New multiparticle production variables: Bridging the gap between air-shower observables and accelerator measurements

<u>Miguel Alexandre Martins</u>^{a,}*, Lorenzo Cazon^a, Ruben Conceição^{b,c} and felix riehn^d

^aInstituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela ^bInstituto Superior Técnico, Universidade de Lisboa ^cLaboratório de Instrumentação e Física Experimental de Partículas ^dTechnische Universität Dortmund, August-Schmidt-Straße 4, 44221 Dortmund, Germany

Seminar - Dortmund, 24 April 2025

Ultra-high-energy cosmic rays

The cosmic ray flux at the highest energies

Miguel Alexandre Martins

Extensive Air Showers

- Most particles reaching the ground level are muons (carry ~10 % of E_0) and electromagnetic particles (carry ~90 % of E_0)
- EM and hadronic components mostly decoupled after primary interaction

Decay of low energy muons:

$$\mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu$$
$$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$$

Review of particle physics, Phys.Rev.D 110 (2024) 3, 030001

Energy partition among secondary hadrons

Take home messages:

- Electromagnetic component mostly fed by decay of neutral pions
- Energy in hadronic component mostly carried by charged pions and kaons and light long-lived baryons

Main air-shower observables as probes of the primary composition

Muon profile

 N_{μ}

Shape of N_{μ} distribution highly sensitive to primary mass number $A \implies$ allows mass discrimination

Issue: sensitive to hadron production in all stages of cascade \Rightarrow highly dependent on description of hadronic interactions

EAS as splitting processes: the Heitler-Matthews model

Heitler-Matthews framework for proton showers:

- 1. In each interaction, energy is equipartitioned between secondaries
- 2. Ratio between neutral and charged pions is constant
- 3. Number of secondaries is fixed in all interaction
- 4. All mesons decay into muons at the same critical energy
- 5. For X_{max} , only consider neutral pions from primary-air interaction

$$N_{\mu} \propto \left(\frac{E_0}{\xi_c^{\pi}}\right)^{\beta} \qquad X_{\max} \propto \ln(E_0/\xi_c^e)$$

Superposition: nucleus with energy E and A nucleons = A nucleons

each carrying energy E / A

redicts correct mass evolution!
$$N_{\mu}(A) \propto A^{1-\beta} \left(\frac{E_0}{\xi_c^{\pi}}\right)^{\beta} \qquad X_{\max}(A) - X_{\max}(1) \propto \ln A$$

Precise mass inference requires modeling of hadronic interactions!

Measuring / Estimating X_{max} and N_{μ}

Modelling hadronic interactions: Hadronic Interaction Models

Hadronic interactions in showers must be simulated with phenomenological hadronic interaction models (HIMs): Epos LHC, Epos LHC-R, QGSjetII04, QGSjetIII01, Sibyll23d

Inference challenge in EAS physics

From the collider physics side

Phenomenological HIMs must be tuned to accelerator data **BUT** lack of data in relevant phase-space

From the astroparticle physics side

Mass interpretation of EAS observables

highly dependent on HIM

Inconsistences in interpretation of air-shower observables

Muon puzzle

given X_{max}-derived composition

simulations to describe EAS data

1σ 55-65 deg, E=10^{19.4} eV EPOS-LHC **EPOS-LHC** 3σ OGSJet II-04 600 Auger PRD14 5σ 1.4 -• Sibyll 2.3d __ · __ Yakutsk 🔶 NEVOD-DECOR SUGAR QGSJetII-04 [g/cm²] <</p> ♦ IceCube ♦ AMIGA Pierre Auger --- EPOS-LHC 1.3 $R_{had}(heta_{min})$ $\Delta z = z - z_{\text{mass}}$ esidu 1.2 ^{-,}×^{xe}500 10 15 20 $E_{\mu, \text{prod}}/\text{GeV}$ Fe v 1.1 450 1.0 750 -20 -10 0 10 20 700 800 850 1019 10^{17} 1018 10^{15} 10^{16} $< X_{max} > [g/cm^{2}]$ $\Delta X_{max} / (g/cm^2)$ Pierre Auger Collaboration. E/eV . Cazon, PoS ICRC2019 (2020) 005 Phys.Rev.D 109 (2024) 10, 102001 L. Cazon, PoS ICRC2019 (2020) 005 GeV muons TeV muons Astrophys.Space Sci. 367 (2022) 3, 27 EPOS-LHC **Energy spectrum of muons** --- НЗа ♦ 600 m □ 800 m **EPOS-LHC** $E_{\mu} > 500 \,\,{\rm GeV}$ lceCube Preli --- GST Muon proxy Need to constrain hadron production in Compositions derived from GSF the relevant phase-space for air-shower GeV and TeV muons development! incompatible! --- GST-3 --- H3a --- GSF 10^{1} 10^{2} 10^{7} S. Verpoest for the IceCube Collaboration, E/PeV E / GeV PoS UHECR2024 (2025) 035

"X^µ_{max} puzzle"

Primary composition derived from peak of

muon production **incompatible** with X_{max}

Probing hadronic interactions using N_{μ}

The shower-to-shower distribution of the muon content

Standard deviation of $N_{\mu} \Rightarrow$ mostly determined by the shape of the energy spectrum of hadrons of the primary-air interaction

Probing the hadron energy spectrum via $\sigma(N_{\mu})$ Variable deduction

Estimate the muon yield of each secondary of 1^{st} interaction allowing for fluctuations of the lab. energy fraction of each hadron: x_i

 E_0 Had. sector π^0 s (EM sector) x_1 Muon yield from Heitler x_{3} Matthews model $N_{\mu} = N_{\mu}^{(1)} \propto x_{1}^{\beta} + \dots + N_{\mu}^{(i)} \propto x_{i}^{\beta} + \dots + N_{\mu}^{(m_{\text{had}})} \propto x_{m}^{\beta}$ $m_{\rm had}$ $N_{\mu} \propto \sum x_i^{\beta} = \alpha_1$ Shower-by-shower estimator of N_u from primary-air interaction

Miguel Alexandre Martins

L. Cazon, R. Conceição, F. Riehn, Phys.Lett.B 784 (2018) 68-76

Miguel Alexandre Martins

Probing the hadron energy spectrum via $\sigma(N_{\mu})$ Validation with MC simulations

- Pearson correlation coefficient ~ 0.80
- $\sigma^2(N_{\mu}) \sim 70 \% \sigma^2(\alpha_1)$

Shape a_1 -distribution sensitive to differences in energy spectrum predicted by had. int. models

Take home message:

- Shower-to-shower fluctuations of N_{μ} mostly determined by energy spectrum of hadrons of the primary-air interaction

L. Cazon, R. Conceição, M. A. Martins, F. Riehn, Phys.Rev.D 103 (2021) 2, 022001

Probing the energy spectrum of neutral pions through Λ_{μ}

Higher energy π⁰ ⇒ less energy available for muon production
Harder π⁰-energy spectrum in primary-air interaction ⇒ greater chance of muon-depleted showers

Take home message:

- Shape of N_{μ} -distribution in muon depleted showers sensitive to hardness of neutral pion spectrum in primary-air interaction

PROBING HADRONIC INTERACTIONS USING Xmax

The shower-to-shower distribution of X_{max}

Measurement of the proton-air cross section

Miguel Alexandre Martins

Validating ξ as estimator of X_{max} – X₁

Variable of the primary interaction

Take home messages:

- Fluctuations in ξ determine > 50 % of fluctuations in X_{max} -X₁ ⇒ 80 % of the maximum variability in (X_{max} -X₁) from stochasticity of primary interaction
- Strength of causal connection between ξ and $(X_{max} X_1)$ independent of Had. Int. Model

Understanding a new set of primary variables: ζ_{had} , ζ_{EM} and α_{had}

Probabilistic model of the rest of the shower

Removing dependence on the hadronic interaction model: step 1

Is it possible to remove the dependence on the hadronic interaction model?

Probabilistic model of the rest of the shower

L. Cazon, R. Conceição, M. A. Martins, F. Riehn, 2504.08610 [astro-ph.HE]

Removing dependence on the hadronic interaction model: step 2

- Change in ξ in primary interaction \Rightarrow change energy spectra in deeper interactions \Rightarrow change in $\langle X_{max} \rangle$
 - Consistently propagate changes in the energy spectra in primary interaction using hadronic interaction models

Take home messages:

- Linear evolution of (X_{max} X₁) with (ξ) with ~ 7 g cm⁻² systematic uncertainty due to Had. Int. Model.
- Substitute the residual model dependence of the shower response by its dependence on (ξ):

$$p(\Delta X_{\max} | \xi, M) \to \overline{p(\Delta X_{\max} | \xi)} \to p(\Delta X_{\max} | \xi, \langle \xi \rangle)$$

Reconstructing the distribution of ΔX_{max}

Take home messages:

• Systematic ~ 3 g cm⁻² in reconstruction of first and second moments of ΔX_{max} -distribution using universal probabilistic shower response \Rightarrow differences in ΔX_{max} -distribution attributed to differences in energy spectra of primary interaction!

Reconstructing the distribution of X_{max}

Take home messages:

• Systematic ~ 3 g cm⁻² in the reconstruction of $\langle X_{max} \rangle$, $\sigma(X_{max})$ and Λ_{η} using universal probabilistic shower response \Rightarrow can use the shape of X_{max} -distribution to probe the energy spectra secondaries of the primary interaction!

Probing hadronic INTERACTIONS USING (N_µ, X_{max})

Present the 2d model with the 2d kernel

Extend the formalism to describe 2-dimensional (N_{μ} , X_{max}):

Take home message:

• Information about the energy spectrum of the primary interaction retained in the (N_{μ}, X_{max}) via the probabilistic mapping between $(\alpha_1, \xi_1) \rightarrow (N_{\mu}, X_{max})$

Reconstructing the distribution of N_{μ}

Take home message:

• Negligible bias in the reconstruction of the first and second moments of the distribution of $N_{\mu} / \langle N_{\mu} \rangle$ using universal probabilistic shower response \Rightarrow differences in shape of N_{μ} distribution only due to differences in energy spectra of the primary interaction!

Reconstructing the joint distribution of (N_{μ}, X_{max})

SIBYLL 2.3e: $E_0 = 10^{19.0} \text{ eV}, \theta = 60^{\circ}$

Take home message:

Promising reconstruction of joint distribution of (N_{μ}, X_{max}) using the universal shower response

Outlook:

Change the energy spectra of the primary interaction and quantity the differences in the obtained distribution of (N_{μ}, X_{max})

NEW PRODUCTION VARIABLES

Distributions of new interaction variables in extensive air showers

Multi-particle production variables:

Shapes of distributions of ζ_{had} , ζ_{EM} and α_{had} highly dependent on hadronic interaction model \Rightarrow great constraining power!

Under investigation: explicit relation between shape of energy spectrum of secondaries and features of p.d.fs of ζ_{had} and ζ_{EM}

Relevant phase-space for EAS production variables

- EPOS LHC-R - QGSJET III-01 - SIBYLL 2.3e 0.6Had. sector $(\sqrt{s} = 14 \text{ TeV})$ $w_i = x_i$ -- $(\sum_i w_i)$ 0.4 $w_i = -x_i \ln x_i$ CMS LHCb 0.2~%2.6~%0.7 % 8.1 % ਹ<u>ਿ</u> ਹ_2 EPOS LHC-R₀ Ratio to 2.55.07.50.0 10.012.515.0 η

L. Cazon, R. Conceição, M. A. Martins, F. Riehn, 2504.08610 [astro-ph.HE]

Distributions of production variables at different rapidities

<u>*The LHCf Collaboration, Phys.Rev.D 94 (2016) 3,</u> 032007

- Model disagreement greater at higher rapidity and incident energies
- Distributions of production variables most distinguishable in the kinematic space relevant for EAS development

- Need p-O collisions at LHC to provide data to tune Had. Int. Models for air showers
- Need a way to constrain the production spectra of charged pions and kaons in forward region \Rightarrow Forward Physics Facility

Conclusions

Conclusions:

- 1. Developed a probabilistic framework linking the energy spectra of secondary hadrons with the main observables of Extensive Air Showers
- 2. The energy spectra can be measured in accelerator experiments in the far-forward region
- 3. Combined EAS and accelerator data can mitigate series of inconsistences in EAS description
- 4. Improve description of hadronic interactions at the highest energies

THANK YOU!

Additional acknowledgments

BACKUP SLIDES

Validating the approximations taken in derivation of ξ_1

Idea:

- 1. Increase the transition energy between MC and CE in Conex \Rightarrow isolate fluctuations of 1st interaction
- 2. Compare obtained value of ΔX_{max} and $\xi_1 \Rightarrow$ validation of ξ_1 as predictor of shower-to-shower ΔX_{max}

Take home message: Shower to shower values of ΔX_{max} and ξ_1 extremely correlated \Rightarrow validate ξ_1 as estimator of ΔX_{max} from 1st interaction fluctuations

Miguel Alexandre Martins

New variables in the $\Delta X_{max}\text{-}N_{\mu}$ plane

Take home message:

• ζ_{had} , ζ_{EM} and α_{had} offer a natural interpretation of the different regions of (N_{μ} , X_{max}) plane in terms of 1st interaction