
1/29

Overview on C++, ROOT (CERN) and Make
presentation and exercises

Marco Colonna

Programming Curses 2025
March 20th

Marco Colonna Overview on C++, ROOT (CERN) and Make



2/29

Overview

▶ C++
▶ Why should you understand and learn C++?
▶ C++ methods and fundamental topics

▶ ROOT
▶ Basic concepts of ROOT
▶ Using TTrees and TFiles
▶ Using the TBrowser
▶ What is a Macro?

▶ Make
▶ Fundamentals of make

Marco Colonna Overview on C++, ROOT (CERN) and Make



3/29

What is C++?

▶ One of the most popular programming languages, an evolution of C
▶ Object-Oriented: Supports modular, reusable code through classes and objects:

▶ powerful development features like inheritance, polimorphisms...

▶ Good for High-Level (create object and play with them) and Low-Level (direct memory
manipulation and hardware access) programming:
▶ it is extremely flexible.

If you ever used:

▶ Used for, e.g., operating systems (Windows), Photoshop, Spotify,
software in medical physics...

▶ ROOT, Geant4, Bash, make...

Than you trust C++ already!

Marco Colonna Overview on C++, ROOT (CERN) and Make



4/29

Pros and Cons of C++

Why to use C++?

▶ Very efficient since it is not interpreted (unlike Python).

▶ Often around 100 times faster than pure Python code.

What do you have to pay?

▶ Not the most beginner-friendly; writing good code takes
time.

▶ (Often) More difficult debugging, syntax is not very
forgiving.

Use as much C++ as needed, as much python as possible!

Marco Colonna Overview on C++, ROOT (CERN) and Make



5/29

Compilation

▶ C++ Code Execution:
▶ C++ scripts cannot be executed directly.
▶ A compiler (e.g., g++) is required to generate an executable file.
▶ Pre-installed on Linux.

▶ What is Compilation?
▶ Compilation is the process of converting C++ source code into an executable program.

▶ Steps of Compilation:
▶ Preprocessing: Handles directives like #include and #define.
▶ Compilation: Translates source code into assembly code.
▶ Assembly: Converts assembly code into machine code (object files).
▶ Linking: Combines object files and libraries to create the final executable.

▶ Compilation Syntax:
▶ g++ <input file> <maybe additional files> -o <output file>

▶ → Produces the final executable <output file>

Marco Colonna Overview on C++, ROOT (CERN) and Make



6/29

Compilation Example: Triangle Class

▶ Why Separate Compilation?
▶ Improves compilation speed—only modified files need recompiling.
▶ Helps manage large projects with multiple source files.

▶ Compile Separately:
▶ g++ -c main.cpp # generates standalone object file (.o)
▶ g++ -c triangle.cpp

▶ Link Object Files:
▶ g++ main.o triangle.o -o runMain

▶ Execute:
▶ ./runMain

▶ Alternatively, Compile and Link in One Step:
▶ g++ -o runMain main.cpp triangle.cpp
▶ → Does not create .o files separately

Marco Colonna Overview on C++, ROOT (CERN) and Make



7/29

Brief C++ overview... what do we have?

▶ Variables and Types:
▶ C++ requires explicit variable type declaration: int, float, char, bool, etc.
▶ Example: int x = 5;

▶ Control Structures:
▶ Similar to Python, C++ supports if, else, for, while loops.
▶ Syntax: if (x > 0) { ...}

▶ Arrays:
▶ C++ arrays are of fixed size: int arr[5] = {1, 2, 3, 4, 5};
▶ Unlike Python lists, arrays cannot change size after initialization.

▶ Error Handling:
▶ C++ uses try, catch, and throw for exception handling.
▶ Example: try { throw 10; } catch (int e) { std::cout << "Error: " << e <<

std::endl; }

Find everything in the https://en.cppreference.com/w/

Marco Colonna Overview on C++, ROOT (CERN) and Make

https://en.cppreference.com/w/


8/29

Console: Input/Output

▶ C++ Input/Output (I/O) requires:
▶ #include <iostream> at the beginning of the program.
▶ The std namespace can be used or omitted with std::.

▶ Standard Output (cout):
▶ Used to display output on the console.
▶ Example: std::cout << "Hello World" << std::endl;

▶ Standard Input (cin):
▶ Used to read input from the keyboard.
▶ Example: int x; std::cin >> x;

Example Program:

#include <iostream>

int main() {
int age;

std::cout << "Enter your age: ";

std::cin >> age;

std::cout << "You are " << age << " years old." << std::endl;

return 0;

}

Marco Colonna Overview on C++, ROOT (CERN) and Make



9/29

Pointers

▶ A pointer stores the memory address of an object.

▶ Dereferencing a pointer with ‘*‘ to access the object pointed.

▶ Grants efficient direct memory manipulation.

▶ Pointer arithmetic allows navigation through memory by adding offsets.

Examples of code:

int main() {

int myArray[5] = {0, 1, 2, 3, 4};

int *ptr = myArray;

for (int i = 0; i < 5; i++) {

*(ptr + i) = i * 2;

}

for (int i = 0; i < 5; i++) {

std::cout << myArray[i] << " ";

}

return 0;

}

int main() {

int *ptr = new int;

*ptr = 42;

std::cout << "Value: " << *ptr << std::endl;

delete ptr;

return 0;

}

Marco Colonna Overview on C++, ROOT (CERN) and Make



10/29

Functions in C++

▶ A function is a block of code that performs a specific task.
▶ Function syntax consists of:

▶ Return type: The type of value the function will return (e.g., int, float, ...).
▶ Function name: The name of the function (e.g., add).
▶ Parameters (optional): The values passed to the function (e.g., int a, int b).
▶ Return statement: The value returned by the function (optional depending on the return type).

Example: Function that adds two integers
#include <iostream>

int add(int a, int b) {
return a + b;

}
int main() {

int result = add(3, 4);

std::cout << "Sum: " << result << std::endl;

}

Marco Colonna Overview on C++, ROOT (CERN) and Make



11/29

Classes in C++

▶ A class is a blueprint for creating objects, defining attributes and methods.
▶ Attributes: Variables that store the object’s data.
▶ Methods: Functions that define object behavior.

▶ Access specifiers control visibility:
▶ Public: Accessible from anywhere.
▶ Private: Accessible only inside the class.
▶ Protected: Similar to private, but accessible in derived classes.

▶ A constructor is a method that runs when an object is created, to initialize attributes.
▶ Classes can inherit from other classes, allowing code reuse and hierarchy creation.

▶ Example: A general Animal class can be inherited by a Dog class, which is further inherited by a
Dalmatian class.

▶ The derived class (Dog) has all methods from the base class (Animal) and can define additional ones.

Marco Colonna Overview on C++, ROOT (CERN) and Make



12/29

Classes: Implementation

▶ Class implementation is typically divided into:
▶ A header file (.h) that defines the class structure.
▶ A source file (.cpp) that implements the class methods.

▶ Example:
▶ MyClass.h - Header file defining the class structure.
▶ MyClass.cpp - Implementation file defining the methods.

Header File (MyClass.h)

class MyClass {

private:

float myVar1, myVar2;

public:

MyClass();

void setFloats(float, float);

float add();

};

#endif

Implementation File (MyClass.cpp)

#include "MyClass.h"

void MyClass::setFloats(float myVar1, float myVar2)

{

this->myVar1 = myVar1;

this->myVar2 = myVar2;

}

float MyClass::add() {

return this->myVar1 + this->myVar2;

}

Marco Colonna Overview on C++, ROOT (CERN) and Make



13/29

What is ROOT?

▶ Open-source data analysis framework

▶ Primarily C++-based, with support for Python (PyROOT)

▶ Developed at CERN to efficiently handle large-scale data

▶ Widely used in particle physics, but also in finance, medicine, and big data

Why learn ROOT?

▶ Standard tool in High Energy Physics

▶ Essential for working with experimental data

▶ Powerful features: plotting, statistical analysis, ML

▶ Developed from physicists for physicists!

ROOT is a toolbox that provides multiple complex methods for data analysis.

Marco Colonna Overview on C++, ROOT (CERN) and Make



14/29

Using ROOT via LCG-Releases

▶ ROOT includes Cling, a C++ interpreter with Just-In-Time (JIT) compilation

▶ This allows executing C++ code interactively, like a calculator

▶ Example: Evaluating a geometric series sum in ROOT

sN =
N−1∑
i=0

qi =
1− qN

1− q

Try this in your terminal:
root -l

double q = 0.5;

int N = 10;

double s_N = (1 - pow(q, N)) / (1 - q);

double s_N2=0;

for (int i=0;i<N;++i) s_N2 += pow(q,i);
std::cout << s_N << " " << s_N2 <<std::endl;

Marco Colonna Overview on C++, ROOT (CERN) and Make



15/29

Where to Find Information on ROOT?

▶ Official Documentation (ROOT Reference Guide)
▶ Comprehensive but technical; best for in-depth understanding

▶ User Guide (ROOT User Guide)
▶ Step-by-step tutorial with explanations

▶ Tutorials and Code Examples (ROOT Tutorials)
▶ Ready-to-run scripts for learning by example

▶ Community and Support
▶ ROOT Forum – Ask questions and discuss with users
▶ GitHub Repository – Report issues and contribute

Marco Colonna Overview on C++, ROOT (CERN) and Make

https://root.cern/doc/master/
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch/
https://github.com/root-project/root


16/29

Application Example: TLorentzVector

▶ A ROOT class for relativistic four-vectors ((x, y, z, t))

▶ Used for kinematic calculations in particle physics

▶ Can be used standalone or in data analysis frameworks

Example usage:
TLorentzVector v1;

v1.SetXYZT(1.0, 2.0, 3.0, 4.0);

TLorentzVector v2 = v1 + v1;

v1.Boost(0.1, 0.2, 0.3);

double scalar product = v1 * v2;

v1.Print();

ROOT provides Classes to describe physical concepts (like 4-vectors) including multiple
methods ready to be used.

Marco Colonna Overview on C++, ROOT (CERN) and Make



17/29

What are TTrees?

▶ A TTree is the main data structure in ROOT for storing large datasets

▶ It organizes data into branches, where each branch can hold a specific variable (e.g., a
number, vector, or object)

▶ Each branch is made up of entries (rows of data), and the TTree allows efficient access
to these entries

▶ Typically used for storing data from experiments or simulations, like particle collision
events

▶ Benefits: Efficient storage, fast reading, and writing of data, especially for large datasets

Marco Colonna Overview on C++, ROOT (CERN) and Make



18/29

ROOT Files

▶ ROOT uses its own file format: .root

▶ Files are loaded into ROOT using the TFile class

▶ .root files store structured data, often used for sequential data storage

▶ ROOT files often contain NTuples for efficient data organization and access

Example: Loading a ROOT file:

▶ TFile *file = TFile::Open("data.root");

▶ TTree *tree = (TTree*)file->Get("myTree");

▶ tree->Scan("variable1:variable2");

Marco Colonna Overview on C++, ROOT (CERN) and Make



19/29

How to Handle TTrees

Example of handling TFiles and TTree:

▶ TFile *file = TFile::Open("data.root", "UPDATE");

▶ TTree *tree = (TTree*)file->Get("myTree");

▶ int var, newVar;

▶ tree->SetBranchAddress("branchName", &var);

▶ tree->Branch("newBranch", &newVar, "newBranch/I");

▶ for (int i = 0; i < tree->GetEntries(); ++i){
tree->GetEntry(i);

newVar = 2*var;

tree->Fill(); }
▶ tree->Write();

▶ file->Close();

Marco Colonna Overview on C++, ROOT (CERN) and Make



20/29

The TBrowser

▶ ROOT’s file browser: A GUI tool to view and interact with ROOT files
▶ Double-clicking on a ROOT file: In most cases, it’s not the best way to inspect the

contents of a ROOT file
▶ TBrowser: The graphical interface within ROOT to explore and plot data from a ROOT

file
▶ To launch it within a ROOT session: new TBrowser();

Marco Colonna Overview on C++, ROOT (CERN) and Make



21/29

First Steps with the TBrowser - Options

▶ Clicking on a leaf directly generates a histogram of the data
▶ The default action displays the histogram on a TCanvas with a statistics box
▶ Right-click on the TCanvas for customization options:

▶ Example: SetLogy to enable logarithmic scaling on the y-axis

Marco Colonna Overview on C++, ROOT (CERN) and Make



22/29

First Steps with the TBrowser - Saving

▶ After customizing your plot and data view, you can save the result
▶ Save your plot as a PDF or PS file using the TBrowser’s GUI options
▶ The TBrowser also provides functions like fitting curves to histograms, accessible via

right-click options

Marco Colonna Overview on C++, ROOT (CERN) and Make



23/29

ROOT Macros: Introduction

▶ Working in the session can be a bit tedious, despite ROOT history

▶ A sequence of ROOT commands should be reliably reproducible

▶ 2nd level after ROOT session: Macros

▶ Small standalone files that perform simple tasks

▶ A macro consists of a .C file with the following structure:
void MacroName() {
...

<your lines of C++ code>

code line ends with;

...

}

Marco Colonna Overview on C++, ROOT (CERN) and Make



24/29

ROOT Macros: Usage

▶ ROOT macros can be executed in three different ways:

▶ 1. Shell:
root MacroName.C

▶ 2. ROOT session:
root [0] .x MacroName.C

▶ or:
root [0] .L MacroName.C

root [1] MacroName()

▶ Note: In the second case, the macro is compiled; otherwise, it is interpreted by Cling

▶ There is even more possible with macros, see the documentation as always

Marco Colonna Overview on C++, ROOT (CERN) and Make



25/29

Introduction to make

▶ make is a build automation tool used to compile and link programs

▶ It reads a special file called Makefile that defines build rules

▶ With make, you define dependencies between files and commands for building them

▶ It’s widely used to manage large projects and automate repetitive tasks

▶ ROOT can also benefit from make to streamline building and running macros

Marco Colonna Overview on C++, ROOT (CERN) and Make



26/29

Creating a Makefile for ROOT Macros

▶ A Makefile is a simple text file that specifies how to compile and link programs

▶ In the context of ROOT macros, a Makefile helps automate the compilation of macros
and related libraries

▶ Example of a basic Makefile:
ROOTCFLAGS = $(shell root-config --cflags)

ROOTLIBS = $(shell root-config --libs)

CXX = g++

SRC = macro.C

OUT = macro.exe

all: $(OUT)
$(OUT): $(SRC)
g++ $(SRC) $(ROOTCFLAGS) -o $(OUT) $(ROOTLIBS)

▶ This Makefile compiles macro.C and links it with the necessary ROOT libraries

Marco Colonna Overview on C++, ROOT (CERN) and Make



27/29

Running the Makefile

▶ After creating the Makefile, you can run it by executing:
▶ make in the terminal

▶ This will compile your ROOT macro and produce an executable, for example macro.exe

▶ Once compiled, you can run the macro with:
▶ ./macro.exe

▶ If you make any changes to the .C file, just run make again to recompile the updated
code

Marco Colonna Overview on C++, ROOT (CERN) and Make



28/29

Advanced Usage with Makefile

▶ You can add more complex features to your Makefile, such as:
▶ Specifying multiple source files
▶ Defining separate rules for cleaning up compiled files (e.g., make clean)
▶ Automatically linking against shared libraries

▶ Example for cleaning up compiled files:
clean:

rm -f $(OUT)
▶ You can also use make with multi-step processes, for example, building a library before

compiling the macro

Marco Colonna Overview on C++, ROOT (CERN) and Make



29/29

Thank You for Your Attention

▶ Thank you for your attention throughout this presentation!
▶ We’ve covered a lot:

▶ C++ fundamentals + 1 phrase on polymorphism of classes
▶ Using C++ in ROOT for data analysis
▶ Navigating and manipulating ROOT files, classes, and macros
▶ Automating tasks with make and creating efficient workflows

▶ It was a lot to digest, come back to these concepts and explore them in time.

▶ Don’t be scared of trying out new programming methods in your projects.

▶ Don’t hesitate to reach out if you have any questions later on.

HAPPY CODING!

Marco Colonna Overview on C++, ROOT (CERN) and Make


