+\mu^-) \rightarrow today$


Semileptonic rare decays and $\Lambda_b^0 \to \Lambda \ell^+ \ell^-$


Semileptonic rare decays: q²

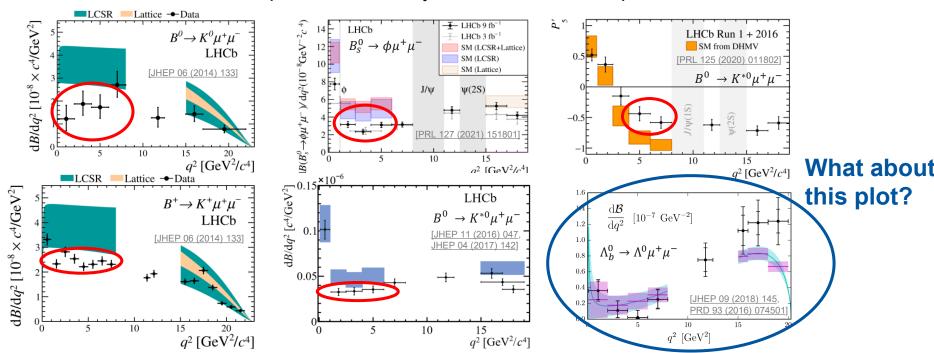
Physics depends on $q^2 = m_{\ell\ell}^2$:

- Resonances (e.g. J/ψ, φ)
- Photon pole at very low q²
- Vector or axial vector current



Semileptonic rare decays: deviations

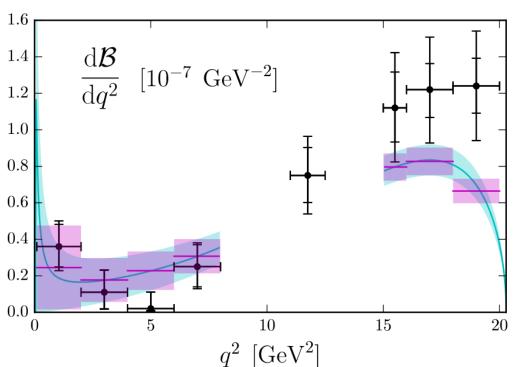
Measurements of semileptonic rare decays **still deviate** from predictions....



Note: these deviations are consistent (interpreted in EFT framework, see backup)

Semileptonic rare decays: deviations

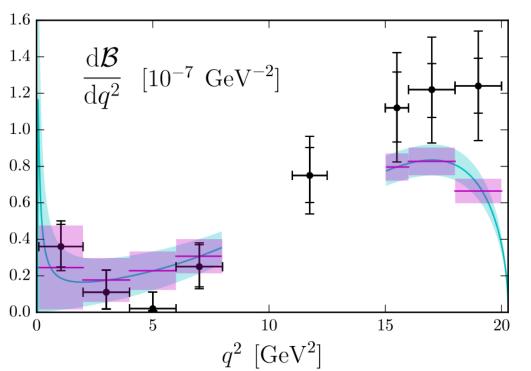
Measurements of semileptonic rare decays still deviate from predictions....



Note: these deviations are consistent (interpreted in EFT framework, see backup)

Add the $\Lambda_h^0 \to \Lambda^0 \ell \ell'$ system to the mix!

Current knowledge on $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-$ limited by uncertainty on BF($\Lambda_b^0 \to J/\psi \Lambda^0$) (~20%)

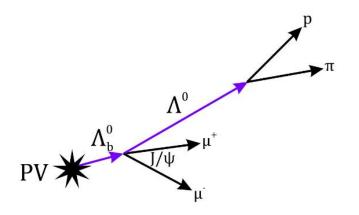

Very interesting laboratory!

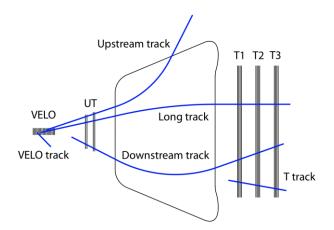
- Baryon to baryon transition → polarised states
- The Λ baryon decays weakly: many observables available, with much cleaner predictions than $B^0 \to K^{*0} \mu^+ \mu^-$
- Competitive with B meson measurements at high q^2

Add the $\Lambda_h^0 \to \Lambda^0 \ell \ell'$ system to the mix!

Current knowledge on $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-$ limited by uncertainty on BF($\Lambda_b^0 \to J/\psi \Lambda^0$) (~20%)

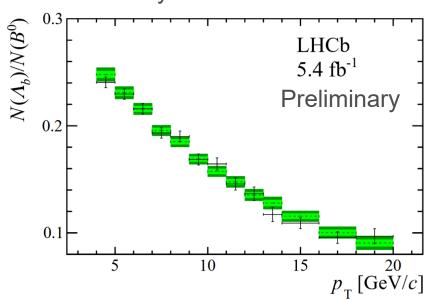
Our group has three goals:


- 1. Measure BF($\Lambda_{\rm b}^0 \to J/\psi \Lambda^0$)
- 2. First limit on $\Lambda_b^0 \to \Lambda^0 e^{\pm} \mu^{\mp}$
- 3. First lepton universality test: $\Lambda_b^0 \to \Lambda^0 e^+ e^- / \Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$


Will briefly discuss 1. and 3. today

Reconstructing $\Lambda_b^0 \to \Lambda^0 \ell \ell'$

- Use Λ^0 with two long tracks (LL) or two downstream tracks (DD)
- Major loss in statistics because of slow decay, challenging to calibrate

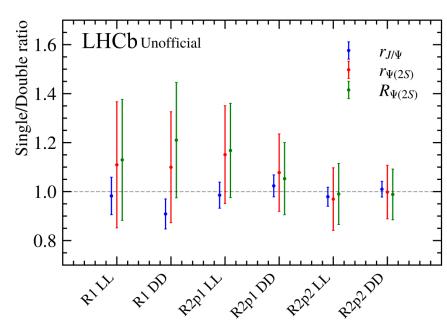


Measuring BF($\Lambda_b^0 \rightarrow J/\psi \Lambda^0$)

- Use improved determination of $\Lambda_{\rm b}^0/B^0$ production rate $f_{\Lambda_b}^0/f_d$ (7%)
- Experimentally challenging $(\Lambda^0$ decays travelling through detector)
- BF($\Lambda_b^0 \rightarrow J/\psi \Lambda^0$) = (3.34 \pm 0.31)%, reduction of uncertainty by factor 3
- Unlocks new set of measurements: branching fractions of $\Lambda_h^0 \to \Lambda^0 \ell \ell'$

Recently unblinded results:

Measuring lepton universality: $R(\Lambda)$

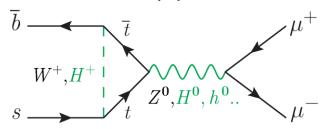

Precise way to test structure of matter:
 lepton flavour universality

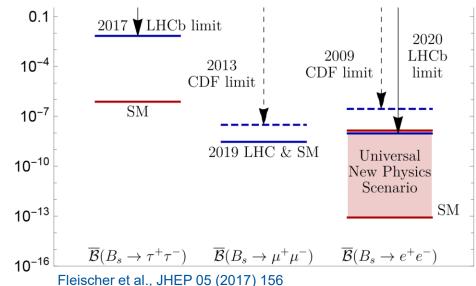
•
$$R(\Lambda) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 e^+ e^-)} = 1 \text{ (in SM)}$$

- Very challenging: electron momentum is difficult to reconstruct at LHCb
- Essential: cross-check using more common $\Lambda_b^0 \to J/\psi \Lambda, \psi(2S) \Lambda$ decays, e.g.

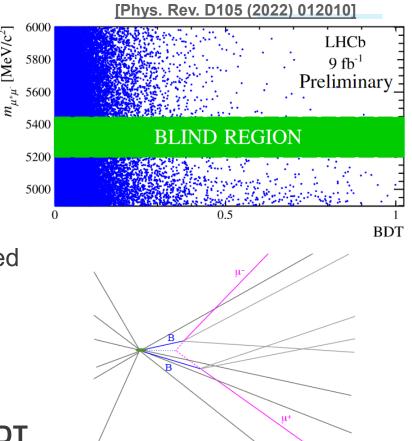
$$r_{J/\psi} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(\Lambda_b^0 \to J/\psi(\to \Lambda^0 e^+ e^-))} = 1$$

• Expected sensitivity of around 16% on $R(\Lambda)$, backgrounds being calibrated

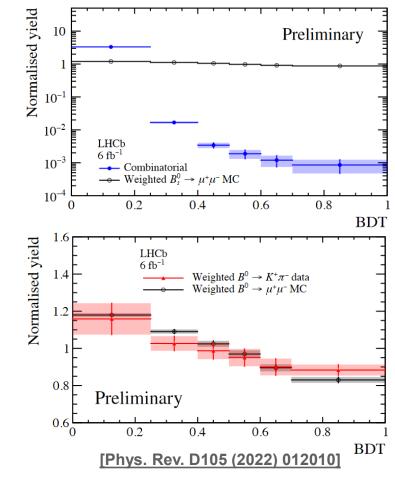



Leptonic rare decays and $B^0_{(s)} \rightarrow \mu^+ \mu^-$

Leptonic rare decays: $B_{(s)}^0 \rightarrow l^+ l^-$


- Precise theory predictions
 (decay rate has only ~3% uncertainty)
- Strong constraints on New Physics, especially scalar New Physics, due to helicity suppression in SM
- Only $B_S^0 \to \mu^+ \mu^-$ in current experimental reach

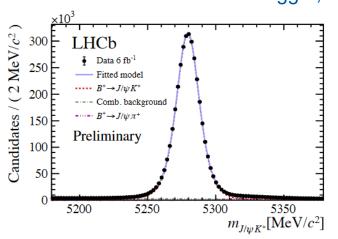
28


Analysis strategy

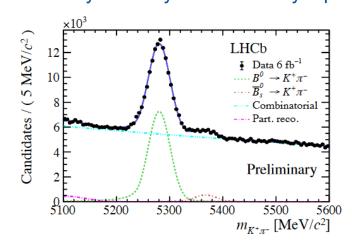
- Similar strategy to previous analysis, strongly improved calibration
- Use full Run 1 + Run 2 data
- Muon pairs with $m_{\mu^+\mu^-} \in [4.9,6.0]$ GeV with good displaced vertex
- Signal region blind until analysis is finalised
- Suppress misID with tight Particle ID cut
- Main background: combinatorial
- Rejected with multivariate classifier, namely Boosted Decision Tree (BDT)
- Determine signal from fit to $m_{\mu\mu}$ and BDT

BDT calibration

- Divide fit sample in 6 BDT bins, exclude first bin (too much background)
- Flat for simulated signal before PID and trigger, strongly falling for combinatorial background
- PID, trigger and data-simulation differences can modify the shape
- New procedure: simulation samples corrected using data control channels (kinematics, occupancy, PID, trigger)
- Essential: cross-check with $B_{(s)}^0 \to h^+h^-$ data!
- Uncertainty reduced significantly with new procedure



Normalisation: strategy



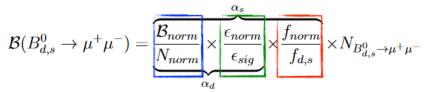
- Normalise branching fraction to well-known channels
- Use two modes, yields determined from mass fits

$$B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$$

Muons in final state: similar trigger, PID

$$B^0 \to K^+\pi^-$$

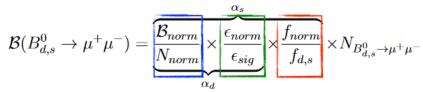
Two-body B decay: similar decay topology



[Phys. Rev. D105 (2022) 012010]

Normalisation: results

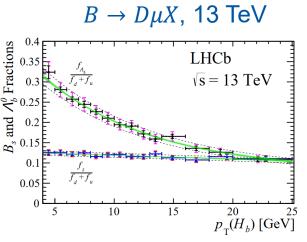
Normalisation used to convert yield into BF using

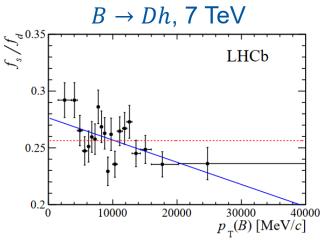


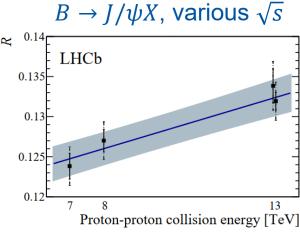
- Normalisation yield and BF
- Signal/normalisation efficiency ratio evaluated from simulation, control channels

Normalisation: results

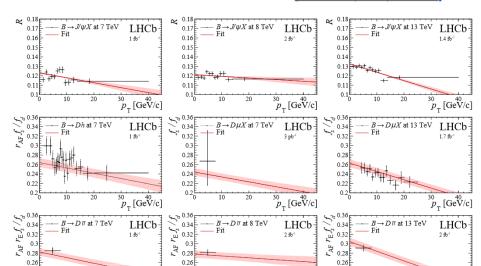
Normalisation used to convert yield into BF using




- Normalisation yield and BF
- Signal/normalisation efficiency ratio evaluated from simulation, control channels
- Ratio of hadronisation fractions (for B_s^0): f_s/f_d from new combination, major reduction in uncertainty


Intermezzo: f_s/f_d at LHCb

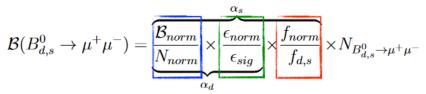
- $f_s/f_d = B_s^0/B_d^0$ production ratio
 - Required to measure B^0_s branching fractions such as $B(B^0_s o \mu^+\mu^-)$
 - Interesting per se as probe of hadronisation and fragmentation
- · Combine 5 previous measurements performed at different pp collision energies, versus p_T and η


Intermezzo: f_s/f_d at LHCb

- Complicated analysis, can discuss details if interested
- Observe variation of f_s/f_d with ppcollision centre-of-mass energy
- Integrated value in LHCb acceptance: $\frac{f_s}{f_d} = 0.2539 \pm 0.0079$
- Uncertainty reduced by factor two, also applied to previous B_s^0 branching fraction measurements
- **Essential improvement for future** measurements of $B(B_s^0 o \mu^+\mu^-)$

[PRD104 (2021) 032005]

³⁰ р_т [GeV/c]


³⁰ p_m [GeV/c]

³⁰ р_т [GeV/c]

Normalisation: results

Normalisation used to convert yield into BF using

- Normalisation yield and BF
- Signal/normalisation efficiency ratio evaluated from simulation, control channels
- Ratio of hadronisation fractions (for B_s^0): f_s/f_d from new combination, major reduction in uncertainty
- Signal yields consistent with expected improvement
- Cross-check: $B(B^0 \to K^+\pi^-)/B(B^+ \to J/\psi K^+)$ consistent w. PDG

Estimated total signal yields (before BDT):

$$N(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = 147 \pm 8$$

$$N(B^0 \to \mu^+ \mu^-)_{\rm SM} = 16 \pm 1$$

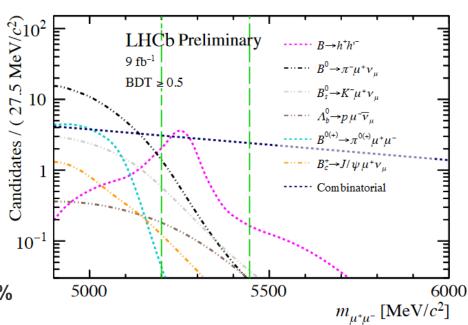
$$N(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm SM} \approx 3$$

Backgrounds

Three types of backgrounds in fit:

- 1. Combinatorial, over full mass spectrum (free in fit)
- 2. Mis-identified backgrounds:

$$B^0 o \pi^- \mu^+ \nu_\mu, B^0_s o K^- \mu^+ \nu_\mu, B^0_{(s)} o h^+ h'^-, \Lambda^0_b o p \mu^- \overline{\nu_\mu}$$


3. Real muons:

$$B^{0/+} \to \pi^{0/+} \mu^+ \mu^-, B_c^+ \to J/\psi \mu^+ \nu_{\mu}$$

Calibrate on corrected simulation samples

Cross-check with fit to $B_{(s)}^0 \to h^+ h'^-$ data with one hadron mis-identified, consistent within 10%

[Phys. Rev. D105 (2022) 012010]

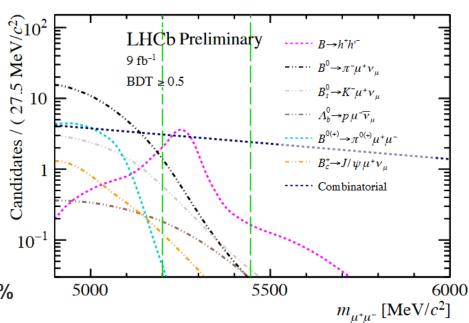
Backgrounds

Three types of backgrounds in fit:

- 1. Combinatorial, over full mass spectrum (free in fit)
- 2. Mis-identified backgrounds:

$$B^0 o \pi^- \mu^+
u_\mu, B^0_s o K^- \mu^+
u_\mu, \ B^0_{(s)} o h^+ h'^-, \Lambda^0_b o p \mu^- \overline{
u_\mu}$$

3. Real muons:

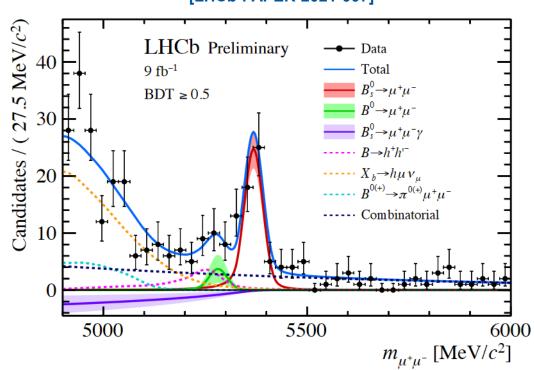

$$B^{0/+} \to \pi^{0/+} \mu^+ \mu^-, B_c^+ \to J/\psi \mu^+ \nu_{\mu}$$

Calibrate on corrected simulation samples

Cross-check with fit to $B_{(s)}^0 \to h^+ h'^-$ data with one hadron mis-identified, consistent within 10%

Everything calibrated? Time to fit!

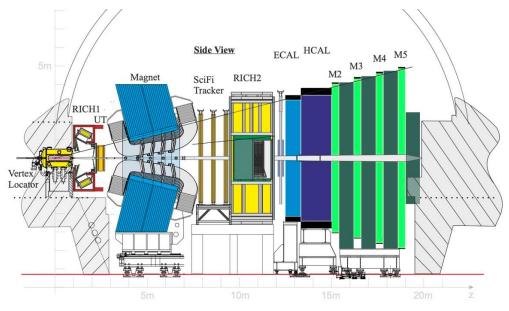
[Phys. Rev. D105 (2022) 012010]



Results

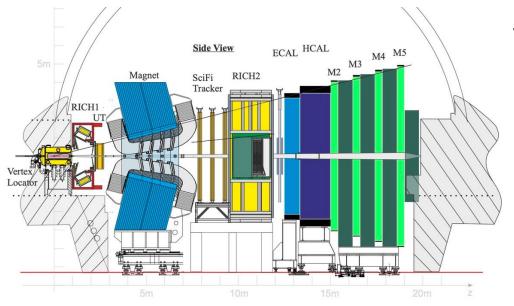
- $B(B_s^0 o \mu^+ \mu^-) = \ (3.09^{+0.46+0.15}_{-0.43-0.11}) imes 10^{-9}$ with significance > 10σ
- Similar uncertainty to previous LHC combination
- $B^0 \to \mu^+\mu^-$ and $B_s^0 \to \mu^+\mu^-\gamma$ compatible with background-only at 1.7σ , 1.5σ
- Measurement of $\tau(B_s^0 \to \mu^+ \mu^-)$ is testing CP state of decay, but much more data needed...

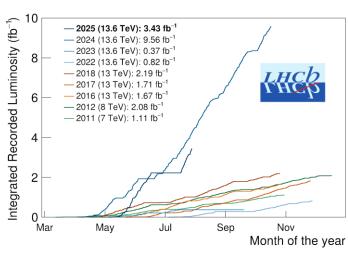
[LHCb-PAPER-2021-007]



New possibilities: LHCb Upgrade I

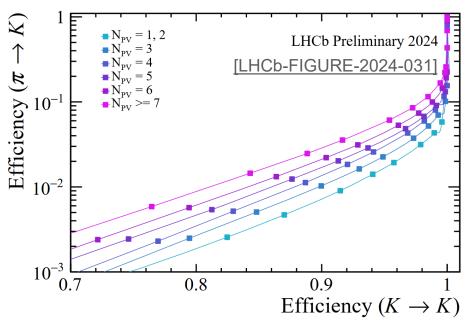
LHCb Upgrade 1 detector

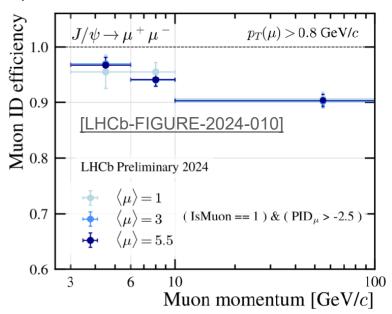

A whole new detector to take 5-10x more data! (without hardware trigger)



LHCb Upgrade 1 detector

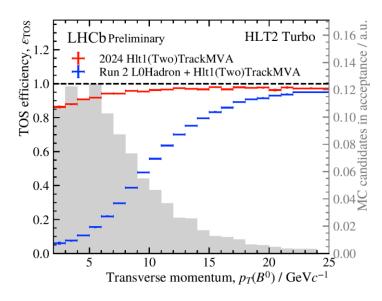
A whole new detector to take 5-10x more data! (without hardware trigger)





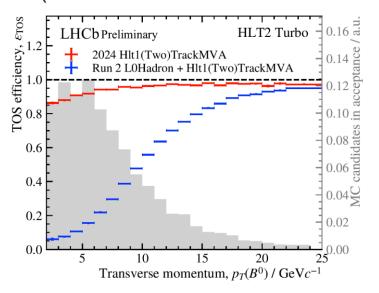
Upgrade performance: particle ID

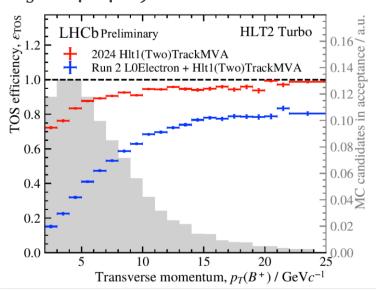
• Particle ID holding up under harsher Run 3 conditions (to be confirmed in e.g. $B_s^0 \to \mu^+ \mu^-$)



Upgrade performance: trigger

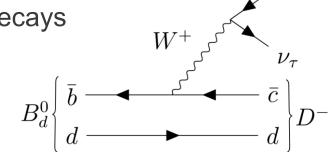
Trigger performance much better for hadrons...


[LHCb-FIGURE-2024-030]



Upgrade performance: trigger

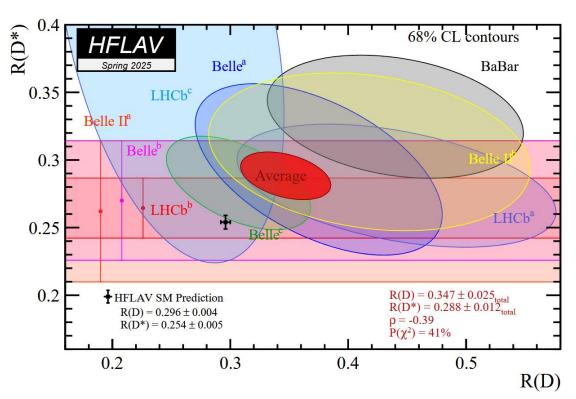
• Trigger performance much better for hadrons... and electrons! (and much easier to calibrate for $B_s^0 \to \mu^+ \mu^-$) [LHCb-FIGURE-2024-030]


"Regular" rare decays and $B_{(c)}^+ o au^+ u$

LFU in $b \rightarrow c\tau \nu$ transitions

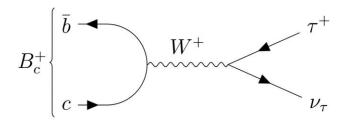
- Semileptonic b → clv is the most common type of B decay;
 no New Physics expected in tree-level weak decays
- Our interest: tests of lepton universality:
 τ vs. μ, e rates, precisely predicted in SM

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^-\bar{\nu}_{\mu})}$$

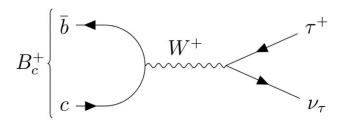


Also here, there are some deviations...

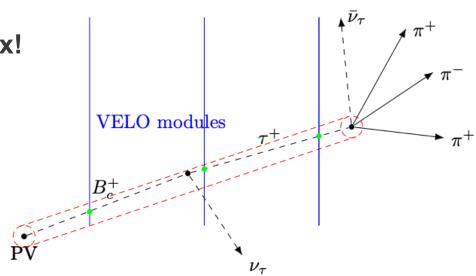
LFU in $b \to c\tau\nu$ transitions: $R(D^{(*)})$


Current tension of around 3.8 σ between **measurements** and **SM**

LFU in $b \to c\tau\nu$ transitions: $B_{(c)}^+ \to \tau^+\nu$

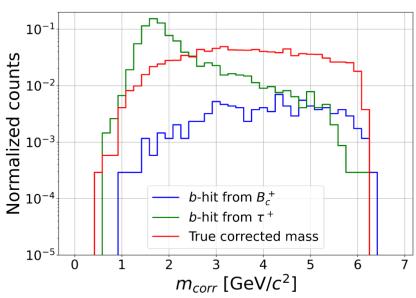

- Just as $B_s^0 \to \mu^+ \mu^-$, $B_c^+ \to \tau^+ \nu$ is very sensitive to scalar New Physics
- However, it actually is very common in Standard Model: $\mathcal{B}(B_c^+ \to \tau^+ \nu) \approx 2.5\%$
- No strong constraints available!
 (only from lifetime or reinterpretations of LEP measurements)
- New Physics could enhance this decay by an order of magnitude

LFU in $b \to c\tau\nu$ transitions: $B_{(c)}^+ \to \tau^+\nu$


- Just as $B_S^0 o \mu^+ \mu^-$, $B_c^+ o \tau^+ \nu$ is very sensitive to scalar New Physics
- However, it actually is very common in Standard Model: $\mathcal{B}(B_c^+ \to \tau^+ \nu) \approx 2.5\%$
- No strong constraints available!
 (only from lifetime or reinterpretations of LEP measurements)
- New Physics could enhance this decay by an order of magnitude
- So why has it not been studied yet?

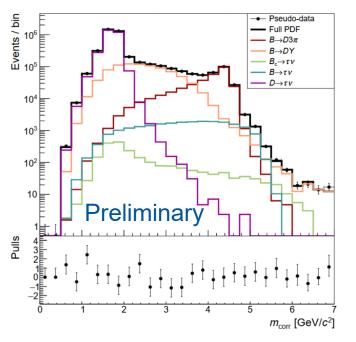
Reconstructing $B_{(c)}^+ \to \tau^+ \nu$

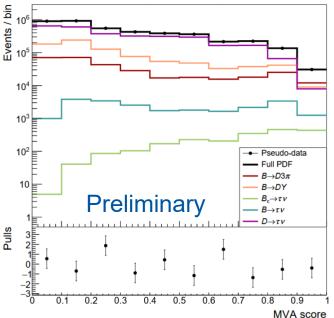
- Extremely challenging:
 two neutrinos and no B⁺_(c) vertex!
- Use $\tau^+ \to \pi^+ \pi^+ \pi^- \nu$ decay, to at least have clear τ^+ vertex
- Our solution: search for hits when $B_{(c)}^+$ decays within VELO, determine "corrected" mass
- Major increase in background rejection and mass resolution at cost of statistics



Feasibility study

- Simulate LHCb with RapidSim
- Include model of VELO to simulate chance of $B_{(c)}^+$ or τ^+ reaching them
- Simulate all backgrounds with τ or 3π final state
- Train BDT to separate $B_{(c)}^+ \to \tau^+ \nu$ from background cocktail
- Perform 2D fit to corrected mass and BDT


Corrected mass shape $B_c^+ \rightarrow \tau^+ \nu$



Feasibility study: results

Average significance for $B_c^+ \to \tau^+ \nu$ signal: 4.8 σ with 10 fb⁻¹: clear potential for discovery of $B_c^+ \to \tau^+ \nu$ with Run 3 data

Conclusions

LHCb performs and is working on unique tests of beauty, such as

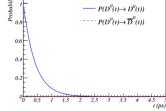
- Shedding light on tensions in rare decays with $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^{(\prime)-}$ system
- Strongly constraining scalar New Physics with $B_{(s)}^0 \to \mu^+ \mu^-$, and soon tightening the screws with LHCb Upgrade data
- A new addition to the family in the LHCb Upgrade era: $B_c^+ \to \tau^+ \nu$, a stringent test of scalar New Physics in the third generation!

Conclusions

LHCb performs unique tests of beauty, such as

- Shedding light on tensions in rare decays with $\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^{(\prime)-}$ system
- Strongly constraining scalar New Physics with $B_{(s)}^0 \to \mu^+ \mu^-$, and soon tightening the screws with LHCb Upgrade data
- A new addition to the family in the LHCb Upgrade era: $B_c^+ \to \tau^+ \nu$, a stringent test of scalar New Physics in the third generation!

The future is looking bright: are we closing in on a solution for the flavour puzzle?


Thanks for your attention!

Meson mixing

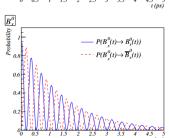
- Neutral flavoured mesons (K, D, B) only have non-zero quantum numbers that are not invariant for weak interaction!
- $ar{B}_s$ $_{ar{s}}$ -

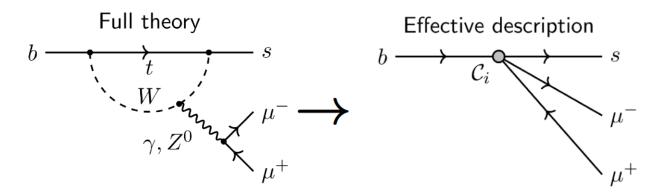
 V_{tb}

 $-- P(K^0(t) \to K^0(t))$ $--- P(K^0(t) \to \overline{K}^0(t))$ $--- P(K^0(t) \to \overline{K}^0(t))$

 W^+

 V_{tb}

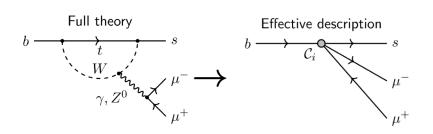


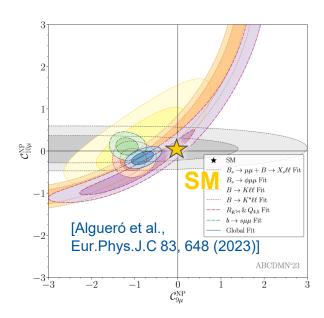

Figure 3.3: If one starts with a pure P^0 -meson beam the probability to observe a P^0 or a \bar{P}^0 -meson at time t is shown, $\operatorname{Prob}(t) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2} \Delta \Gamma t \pm \cos \Delta m t \right)$.

- Very dependent on meson system
- Described with Hamiltonian, oscillation frequency Δm and lifetime difference $\Delta \Gamma$

Effective field theory

- Are anomalies consistent with each other?
- Use effective field theory at B-hadron scale, just like beta decay four-point interaction!

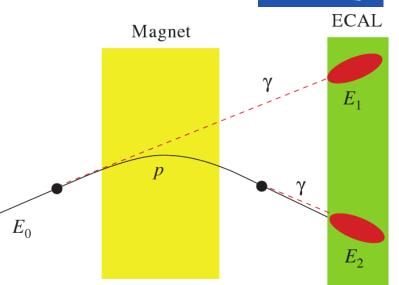



Effective field theory

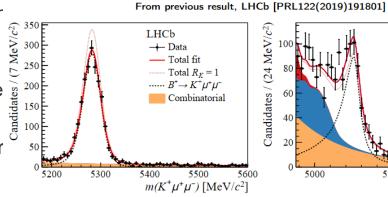
An EFT probes different couplings:

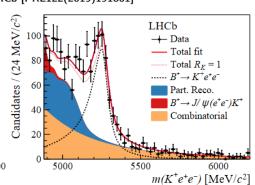
$$\mathcal{H}_{\mathrm{eff}} = -rac{G_F}{\sqrt{2}}V_{\mathrm{CKM}}\sum_i \mathcal{C}_i\mathcal{O}_i$$

- Fermion operators O_i , Wilson coefficients C_i
- Grouped by leptonic current: (SM,NP)
 - C₇ photon penguin
 - $(C_{10})C_9$ (axial) vector
 - $(C_P)C_S$ (pseudo) scalar
- Note: operators, coefficients with opposite quark current handedness from SM marked with O'_i, C'_i (negligible in SM)
- Global fits indicate consistent deviation: universal reduction in C_9 ?



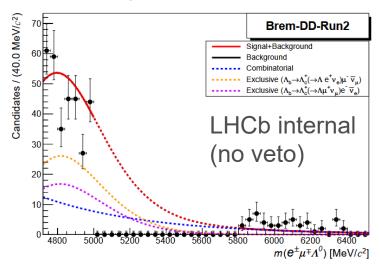
Measurements with electrons at LHCb

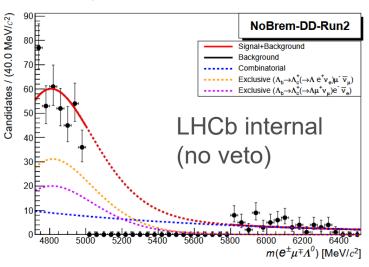

- Electrons provide extra challenge in LHCb, because of significant bremsstrahlung in material
- If bremsstrahlung is emitted before magnet, momentum is underestimated
- Recover bremsstrahlung by searching for photon clusters in calorimeter
- If found, correct electron momentum
- Still, mass shape worse for electron modes



Measurements with electrons at LHCb

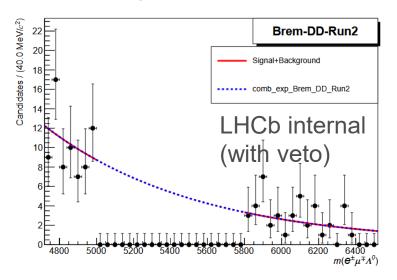
- Electrons provide extra challenge in LHCb, because of significant bremsstrahlung in material
- If bremsstrahlung is emitted before magr momentum is underestimated
- Recover bremsstrahlung by searching for photon clusters in calorime
- If found, correct electron momentum
- Still, mass shape worse for electron m

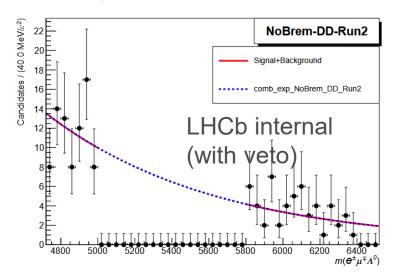



- Additionally, electrons more difficult for hardware trigger (than muons)
- Electron sample divided based on hardware trigger category: electron, rest-of-event, or hadron trigger

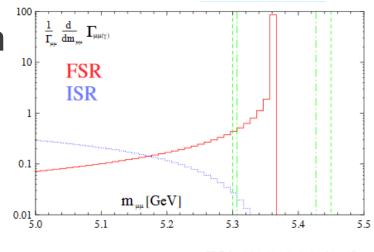
$\Lambda_b^0 \to \Lambda^0 e \mu$ analysis status

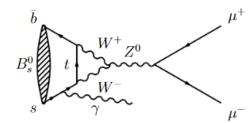
- Finalising analysis, last ongoing pieces:
 - Rerunning analysis including veto for additional semileptonic background from B⁰
 - Expected limit and sensitivity for different decay models
- In end stage of internal review, limited by availability of postdocs



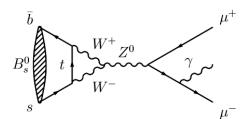


$\Lambda_b^0 \to \Lambda^0 e \mu$ analysis status


- Finalising analysis, last ongoing pieces:
 - Rerunning analysis including veto for additional semileptonic background from B⁰
 - Expected limit and sensitivity for different decay models
- In end stage of internal review, limited by availability of postdocs

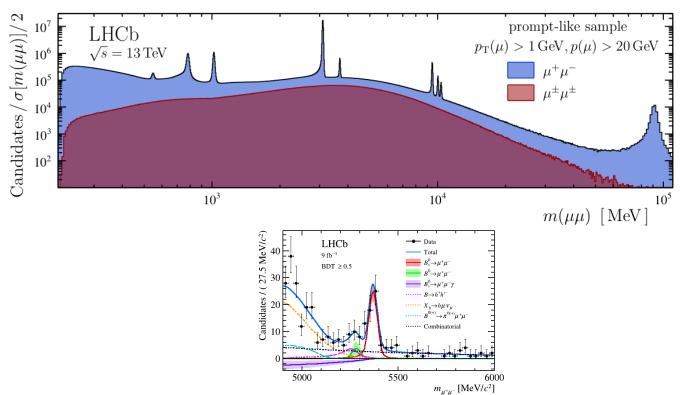

$B_{(s)}^0 \to \mu^+ \mu^-$ and photon radiation

- Initial State Radiation: photon emitted from quarks, sensitive to vector and axial vector here referred to as $B^0_{(s)} \to \mu^+ \mu^- \gamma$
- New observable in this analysis, without reconstructing photon for $m_{\mu^+\mu^-} > 4.9 \text{ GeV}$
- SM prediction $O(10^{-10})$ [JHEP 11 (2017) 184, PRD 97 (2018) 053007]
- Final State Radiation: soft photons emitted from muons, sensitive to axial vector only, included in $B_s^0 \to \mu^+\mu^-$ via PHOTOS

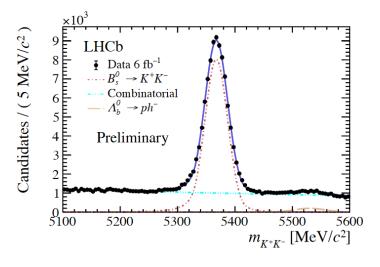


[PRL 112 (2014) 101801]

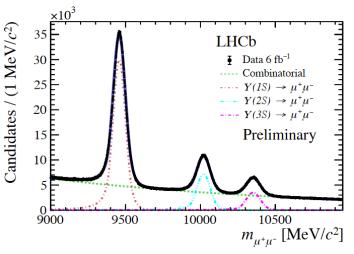
Initial State Radiation


Final State Radiation

Searching for $B_s^0 \to \mu^+ \mu^-$



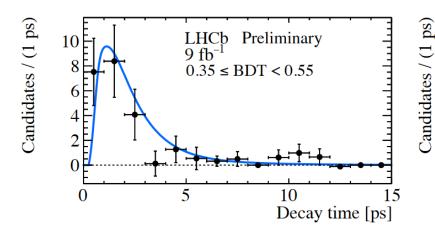
[PRL 120 (2018) 061801]

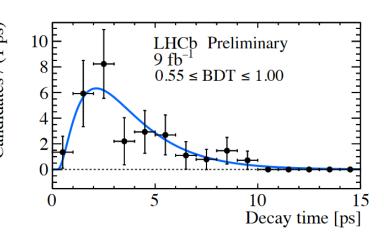


Mass calibration

Mean calibrated from fits to $B^0 \to K^+\pi^-, B_s^0 \to K^+K^-$ data

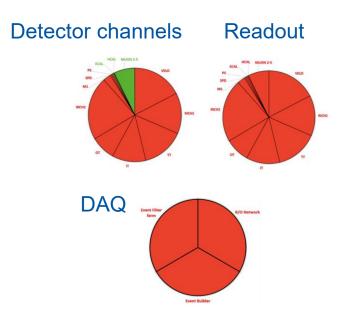
Resolution calibrated with fits to $J/\psi, \psi(2S), \Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow \mu^{+}\mu^{-}$ data


Tail parameters (for FSR) calibrated on smeared simulation Include correlation of mass shape with BDT


Effective lifetime

- $B_{(s)}^0 \to \mu^+ \mu^-$ decay proceeds through CP-odd state in SM
- CP-even, CP-odd states of B_s^0 have different lifetime \rightarrow measure effective lifetime τ_{eff} to test CP-even contribution (from scalar NP)
- $\tau(B_s^0 \to \mu^+ \mu^-) = 2.07 \pm 0.29 \pm 0.03 \text{ ps} \text{ (previously } 2.04 \pm 0.44 \pm 0.05 \text{ ps)}$
- 1.5 σ from SM, 2.2 σ away from fully CP-even (extreme non-SM)
 - → More data is needed to constrain the SM here...

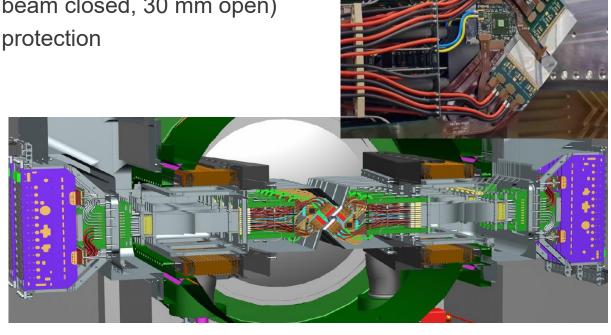
LHCb Upgrade slides


LHCb Upgrade 1 detector

CERN-LHCC-2011-001

A whole new detector!

ECAL HCAL Side View M4 M5 M2 Magnet RICH2 Tracker RICH1 Vertex upgrade

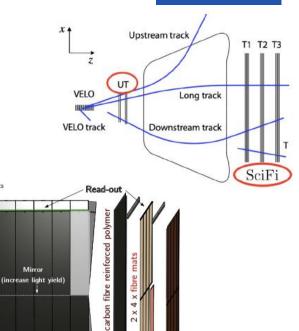

VELO

New pixel detector (replacing strips)

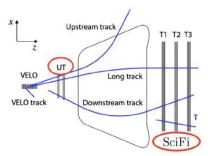
- Within vacuum of LHC beam pipe; 2 moveable halves (5.1 mm from beam closed, 30 mm open)
- Dedicated RF foil for protection
- Very radiation hard
- Data rate: 3 Tbit/s

Performing well now, after recovery from January 2023 incident

SciFi

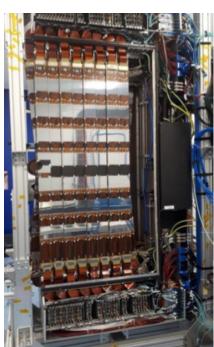

CERN-LHCC-2014-001

Scintillating **Fi**bretracker developed for high occupancy


- Spatial resolution 80 μm
- Hit efficiency > 99%

Performing well, with occupancy even higher than in design specifications

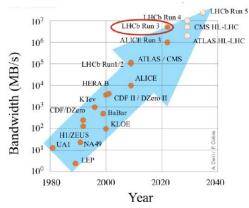
Upstream Tracker

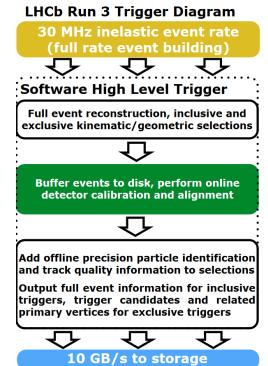

- 4 planes made of silicon strips with finer segmentation and improved acceptance
 - Fast pT determination for track extrapolation, reduction of ghost tracks
 - Detect long-lived particles decaying after VELO (K_S^0, Λ^0)
- Successfully running together with rest of detector

CERN-LHCC-2014-001

Trigger

CERN-LHCC-2014-016 CERN-LHCC-2020-006




- All subdetectors read out at 30 MHz –
 Real Time Analysis with software trigger
- HLT1 reduces 30 MHz to 1 MHz with partial event reconstruction (tracking, vertexing, muon ID), based on GPUs in new data centre

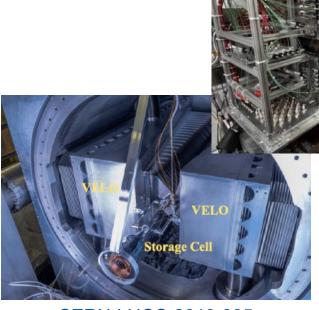
Calibrate detector in "real-time" such that HLT2 uses

best-quality tracking, PID

- Hadronic yield /fb⁻¹ is 2x that of Run 2
- 40 Tbit/s is highest throughput of all LHC

Plume and SMOG

CERN-LHCC-2021-002

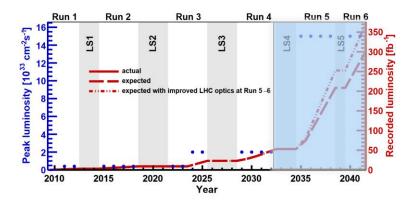


Probe for LUminosity MEasurement (PLUME): new dedicated luminometer

- Quartz tablets + PMTs for online+offline perbunch luminosity measurement
- Running continuously, accurate luminosity estimate

SMOG2 gas system for fixed-target physics

- New storage cell for gas upstream of nominal interaction point
- Gas density increased by up to two orders of magnitude → much higher luminosity
- Gas targets: He, Ne, Ar
 (+ possibly H2, D2, N2, Kr, Xe)
- Simultaneous p-p and p-gas data taking
- Running smoothly and data taken in parallel



CERN-LHCC-2019-005

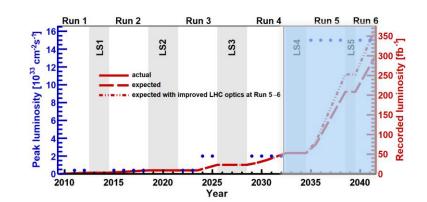
Upgrade 2

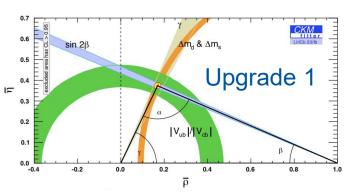
LHCb

Goal: increase of luminosity by factor 7.5; aim for 300 fb-1 after Run 6

Upgrade 2

Goal: increase of luminosity by factor 7.5; aim for 300 fb-1 after Run 6


Will reach unprecedented precision


Detector environment will be challenging:

- Pile-up ~40 interactions
- 200 Tb/s of produced data

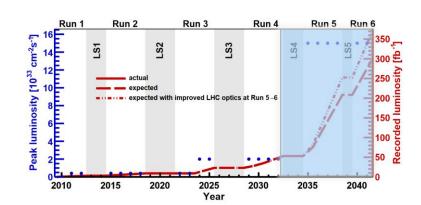
Detector upgrades: performance in harsher environment

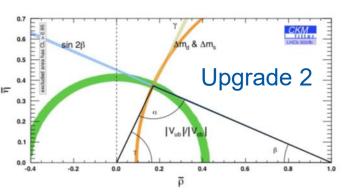
- Better granularity
- Fast timing (~10 ps)
- Radiation hardness

Upgrade 2

Goal: increase of luminosity by factor 7.5; aim for 300 fb-1 after Run 6

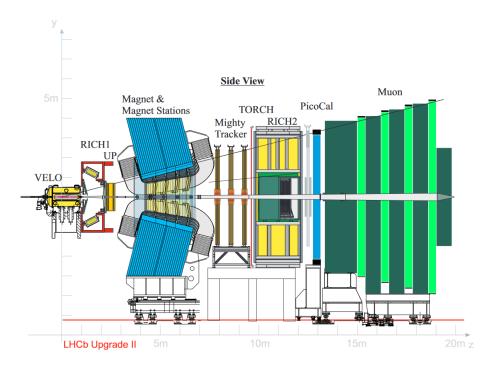
Will reach unprecedented precision


Detector environment will be challenging:


- Pile-up ~40 interactions.
- 200 Tb/s of produced data.

Detector upgrades: performance in harsher environment

- Better granularity
- Fast timing (~10 ps)
- Radiation hardness


Large step, e.g. in constraining unitarity triangle

LHCb Upgrade 2 detector

Advantages of b-hadrons

- Heaviest quark forming hadrons decaying weakly
- Many possible decay modes, and even more observables!
 - Very rich spectrum of possibilities!
 - O(600) modes (incl. searches) for B^+/B^0 , O(100) for B_s^0 , Λ_b^0
- Weak decay of b-hadron crosses generations:
 - No large branching fractions (largest 5%)
 - Sensitive to small SM and New Physics effects!
- Lifetime and boost at LHCb give decay length of 0(1 cm); precise lifetime measurement possible