$\Lambda_b \rightarrow p\pi\mu\mu$ full run1+run2 branching fraction analysis

Piera Battista

des 2 Infinis

- $b \rightarrow d\ell^+ \ell^-$ transitions are highly suppressed in the SM and a good probe for NP
- First observation and BF measurement of $\Lambda_h^0 \to p \pi^- \mu^+ \mu^-$ with Run 1 data [1]
- Goals of this analysis:
 - Measure BF with full Run1+Run2 dataset [AP]
 - BF in bins of q^2 (if feasible), direct CP asymmetry
 - Look into hadronic $p\pi^-$ spectrum

How?

Can we improve with respect to run 1?

Run 1 selection

- Very tight PID cuts
 - Proton PID
 - all misID

Reproduced by CCNU

Piera Battista

Now: Run1+Run2

- Loosen all PID cuts
 - Study a new selection
- Use simultaneous fit:
 - Fit $\Lambda_b \to pK\mu\mu$ and $\Lambda_b \to p\pi\mu\mu$
 - Constrain midID of pK reconstructed as $p\pi$ using the $\Lambda_b \rightarrow p K \mu \mu$ yield (more later)

Studied by Barcelona and us

MC corrections

- Kinematics
 - Correction of generated shape of p^{Λ_b} , $p_T^{\Lambda_b}$, τ^{Λ_b} , nTracks
- PID corrections: PIDcorr
- q^2 : theoretical calculation of $\Lambda_b \to \Lambda^0 \mu \mu q^2$
- $m(p\pi)$: 1D correction
- m(pK): pentaquark angular analysis

Piera Battista

Kinematic corrections

- data
- Same weights are applied to the $\Lambda_b \to p\pi J/\psi$ and $\Lambda_b \to p\pi\mu\mu$ MC

Piera Battista

• Corrected p^{Λ_b} , $p_T^{\Lambda_b}$, τ^{Λ_b} , nTracks from the $\Lambda_b \to pKJ/\psi$ MC and sWeigthed

MC corrections - PID

- PID correction computed with PIDcorr package

Piera Battista

• Full transformation of the PID variables, retain correlation between variables

 Using the calculations from theoretical paper of branching fraction of $\Lambda_b \to \Lambda^0 \mu \mu$

Piera Battista

$m(p\pi)$ corrections

• SWeight $\Lambda_h \to p \pi J/\psi$ data and perform a 1D correction

Piera Battista

m(pK)

• Using pentaquark amplitude analysis $J/\psi \rightarrow pKJ/\psi$

Piera Battista

9

Backgrounds

- Combinatorial: BDT and Proton PID cut
- MisID:
 - $\Lambda_b \to p K \mu \mu$
 - $B^0 \to K^* (\to K\pi) \mu \mu$
 - $B^0 \to K^* (\to K\pi) \mu \mu$ double misID, $B_s \to \phi (\to KK) \mu \mu$, $B_{(s)} \to \pi \pi \mu \mu$
- Clone tracks: cut on opening angle
- Semileptonic: e.g. $\Lambda_h \to \Lambda_c (\to p\pi\pi)\mu\nu$

•
$$\Lambda_b \to \Lambda(\to p\pi)\mu\mu$$
 background

Piera Battista

Contamination in mass range 5400-6000 MeV in 2016

Decay	Only preselection	Contamination with
$B^0 \to K^* (\to K\pi) J/\psi$ single	36~%	20~%
$B^0 \to K^* (\to K\pi) J/\psi$ double	1.3%	0.6~%
$B_s \to KKJ/\psi$	1%	0.5%
$B_s \to \phi(\to KK)J/\psi$	0.8~%	0.04%
$B^0_{(s)} \to \pi \pi J/\psi$	3.3%	2%

IN BACKUP IN BACKUP IN BACKUP

BDI

- xgboost library used to train the BDT
- Using truth-matched $\Lambda_h^0 \to p \pi^- \mu^+ \mu^-$ as signal and upper mass sideband $(5.8 - 7 \,\text{GeV}/c^2)$ and lower mass sideband $(4.8 - 5.5 \,\text{GeV}/c^2)$ as background proxy
- Undersampling the signal sample when input data is very unbalanced
- Training separately for Run1, Run2a (15+16) Run2b (17+18)

BDI

- Iterate BDT training over different number of training variables
- Start with a long list of training variables and remove variable with the lowest feature importance in each iteration
- Decide on number of training variables where AUC of the test samples drops below 99.5% of the starting value

Piera Battista

 $\chi_{\rm IP}^2(\mu^+), \chi_{\rm IP}^2(\mu^-), \vartheta_{\rm DIRA}(\Lambda_b^0), \chi_{\rm vtx}^2(\Lambda_b^0), \eta(\Lambda_b^0), \chi_{\rm FD}^2(\Lambda_b^0), p_{\rm T}(\Lambda_b^0), \chi_{\rm IP}^2(\pi^-), {\rm IP}(\pi^-), \chi_{\rm IP}^2(p))$

2D optimisation

- Cutting on the Proton PID also reduces combinatorial background
- 2D optimisation: BDT vs Proton PID
 - S: number of signal in the J/Ψ data scaled by efficiency ratios and branching fractions
 - B: fitting exponential background in rare mode in mass range (5720, 6000) MeV and integrating background under signal peak

15.05.2025

Run1

13

S

Backgrounds

- Combinatorial: BDT and Proton PID cut
- MisID:

•
$$\Lambda_b \to p K \mu \mu$$

• $B^0 \to K^* (\to K\pi) \mu \mu$

• $B^0 \to K^* (\to K\pi) \mu \mu$ double misID, $B_s \to \phi (\to KK) \mu \mu$, $B_{(s)} \to \pi \pi \mu \mu$

Main background components

B⁰ background

- Run 1
- Tested tight B^0 veto: abs(Lb_M0123_Subst2_p2K 5280) > X | (Proton_ProbNNp>Proton_ProbNNk + Y)

Piera Battista

• Highest contamination background: $(36 \pm 7)\%$ in Run 2 and $(33 \pm 6)\%$ in

Tight
$$B^0$$
 veto: X = 75, Y = 0.8

Contamination: (1.2 ± 0.4) % in full mass range in Run 1

—> Leads to <u>sculpting</u> of combinatorial background

B⁰ background

Looked at the sculpting in data events with BDT cut bdt<0.5

16

Simultaneous fit

•Idea: Fit $\Lambda_b^0 \to p \pi^- \mu^+ \mu^-$ and $\Lambda_b^0 \to p K^- \mu^+ \mu^-$ simultaneously sharing the $\Lambda_b^0 \to p K^- \mu^+ \mu^-$ yield to control the $K \to \pi$ misID in $\Lambda_b^0 \to p \pi^- \mu^+ \mu^-$

 $N_{PID>X}(\Lambda_{h}^{0} \to pK^{-}(\to \pi^{-})\mu^{+}\mu^{-})$

Piera Battista

$$= N_{PID < X}(\Lambda_b^0 \to pK^-\mu^+\mu^-) \frac{\varepsilon(K^- \to \pi^-)}{\varepsilon(K^- \to K^-)}$$

Simultaneous fit

 $\nabla \mathcal{V} = \mathcal{V} = \mathcal{V} = \mathcal{V}$ •Idea Λ_b^0

a: Fit
$$\Lambda_b^0 \to p\pi^-\mu^+\mu^-$$
 and $\Lambda_b^0 \to pK^-\mu^+\mu^-$ simultaneously sharing the
 $\to pK^-\mu^+\mu^-$ yield to control the $K \to \pi$ misID in $\Lambda_b^0 \to p\pi^-\mu^+\mu^-$
 $N_{PID>X}(\Lambda_b^0 \to pK^-(\to \pi^-)\mu^+\mu^-) = N_{PID$

$$\frac{\epsilon(K^- \to \pi^-)}{\epsilon(K^- \to K^-)} = \frac{N_{PID>X}^{MC}(\Lambda_b^0 \to pK^-(\to \pi^-)J/\psi)}{N_{PID$$

Piera Battista

yield of the pKJ/ψ MC with $p\pi$ PID selection ProbNNpi*(1-ProbNNk) > 0.4

yield of the pKJ/ψ MC with pK PID selection ProbNNpi*(1-ProbNNk) < 0.4

Simultaneous fit

•Fits on MC are performed to extract shape parameters (α, n) that are fixed in the simultaneous fit on data

 $N_{PID>X}(\Lambda_b^0 \to pK^-(\to \pi^-)\mu^+\mu^-) = N_{PID<X}(\Lambda_b^0 \to pK^-\mu^+\mu^-)\frac{\varepsilon(K^- \to \pi^-)}{\varepsilon(K^- \to K^-)}$ $\Lambda_h^0 \to p \pi^- J/\psi$ $\Lambda_h^0 \to p K^- J/\psi$ C714000 MeV/c² α_1 {misid} = 1.425 ± 0.064 α_1 {misid_reverse} = 0.78 ± 0.14 α_1 {signal} = 0.553 ± 0.089 $\alpha_2 \{ \text{misid} \} = 5.9 \pm 6.7$ α_2 {misid_reverse} = 1.02 \pm 0.17 α_{2} {signal} = 0.99 ± 0.12 $\mu_{\text{misid reverse}} = 5622.63 \pm 0.11$ $\mu_{\text{misid}} = 5555.3 \pm 1.6$ $\mu_{signal} = 5621.08 \pm 0.15$ σR_{DCB} {misid} = 20.26 ± 0.93 $\sigma_{\text{DCB}}\{\text{misid_reverse}\} = 12.6 \pm 1.1$ ₹0000 F $\sigma_{\text{DCB}}\{\text{signal}\} = 11.5 \pm 1.1$ 0008 fs/(] $\sigma_{\rm DCB}$ {misid} = 48.9 ± 2.2 σ_{gauss} misid_reverse = 14.32 ± 0.17 σ_{gauss} signal = 15.14 ± 0.15 Candidate Candidat 0009 n_1 {misid} = 0.073 ± 0.047 DCB_{free} misid_reverse = 0.308 ± 0.046 DCB_{frac} -signal = 0.355 ± 0.033 $n_2\{misid\} = 1 \pm 97$ n_1 {misid_reverse} = 4.57 \pm 0.83 n_1 {signal} = 6.5 ± 1.2 n_2 {misid_reverse} = 9.9 ± 3.7 $n_2{\text{signal}} = 10.0 \pm 6.6$ 🗕 data 🗕 🗕 🔶 4000 4000 2000 2000 Pull Pull 5600 5400 5800 6000 5600 5800 6000 5600 5800 5400 m(pK($\rightarrow \pi^{-}$)J/ $\psi(\rightarrow \mu^{+} \mu^{-})$)[MeV/c²] m(pK⁻J/ ψ ($\rightarrow \mu^+ \mu^-$))[MeV/c²] $m(p\pi^{-}J/\psi(\rightarrow \mu^{+}\mu^{-}))[MeV/c^{2}]$

Piera Battista

15.05.2025

19

Piera Battista

15.05.2025

20

Results run1 rare

Expected number of events: 21 ± 9

Piera Battista

Results run2

Piera Battista

Expected number of events: 71 ± 30

Conclusion

$$\begin{aligned} \mathcal{B}(\Lambda_b \to p\pi\mu\mu) \\ \mathcal{B}(\Lambda_b \to p\pi J/\psi(\to \mu\mu)) \end{aligned}$$

Run1 analysis	$0.044 \pm 0.012 \pm 0.007$	
Run1	$0.041 \pm 0.012 \pm XXX$	
Run2*	$0.045 \pm 0.005 \pm XXX$	

- Run 2 blinded
- Run toys for the integrated BF measurement
- Start thinking about systematic uncertainties (mass window, fit choice etc..)

Task	Run 1	Run 2
Tuples		
Background studies		
MVA		
Fits & yields		
Simulation corrections		
Efficiencies		
Toys		
Systematics		

*Used expected number of events for Run2 computation with statistical error $\sqrt{N_{expected}}$

Thank you for your attention

Trigger cuts

Trigger	RunI	RunII	
LO	LOMuonDecision_TOS	LOMuonDecision_TOS	
HLT1	TrackAllLO TrackAllLO	TrackMVA	
	Topo(2,3,4)BodyBBDTDecision	Topo(2 3 1) Body Decision	
HLT2	TopoMu(2,3,4)BodyBBDTDecision	TopoMu(2,3,4)BodyDecision	

Piera Battista

B2XMuMu stripping line for $B \rightarrow K^* (\rightarrow K^+ \pi^-) \mu^+ \mu^-,$ w/o PID requirements on K^+

Variable	Stripping value
$B_{(s)}^0 \chi_{vtx}^2/\mathrm{ndf}$	< 8
$B_{(s)}^{0} \chi_{IP}^{2}$	< 16
$B_{(s)}^{0}$ DIRA	> 0.9999
$B_{(s)}^{0} \chi^2_{FD}$	> 121
$m_{B^{0}_{(s)}}$	4900 MeV $< m_{B^0_{(s)}} < 7000$ MeV
m _N	$0~{\rm MeV} < m_{\rm \tiny N} < 6200~{\rm MeV}$
N χ^2_{FD}	> 9
N χ^2_{vtx}/ndf	< 12
$m_{\mu^+\mu^-}$	$< 7100 { m ~MeV}$
$\mu^+\mu^- \chi^2_{vtx}/\mathrm{ndf}$	< 12
$\mu^+, \mu^- DLL_{\mu\pi}$	> -3*
μ^+, μ^- is MUON	$true^*$
tracks min χ^2_{IP}	> 9
tracks ghost Prob	< 0.4

Selections

Run 1 selection

- Very tight PID cuts
 - Proton PID
 - all misID

Target	Selection DLL	Selection ProbNN	
Λ^0_b	ENDVERTEX_CHI2 < 20	$\texttt{ENDVERTEX_CHI2} < 20$	
p	$\mathtt{PIDp} > 0$	$ProbNN_p*(1-ProbNN_k) > 0.4$	
p	p (PIDp - PIDK) > 8		
π	PIDK < -5	$ProbNN_pi*(1-ProbNN_k) > 0.4$	
π	PT > 400 MeV	PT > 400 MeV	
	$P > 2000 { m MeV}$	$P > 2000 { m MeV}$	
m	$\mathtt{PT} > 400 \mathrm{MeV}$	PT > 400 MeV	
	$P > 7500 { m ~MeV}$	$P > 7500 { m ~MeV}$	
π, p	isMuon = 0	isMuon = 0	
μ	ProbNNmu > 0.1	ProbNNmu > 0.1	

Targat	Selection DLL		Selection ProbNN		
Target	Region (MeV)	Cut	Region	Cut	
B^0 misID	5246-5330	$p \text{DLL}_{pK} > 17$	$ m_{B^0} - m(p\pi\mu\mu)_{K\leftarrow p} < 30$	$p_\texttt{ProbNN_p} > p_\texttt{ProbNN_k} + 0.5$	
B^0 double misID	/	/	$ m_{B^0} - m(p\pi\mu\mu)_{Kp\leftarrow p\pi} < \sigma_{B^0}$	$p_ProbNN_p > p_ProbNN_pi+0.3$	
			$\begin{aligned} m_{B^{0}} - m(p\pi\mu\mu)_{K\leftarrow p} < 30 & p_ProbNN_\\ m_{B^{0}} - m(p\pi\mu\mu)_{Kp\leftarrow p\pi} < \sigma_{B^{0}} & p_ProbNN_\\ & & & & & \\ m_{B^{0}_{s}} - m(p\pi\mu\mu)_{KK\leftarrow \pi p} < \sigma_{B^{0}_{s}} & p_ProbNN_\\ & & & & & \\ m(p\pi\mu\mu)_{\pi\leftarrow p} > m_{B^{0}} - \sigma_{B^{0}} & & & \\ & & & & \\ &$	$\frac{\& \pi_{ProdNN_p1} > \pi_{ProdNN_k+0.3}}{D A A A A A A A A A A A A A A A A A A A$	
B^0_{a} misID	nisID 5348-5406	$\pi \mathrm{DLL}_K < -10$	$ m_{B0} - m(p\pi\mu\mu)_{KK\leftarrow\pi\pi} < \sigma_{B0}$	$p_ProdNN_p > p_ProdNN_k+0.3$	
8				& $\pi_{ProbNN_pi} > \pi_{ProbNN_k} + 0.3$	
$\pi\pi$ misID	5247 - 5329	nDII \5	$m(p\pi\mu\mu)_{\pi\leftarrow p}>m_{B^0}-\sigma_{B^0}$	$n \operatorname{ProbNN} n > n \operatorname{ProbNN} n + 0.3$	
	5348 - 5406		$\& \ m(p\pi\mu\mu)_{\pi\leftarrow p} < m_{B_{s}^{0}} - \sigma_{B_{s}^{0}}$	$p_{\perp} = 0.0$	
$\Lambda_b^0 \to pK \text{ misID}$	5569-5669	$\pi \mathrm{DLL}_K < -15$	/	/	
ϕ veto	/	/	$ m(p\pi)_{KK\leftarrow p\pi} - m_{\phi} > 12$	/	
clones	/	/	all	$\theta_{p_1p_2} > 0.0005 \text{ rad} [p_1 \neq p_2; p_i \in \{p, \pi, \mu^+, \mu^-\}]$	
Λ_c semileptonic	/	/	$m(p\pi\mu^+)_{\pi\leftarrow\mu} > 2320 \& m(p\pi\mu^+)_{\piK\leftarrow\mu\pi} > 2320$	/	
$\Lambda \to p\pi$			$ m(p\pi) - m_{\Lambda} > 5$		

Piera Battista

<u>Now</u>

- Loosen PID cuts
- Use simultaneous fit to fit pk misID

Clone track cuts

Piera Battista

Λ_c semileptonic vetoes

- Semileptonic: $\Lambda_b \to \Lambda_c (\to p\pi\pi)\mu\nu$, $\Lambda_b \to \Lambda_c (\to p\pi K)\mu\nu$
- Double semileptonic: $\Lambda_b \to \Lambda_c (\to p\pi\mu\nu)\mu\nu, \Lambda_b \to \Lambda_c (\to pK\mu\nu)\mu\nu$

Piera Battista

 $\Lambda_b \rightarrow p\pi\mu\mu$ meeting, 12.12.2024

Λ_{c} semileptonic vetoes

- Semileptonic: $\Lambda_h \to \Lambda_c (\to p\pi\pi)\mu\nu$, $\Lambda_h \to \Lambda_c (\to p\pi K)\mu\nu$
- Double semileptonic: $\Lambda_b \to \Lambda_c (\to p\pi\mu\nu)\mu\nu, \Lambda_b \to \Lambda_c (\to pK\mu\nu)\mu\nu$

This double semileptonic veto also cuts the single semileptonic backgrounds $\Lambda_c \rightarrow p\pi\pi$ and $\Lambda_c \rightarrow p\pi K$

Piera Battista

Vetoes to add: $m(p\pi\mu)_{\pi\leftarrow\mu} > 2300 \text{ MeV}$ and $m(p\pi\mu)_{K\pi\leftarrow\pi\mu} > 2300 \text{ MeV}$

 $\Lambda_b \rightarrow p\pi\mu\mu$ meeting, 12.12.2024

Adding µ ProbNNmu

L1_ProbNNmu > 0.1 && L2_ProbNNmu > 0.1

Piera Battista

15.05.2025

30

Kinematic corrections

• Run2

Piera Battista

15.05.2025

31

2D optimisation

Run1

Piera Battista

Run2

Comparison with run1

Piera Battista

Piera Battista

6000

Lb_M

Other backgrounds

Λ_b^0 decay	D^0 decay Comment	Process	Description
$\Lambda_b^0 \to p D^0 \pi$	$D^0 \to \pi^- \pi^+$	Double pion MisID	close to $m(D^0)$ PDG
$\Lambda_b^0 o p D^0 \pi$	$D^0 o \pi^- \mu^+ u_\mu$	Semileptonic With pion misID	below $m(D^0)$ PDG
$\Lambda_b^0 \to p D^0 \mu \nu_\mu$	$D^0 \rightarrow \pi^- \pi^+$	Semileptonic With pion misID	close to $m(D^0)$ PDG
$\Lambda_b^{\bar 0} o p D^0 \mu \nu_\mu$	$D^0 o \pi^- \mu^+ u_\mu$	Double semileptonic	Below $m(D^0)$ PDG

D⁰: m($\pi\mu$) in $p\pi\mu\mu$ data,

Piera Battista

Mode

$$B^0_{(s)} \to \pi \pi J/\psi$$

 $B^0 \to K \pi J/\psi$ single misID

 $B^0 \to K \pi J/\psi$ double misID

 $B_s \to K\pi J/\psi$ single misID

 $B_s \to K \pi J/\psi$ double misID

part reco $heta_{DIRA}$

 $B_s \to \phi(\to KK)J/\psi$

 $B_s \to KKJ/\psi$

Vetoed Vetoed Vetoed Not significant Not significant Not significant

Vetoed

Not significant

Pion cut decision

Only preselection and triggers applied

Piera Battista

