

Observation of the very rare $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decay at LHCb

Gabriele Martelli Istituto Nazionale di Fisica Nucleare - Sezione di Perugia On behalf of the LHCb collaboration

> TU Dortmund, 17 July 2025 Particle Physics Seminar

Why search for rare decays?

- Forbidden at tree level in the Standard Model (SM)
- Allowed only at loop level
- New Physics (NP) contributions may enter in loops

Why search for rare decays?

- Forbidden at tree level in the Standard Model (SM)
- Allowed only at loop level
- New Physics (NP) contributions may enter in loops

Look for deviations from SM predictions

Why search for rare decays?

Flavour Changing Neutral Currents (FCNC)

- Forbidden at tree level in the Standard Model (SM)
- Allowed only at loop level
- New Physics (NP) contributions may enter in loops

Look for deviations from SM predictions

- ► Exstensive programme at *LHCb*
 - Search for (very) rare or forbidden modes
 - Branching Fractions (B) measurements
 - CP violation
 - Null tests in the SM

[https://lbfence.cern.ch/alcm/public/analysis]

LHCb – The experiment

- ► Large Hadron Collider (LHC)
 - Located at CERN
 - World largest particle collider
 - ✓ 26.7 km long, 100 m underground
 - Proton/heavy ion beams collide in **four points**

LHCb – The experiment

Large Hadron Collider (LHC)

- Located at CERN
- World largest particle collider
 - ✓ 26.7 km long, 100 m underground
- Proton/heavy ion beams collide in **four points**

► Large Hadron Collider beauty (*LHCb*)

- Investigate the quark flavour sector
 - \checkmark CP violation
 - ✓ Rare decays with possible NP hints
- Positioned in the forward region relative to the collision point
- Large production $b\overline{b}$ and $c\overline{c}$ cross sections within its acceptance
 - ✓ 72(144) µb and 1.4(2.6) mb at $\sqrt{s} = 7(13)$ TeV
 - ✓ Not just *beauty* and *charm* ...

LHCb – The experiment

Large Hadron Collider (LHC)

- Located at CERN
- World largest particle collider
 - ✓ 26.7 km long, 100 m underground
- Proton/heavy ion beams collide in **four points**

Large Hadron Collider beauty (*LHCb*)

- Investigate the quark flavour sector
 - \checkmark CP violation
 - ✓ Rare decays with possible NP hints
- Positioned in the forward region relative to the collision point
- Large production $b\overline{b}$ and $c\overline{c}$ cross sections within its acceptance
 - ✓ 72(144) µb and 1.4(2.6) mb at $\sqrt{s} = 7(13)$ TeV
 - ✓ Not just *beauty* and *charm* ...
- 22 countries are involved in the collaboration
 - About 1700 scientists, engineers and technicians
 - More than 700 articles published up-to-date [https://lhcb.web.cern.ch/]

Strange – Birth of flavour

► Why *strange*?

• Fostered **numerous** discoveries in particle physics (quarks, families and CPV)

Strange – Birth of flavour

► Why *strange*?

- Fostered **numerous** discoveries in particle physics (quarks, families and CPV)
- Complementary to *beauty* and *charm* studies
- Still the sector with higher (indirect) energy reach

Strange – Birth of flavour

► Why *strange*?

- Fostered **numerous** discoveries in particle physics (quarks, families and CPV)
- Complementary to *beauty* and *charm* studies
- Still the sector with higher (indirect) energy reach
- Rare decays and CPV sensitive to possible new dynamics

Strange – Presence in the tunnel

► Huge *strange* hadrons cross-section at LHC

- Production mostly in the forward region \rightarrow perfect for *LHCb* acceptance (400 mrad)
- About 1 *strange* hadron per collision (compared to $\sim 10^{-3} B_s^0$ mesons)
- However, reconstruction and trigger bring this number down ...

Strange – Setting the (long) stage

•

- > About 50% lifetime acceptance for K_s and hyperons
 - Different reconstruction methods for final-state tracks

Strange – Setting the (long) stage

- > About 50% lifetime acceptance for K_s and hyperons
 - Different reconstruction methods for final-state tracks

- > Efficiency limited by hardware trigger \rightarrow designed for heavy flavours
 - Muon/hadron Level-0 (L0) trigger require $p_T > [1 5]$ GeV Too hard for primary strange hadrons!!
- > Software trigger **highly** customisable
 - Dedicated lines already in $2012 \rightarrow \text{Run } 1$
 - Dedicate software reconstruction for soft muons since $2016 \rightarrow \text{Run } 2$

•

•

$\Sigma^+ \rightarrow p \mu^+ \mu^- - \text{The decay}$

Istituto Nazionale di Fisica Nucleare

•

$\Sigma^+ \rightarrow p \mu^+ \mu^- - \text{The decay}$

> $\Sigma^+ \rightarrow p \mu^+ \mu^-$ is a very rare FCNC process Short distance SM $\mathcal{B} \sim \mathcal{O}(10^{-12})$ Dominated by long distance contributions from $\Sigma^+ \to (N\pi)^+$ decays $1.6 \times 10^{-8} < \mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) < 9.1 \times 10^{-8}$ [Phys. Rev. D72 (2005) 074003] Σ^+

 $A_{\Sigma^{+} \to p \mu^{+} \mu^{-}}^{\text{LD}}(q^{2}, \cos \theta_{\mu^{+} \mu^{-}}) = \{-iq_{\alpha}\bar{u}_{p}[a(q^{2}) + \gamma_{5}b(q^{2})]\sigma^{\alpha\beta}u_{\Sigma} - \bar{u}_{p}\gamma^{\beta}[c(q^{2}) + \gamma_{5}d(q^{2})]u_{\Sigma}\}\bar{u}_{\mu}\gamma_{\beta}v_{\bar{\mu}}$

First evidence from the HyperCP experiment

[JHEP 1810 (2018) 040]

- Three candidates observed in absence of background
- Measured branching fraction: • $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$ [Phys. Rev. Lett. 94 (2005) 021801]
- ► The Anomaly
 - Same dimuon invariant mass for the observed candidates
 - Possible $\Sigma^+ \to pX^0 (\to \mu^+ \mu^-)$ decay • $m_{X^0} = 214.3 \pm 0.5 \text{ MeV}$ $\mathcal{B}(\Sigma^+ \to pX^0(\to \mu^+\mu^-)) = (3.1^{+2.4}_{-1.9} \pm 1.5) \times 10^{-8}$

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

 Σ^+

The Anomaly – Searches and interpretations

> Many Beyond SM hypotheses \rightarrow NP contributions expected only at short distance for an HyperCP-like particle

- 'Sgoldstino interpretation of HyperCP events"
- [Phys. Rev. D73 (2006) 035002]
- "On the possibility of a new boson X^0 (214MeV) in $\Sigma^+ \rightarrow p\mu^+\mu^-$ " [Physics Letters B632 (2006) 212-214]
- 3 years after HyperCP "Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?"
 - [Phys. Rev. Lett. 98 (2007) 081802]
 - "U-boson and the HyperCP exotic events"
 - [Physics Letters B663 (2008) 400-404]

- "Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?" [Phys. Rev. Lett. 98 (2007) 081802] Σ^+
- "U-boson and the HyperCP exotic events"
- [Physics Letters B663 (2008) 400-404]
- > New searches for low dimuon mass resonances

The Anomaly – Searches and interpretations

3 years after HyperCP "On the possibility of a new boson X^0 (214MeV) in $\Sigma^+ \rightarrow p\mu^+\mu^-$ " [Physics Letters B632 (2006) 212-214] "Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?" [Phys. Rev. Lett. 98 (2007) 081802] Σ^+

► Many Beyond SM hypotheses → NP contributions expected only at short distance for an HyperCP-like particle

- *Sgoldstino interpretation of HyperCP events* [Phys. Rev. D73 (2006) 035002]

- "U-boson and the HyperCP exotic events"
- [Physics Letters B663 (2008) 400-404]

> New searches for low dimuon mass resonances

The Anomaly – Searches and interpretations

$\Sigma^+ \rightarrow p \mu^+ \mu^- - First search at LHCb$

- ► "Evidence for the rare decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ "
 - Run 1 dataset $\sqrt{s} = 7,8 \text{ TeV}, \ \mathcal{L} = 3.0 \text{ fb}^{-1}$ [Phys. Rev. Lett. 120 (2018) 221803]
- **Stronger** evidence
 - Excess of signal candidates w.r.t. background $N_{\Sigma^+ \to p\mu^+\mu^-} = (10.2^{+3.9}_{-3.5})$
 - Measured branching fraction: $\mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$
 - Consistent with SM prediction

$\Sigma^+ \rightarrow p \mu^+ \mu^- - First search at LHCb$

- "Evidence for the rare decay $\Sigma^+ \to p \mu^+ \mu^-$ "
 - Run 1 dataset $\sqrt{s} = 7,8 \text{ TeV}, \ \mathcal{L} = 3.0 \text{ fb}^{-1}$ [Phys. Rev. Lett. 120 (2018) 221803]
- **Stronger** evidence
 - Excess of signal candidates w.r.t. background $N_{\Sigma^+ \to p\mu^+\mu^-} = (10.2^{+3.9}_{-3.5})$
 - Measured branching fraction: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$
 - Consistent with SM prediction
- Search for HyperCP-like resonances
 - No peak structures found
 - Set upper limit at 90% C.L. $\mathcal{B}(\Sigma^+ \to pX^0(\to \mu^+\mu^-)) < 1.4 \times 10^{-8}$
 - HyperCP anomaly **disfavored**

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

$\Sigma^+ \rightarrow p \mu^+ \mu^- - Additional theory interest$

► New $\Sigma^+ \rightarrow p\gamma$ results by BESIII [Phys. Rev. Lett. 130 (2023) 211901]

Parameter	BESI	PDG
$\mathcal{B}(10^{-3})$	$0.996 \pm 0.021 \pm 0.018$	1.23 ± 0.05
lpha	$-0.651 \pm 0.056 \pm 0.020$	-0.76 ± 0.08

• Dominant SM prediction of $\Sigma^+ \to p\mu^+\mu^-$ based on $\Sigma^+ \to p\gamma$

$$\Gamma = \frac{G_F^2 e^2}{\pi} (a^2 + b^2) E_{\gamma}^3 \qquad \alpha = \frac{2\Re[ab^*]}{a^2 + b^2}$$

Decay asymmetry parameter

• $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ prediction will change with latest input

$\Sigma^+ \rightarrow p \mu^+ \mu^- - Additional theory interest$

► New $\Sigma^+ \rightarrow p\gamma$ results by BESIII [Phys. Rev. Lett. 130 (2023) 211901]

Parameter	BESI	PDG
$\mathcal{B}(10^{-3})$	$0.996 \pm 0.021 \pm 0.018$	1.23 ± 0.05
lpha	$-0.651 \pm 0.056 \pm 0.020$	-0.76 ± 0.08

• Dominant SM prediction of $\Sigma^+ \to p\mu^+\mu^-$ based on $\Sigma^+ \to p\gamma$

$$\Gamma = \frac{G_F^2 e^2}{\pi} (a^2 + b^2) E_{\gamma}^3 \qquad \alpha = \frac{2\Re[ab^*]}{a^2 + b^2}$$

Decay asymmetry parameter

- $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ prediction will change with latest input
- Chiral perturbation theory (χPT)

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

- Relativistic and heavy baryon approaches
- Four-fold degeneracy in each method [arXiv:2404.15268]

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

$\Sigma^+ \rightarrow p \mu^+ \mu^- - Additional theory interest$

► New $\Sigma^+ \rightarrow p\gamma$ results by BESIII [Phys. Rev. Lett. 130 (2023) 211901]

Parameter	BESI	PDG
$\mathcal{B}(10^{-3})$	$0.996 \pm 0.021 \pm 0.018$	1.23 ± 0.05
lpha	$-0.651 \pm 0.056 \pm 0.020$	-0.76 ± 0.08

• Dominant SM prediction of $\Sigma^+ \to p\mu^+\mu^-$ based on $\Sigma^+ \to p\gamma$

$$\Gamma = \frac{G_F^2 e^2}{\pi} (a^2 + b^2) E_{\gamma}^3 \qquad \alpha = \frac{2\Re[ab^*]}{a^2 + b^2}$$

Decay asymmetry parameter

- $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ prediction will change with latest input
- Chiral perturbation theory (χPT)
 - Relativistic and heavy baryon approaches
 - Four-fold degeneracy in each method [arXiv:2404.15268]

Experiments should be able to solve it

Outline of the day

Observation of the very rare $\Sigma^+ \rightarrow p\mu^+\mu^-$ decay [arXiv:2504.06096] Scheduled to be pubblished July 29th on PRL

The LHCb detector (Image: M. Brice/CERN)

17 July 2025

Outline of the day

Run 2 improvements

Increase in statistics

- Run 1 $\rightarrow \sqrt{s} = 7,8$ TeV, $\mathcal{L} = 3.0$ fb⁻¹
- Run 2 $\rightarrow \sqrt{s} = 13$ TeV, $\mathcal{L} = 5.4$ fb⁻¹
 - ✓ Factor ~4 larger w.r.t. previous analysis
 - ✓ Larger MC samples

► Increase in performances

- Run 1 \rightarrow Highly prescaled minimum bias data
- Run $2 \rightarrow$ Dedicated trigger lines
 - ✓ Gain of a factor ~13 in signal efficiency
- Improved PID performance on protons and muons

Run 2 improvements

Increase in statistics

- Run 1 $\rightarrow \sqrt{s} = 7,8$ TeV, $\mathcal{L} = 3.0$ fb⁻¹
- Run 2 $\rightarrow \sqrt{s} = 13$ TeV, $\mathcal{L} = 5.4$ fb⁻¹
 - ✓ Factor ∼4 larger w.r.t. previous analysis
 - ✓ Larger MC samples

Increase in performances

- Run 1 \rightarrow Highly prescaled minimum bias data
- Run 2 \rightarrow Dedicated trigger lines
 - ✓ Gain of a factor ~13 in signal efficiency
- Improved PID performance on protons and muons

New accessible measurements

- Differential branching fraction vs dimuon mass
- Forward-backward asymmetry in the decay
- Σ^+ and $\overline{\Sigma}^-$ polarisations
- "Direct" CP violation measurement

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) - \mathcal{B}(\bar{\Sigma}^- \to \bar{p}\mu^+\mu^-)}{\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) + \mathcal{B}(\bar{\Sigma}^- \to \bar{p}\mu^+\mu^-)}$$

Analysis strategy

- Blind analysis technique
 - Avoid introduction of biases
 - Blinded $m_{p\mu^+\mu^-}$ signal region around the Σ^+ known mass value ($m_{\Sigma^+} = 1189.37 \text{ MeV}/c^2$)
 - 1) <u>Selection</u>: Reject most of the background sources and isolate the signal candidates
 - Loose preselection kinematic variables
 - Tight selection PID variables
 - Final selection multivariate operator and optimisation
 - 2) <u>Fit</u>: Estimate the signal candidates
 - Unblinding and fit to the full $m_{p\mu^+\mu^-}$ distribution
 - 3) <u>Normalisation</u>: Measurement of the integrated branching fraction
 - Normalised to the $\Sigma^+ \to p\pi^0$ decay

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\Sigma^+ \to p\pi^0}}{\varepsilon_{\Sigma^+ \to p\mu^+\mu^-}} \frac{\mathcal{B}(\Sigma^+ \to p\pi^0)}{N_{\Sigma^+ \to p\pi^0}} \cdot N_{\Sigma^+ \to p\mu^+\mu^-}$$

2.1) **<u>Dimuon spectrum</u>**: Look for a resonant structure

- Background subtraction with the *sPlot* method
- Scan in the $m_{\mu^+\mu^-}$ spectrum

Signal selection – First steps

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

Signal selection – First steps

- Residual background sources
 - Combinatorial
 - $\Lambda \to p\pi^-$ decays with misID $\pi^- \to \mu^-$ plus an accidental μ^+
- ► Small q-value

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

- Few modes can mimic the signal final state
 - $(m_{\Sigma^+} m_p 2m_{\mu}) = 39.78 \text{ MeV}/c^2$
- $K^+ \to \pi^+ \pi^- \pi^+$ and $K^+ \to \pi^+ \mu^+ \mu^-$ decays Mass peak shifter higher w.r.t. the signal
- No other baryon decays with a final state proton

14

- Final selection based on a multivariate operator
 - BDT built in TMVA
 - Trained to reject combinatorial MC signal sample
 Sidebands in data sample
- Discriminating variables
 - Σ^+ IP χ^2 , DOCA, FD χ^2 , Vtx χ^2 , log(1 DIRA)
 - Proton $IP\chi^2$, p_T
 - Muons $min(\mu IP\chi^2)$, $min(\mu p_T)$
- > Data divided in a Λ veto sample and a complementary one
 - Very similar distribution at high BDT values
 - A requirement will reject both background sources

Signal selection – Multivariate operator

15

- ► Four dimensions BDT
 - **PID** variables •
 - $\Lambda \text{ vetos} \rightarrow |m_{p\pi^-} m_{\Lambda}^{PDG}| > 6, 8, 10 \text{ MeV}/c^2$

 N_S = Expected signal yield from MC

- $S = \frac{N_S}{\sqrt{N_S + (N_C + N_\Lambda)}}$

Optimisation for the best chances of observation

Significance chosen as Figure of Merit (FoM)

- N_C = Expected combinatorial from Data
- N_{Λ} = Expected Λ candidates from Data

Optimal point chosen as the largest significance

Signal selection – Optimisation

$\Sigma^+ \rightarrow p \mu^+ \mu^- - Observation$

- Extended maximum likelihood fit to the final sample
 - $\Sigma^+ \rightarrow p \mu^+ \mu^-$ parametrized by an Hypatia function
 - Background by a modified Argus function

$\Sigma^+ \rightarrow p \mu^+ \mu^- - Observation$

- Extended maximum likelihood fit to the final sample
 - $\Sigma^+ \to p\mu^+\mu^-$ parametrized by an Hypatia function $N_{\Sigma^+ \to p\mu^+\mu^-} = 279 \pm 19$
 - Background by a modified Argus function

Search for the Anomaly – *sPlot*

- Signal weights per-event derived with the <u>*sPlot*</u> method \rightarrow Cross-check with bin-by-bin fits
- $m_{p\mu^+\mu^-}$ as discriminat variable
- > No significant peaking structure is visible
 - Data compared with simulated phase space and SM prediction
 - Good agreement in the full dimuon distribution

Search for the Anomaly – Scan

- > Scan in the $m_{\mu^+\mu^-}$ distribution
 - **Candidates** in $\pm 2\sigma$ from the Σ^+ peak
 - Steps of $2\sigma_{\mu^+\mu^-}$ and signal window of $\pm 1.5\sigma_{\mu^+\mu^-}$
 - Background estimate from sidebands $[1.5 4.0]\sigma_{\mu^+\mu^-}$
 - Compute **p-value** of a Poisson fluctuation of the background (i.e. non-resonant)
- > No significant structure is found considering a putative candidate with $m_{\chi^0} = 214.3 \text{ MeV}/c^2$
 - HyperCP anomaly excluded

Normalisation – Choosing the mode

- > No fully charged final states of the Σ^+ available to normalise
 - $\Sigma^+ \rightarrow p\pi^0$ chosen as normalisation channel
 - Reconstructible as a charged track plus $\pi^0 \to \gamma\gamma$ in ECAL \to resolved π^0 at low energies $\mathcal{B}(\Sigma^+ \to p\pi^0) = (51.77 \pm 0.30)\%$

Normalisation – Choosing the mode

 $m_{Corr} = m_{p\gamma\gamma} - m_{\gamma\gamma} + m_{\pi^0}^{PDG}$

 $m_{\pi^0}^{PDG} = 134.977 \text{ MeV}/c^2$

 $\mathcal{B}(\varSigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\varSigma^+ \to p\pi^0}}{\varepsilon_{\varSigma^+ \to p\mu^+\mu^-}} \frac{\mathcal{B}(\varSigma^+ \to p\pi^0)}{N_{\varSigma^+ \to p\pi^0}} \cdot N_{\varSigma^+ \to p\mu^+\mu^-}$

- $\Sigma^+ \rightarrow p\pi^0$ chosen as normalisation channel
- Reconstructible as a charged track plus $\pi^0 \to \gamma \gamma$ in ECAL \to resolved π^0 at low energies $\mathcal{B}(\Sigma^+ \to p\pi^0) = (51.77 \pm 0.30)\%$
- ► Observed limited resolution on $m_{\gamma\gamma}$ in data after selection \rightarrow PID and kinematic variables
 - Poor resolution of the photons energy deposits in the calorimeter
 - $\Sigma^+ \rightarrow p\pi^0$ mass corrected by adjusting for the PDG value of the π^0

Normalisation – Final fit

- $\Sigma^+ \to p\pi^0$ parametrized by double-sided Crystal Ball function Trigger On Signal (TOS) $\to N_{\Sigma^+ \to p\pi^0} = 6132 \pm 105$ Trigger Independent from Signal (TIS) $\to N_{\Sigma^+ \to p\pi^0} = 47456 \pm 307$
- Background (mainly combinatorial) by second degree Chebyshev polynomial function

Normalisation – Efficiencies

Taking into account TIS and TOS categories

$$\mathcal{B}(\varSigma^{+} \to p\mu^{+}\mu^{-}) = \mathcal{B}(\varSigma^{+} \to p\pi^{0}) \cdot \frac{\varepsilon_{\varSigma^{+} \to p\pi^{0}}^{NoTrig}}{\varepsilon_{\varSigma^{+} \to p\mu^{+}\mu^{-}}^{NoTrig}} \cdot \left(\frac{\varepsilon_{\varSigma^{+} \to p\pi^{0}}^{TIS}}{N_{\varSigma^{+} \to p\mu^{+}\mu^{-}}^{TIS}} \cdot \frac{N_{\varSigma^{+} \to p\mu^{+}\mu^{-}}^{TIS}}{N_{\varSigma^{+} \to p\pi^{0}}^{TIS}} + \frac{\varepsilon_{\varSigma^{+} \to p\pi^{0}}^{TOS}}{\varepsilon_{\varSigma^{+} \to p\mu^{+}\mu^{-}}^{TOS}} \cdot \frac{N_{\varSigma^{+} \to p\pi^{0}}^{TOS}}{N_{\varSigma^{+} \to p\pi^{0}}^{TOS}}\right)$$

• Very small efficiencies \rightarrow order 10^{-5} for signal and 10^{-11} for normalisation

- Muon trigger calibration with $K^+ \rightarrow \pi^+ \pi^- \pi^+$ with two pions decayed in flight in muons ~ 20% systematic uncertainty of method validation
- Hadron and TIS trigger calibrations with $\Sigma^+ \rightarrow p\pi^0$ and TISTOS method
- PID and tracking calibration with control channels in data
- π^0 reconstruction calibration with $B^+ \to J/\psi K^{*+}(\to K^+\pi^0)$ and $B^+ \to J/\psi K^+$ decays ~ 7% systematic uncertainty from branching fractions
- Single event sensitivity $\rightarrow (1.65^{+0.09+0.41}_{-0.16-0.41}) \times 10^{-10} \text{ (TOS)} (6.81^{+0.29+0.85}_{-0.25-0.85}) \times 10^{-11} \text{ (TIS)}$
 - Corresponding to $\mathcal{O}(10^{14}) \Sigma^+$ baryons produced in *LHCb*

Normalisation – Results

- TOS $\rightarrow \mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = (1.59^{+0.19+0.40}_{-0.23-0.40}) \times 10^{-8}$
- TIS $\rightarrow \mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = (1.05^{+0.10+0.13}_{-0.10-0.13}) \times 10^{-8}$
- Combined result

 $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (1.08 \pm 0.17) \times 10^{-8}$

Combined result with Run1

 $\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-) = (1.09 \pm 0.17) \times 10^{-8}$

- > **<u>Question</u>**: How rare is this rare decay?
 - Let's compare the result with the theory ...

Normalisation – Interpretations

Evaluation of the the *z*-score

$$z = \frac{\left|\mu_{exp} - \mu_{th}\right|}{\sqrt{\sigma_{exp}^2 + \sigma_{th}^2}}$$

► Considerations:

- Minimum exclusion of **6**. 2σ for the smaller $|\Re[a(0)]|$
- Negative $\Re[a(0)]$ disfavoured at a minimum of **3**. 7σ
- Heavy baryon $\Re[a(0)]$ large and positive disfavoured at 3. 1σ
- Relativistic baryon

Disfavoured at 3.7 σ for $\Re[c(q^2)] = \Re[d(q^2)] = 0$

First relativistic baryon solution is preferred **Rarest decay of a baryon ever observed!!!**

Ч	$\Re[a(0)] \; (\mathrm{MeV}^{-1})$	$\Re[b(0)] \; ({\rm MeV}^{-1})$	${\cal B}$ (10 ⁻⁸)	z-score (σ)
oary	$+12.15 \pm 0.24$	-4.78 ± 0.42	1.2 ± 0.1	0.6
stic 1	-12.15 ± 0.24	$+4.78\pm0.42$	2.7 ± 0.2	6.2
utivis	$+4.78\pm0.42$	-12.15 ± 0.24	4.2 ± 0.2	11.9
Rela	-4.78 ± 0.42	$+12.15 \pm 0.24$	7.8 ± 0.3	19.5
uo	$+9.74 \pm 0.54$	-6.17 ± 0.74	1.9 ± 0.2	3.1
ary	-9.74 ± 0.54	$+6.17\pm0.74$	3.7 ± 0.5	5.0
wh	$+6.17\pm0.74$	-9.74 ± 0.54	3.2 ± 0.3	6.1
Hea	-6.17 ± 0.74	$+9.74\pm0.54$	6.1 ± 0.5	9.5
$\Re[c(q^2)] = \Re[d(q^2)] = 0$				
uo/	$\Re[a(0)] \; (\mathrm{MeV}^{-1})$	$\Re[b(0)] \; (\mathrm{MeV}^{-1})$	$\mathcal{B}(10^{-8})$	z-score (σ)
bary	$+12.15 \pm 0.24$	-4.78 ± 0.42	1.8 ± 0.1	9 7
			1.0 ± 0.1	3.7
istic	-12.15 ± 0.24	$+4.78 \pm 0.42$	1.8 ± 0.1	$\frac{3.7}{3.7}$
ativistic	$-12.15 \pm 0.24 +4.78 \pm 0.42$	$+4.78 \pm 0.42$ -12.15 ± 0.24	1.8 ± 0.1 5.8 ± 0.2	$3.7 \\ 3.7 \\ 18.0$
Relativistic	-12.15 ± 0.24 +4.78 ± 0.42 -4.78 ± 0.42	$+4.78 \pm 0.42 \\ -12.15 \pm 0.24 \\ +12.15 \pm 0.24$	1.8 ± 0.1 5.8 ± 0.2 5.8 ± 0.2	3.7 3.7 18.0 18.0
on Relativistic	$-12.15 \pm 0.24 \\ +4.78 \pm 0.42 \\ -4.78 \pm 0.42 \\ +9.74 \pm 0.54$	$ \begin{array}{r} +4.78 \pm 0.42 \\ -12.15 \pm 0.24 \\ +12.15 \pm 0.24 \\ \hline -6.17 \pm 0.74 \end{array} $	$ \begin{array}{r} 1.8 \pm 0.1 \\ 1.8 \pm 0.2 \\ 5.8 \pm 0.2 \\ 2.7 \pm 0.3 \end{array} $	$ 3.7 \\ 3.7 \\ 18.0 \\ 18.0 \\ 4.7 $
baryon Relativistic	$-12.15 \pm 0.24 \\ +4.78 \pm 0.42 \\ -4.78 \pm 0.42 \\ +9.74 \pm 0.54 \\ -9.74 \pm 0.54$	$ \begin{array}{r} +4.78 \pm 0.42 \\ -12.15 \pm 0.24 \\ +12.15 \pm 0.24 \\ \hline -6.17 \pm 0.74 \\ +6.17 \pm 0.74 \end{array} $	$ \begin{array}{r} 1.8 \pm 0.1 \\ 1.8 \pm 0.2 \\ 5.8 \pm 0.2 \\ \hline 2.7 \pm 0.3 \\ 2.7 \pm 0.3 \end{array} $	$ \begin{array}{r} 3.7 \\ 3.7 \\ 18.0 \\ 18.0 \\ 4.7 \\ 4.7 \\ 4.7 \\ \end{array} $
avy baryon Relativistic	$-12.15 \pm 0.24 \\ +4.78 \pm 0.42 \\ -4.78 \pm 0.42 \\ +9.74 \pm 0.54 \\ -9.74 \pm 0.54 \\ +6.17 \pm 0.74$	$ \begin{array}{c} +4.78 \pm 0.42 \\ -12.15 \pm 0.24 \\ +12.15 \pm 0.24 \\ \hline -6.17 \pm 0.74 \\ +6.17 \pm 0.74 \\ -9.74 \pm 0.54 \end{array} $	$1.8 \pm 0.1 \\ 5.8 \pm 0.2 \\ 5.8 \pm 0.2 \\ 2.7 \pm 0.3 \\ 2.7 \pm 0.3 \\ 4.5 \pm 0.4$	$ \begin{array}{r} 3.7 \\ 3.7 \\ 18.0 \\ 18.0 \\ 4.7 \\ 4.7 \\ 4.7 \\ 7.9 \\ \end{array} $

Summary ...

► "Measurement of the branching fraction of the $\Sigma^+ \rightarrow p\mu^+\mu^-$ rare decay at LHCb" [arXiv:2504.06096]

- First observation of the decay with overwhelming significance
- Investigated the dimuon spectrum for NP resonances
 - ✓ No significant peak structure
 - ✓ HyperCP anomaly excluded

Branching fraction measurement:

 $\mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-) = (1.08 \pm 0.17) \times 10^{-8}$

- Reduced ambiguities in the SM prediction
- Rarest baryon decay ever observed
- Scheduled to be pubblished **July 29th** on PRL

Recently selected for inclusion in the American Physical Society outreach to the press

... and future prospects

17 July 2025

• Large signal yield \rightarrow new accessible measurements

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) - \mathcal{B}(\bar{\Sigma}^- \to \bar{p}\mu^+\mu^-)}{\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) + \mathcal{B}(\bar{\Sigma}^- \to \bar{p}\mu^+\mu^-)}$$

Analysis started with

Main part of the second paper Analysis started

Thank you for your attention Many thanks to Johannes and Dominik for inviting me

Backup slides

Run2 dedicated trigger

- Run 1: "take what is there"
 - Analyse data already collected with very small efficiency
- ► Run 2 improvements for strange physics [LHCb-PUB-2017-023]:
 - HLT1: Complementary forward tracking lowered down to 80 MeV for muon tracks Generic Hlt1DiMuonNoL0 for soft dimuons not requiring only L0Muon or L0Dimuon triggered events in input
 - HLT2: Generic Hlt2DiMuonSoft for soft dimuons Dedicated Hlt2RareStrangeSigmaPMuMu for $\Sigma^+ \rightarrow p\mu^+\mu^-$ decays

Efficiency	$\Sigma \! ightarrow p \mu^+ \mu^-$		
LO	0.269 ± 0.006		
	Run 1	Run 2	
Hlt1Global LO	0.191 ± 0.011	0.459 ± 0.014	
Hlt1DiMuonNoL0 LO	-	0.325 ± 0.013	
Hlt2Global Hlt1Global	0.162 ± 0.023	0.901 ± 0.012	
Hlt2DiMuonSoft Hlt1Global	-	$0.804 \pm \ 0.016$	
Hlt2SigmaPMuMu Hlt1Global	-	0.485 ± 0.020	
Total	0.0083 ± 0.0013	0.111 ± 0.004	

BDT discriminating variables

Summary

- $IP\chi^2$ The difference in the vertex-fit χ^2 of a given PV reconstructed with and without the particle being considered;
- *DOCA* The maximum distance of closest approach between any pair of the three daughter tracks;
- $FD\chi^2$ The flight distance of the mother particle from the primary vertex divided by its uncertainty;
- *DIRA* The angle between the mother particle momentum and the lines joining the primary and the decay vertex;
- $Vtx\chi^2$ The χ^2 of the vertex fit.

TIS and TOS trigger categories

