Overview on C++, ROOT (CERN) and Make

presentation and exercises

Marco Colonna

Programming Curses 2025
March 20th

tu

Marco Colonna Overview on C++, ROOT (CERN) and Make

> C++
» Why should you understand and learn C++7?
» C++ methods and fundamental topics

> ROOT

» Basic concepts of ROOT
» Using TTrees and TFiles
» Using the TBrowser

» What is a Macro?

» Make

» Fundamentals of make

Marco Colonna Overview on C++, ROOT (CERN) and Make

What is C++7

» One of the most popular programming languages, an evolution of C

» Object-Oriented: Supports modular, reusable code through classes and objects:
» powerful development features like inheritance, polimorphisms...

manipulation and hardware access) programming:

» Good for High-Level (create object and play with them) and Low-Level (direct memory
P it is extremely flexible.

If you ever used:
» Used for, e.g., operating systems (Windows), Photoshop, Spotify,
software in medical physics...
» ROOT, Geant4, Bash, make...
Than you trust C++ already!

Marco Colonna Overview on C++, ROOT (CERN) and Make

Pros and Cons of C+-+

Why to use C++7

» Very efficient since it is not interpreted (unlike Python).
» Often around 100 times faster than pure Python code.

What do you have to pay?

» Not the most beginner-friendly; writing good code takes

time. ISYNTAK|
» (Often) More difficult debugging, syntax is not very ‘—_—'
forgiving. @‘{'E‘{::’ [PYTHON
9 ‘ -

Use as much C++ as needed, as much python as possible!

Marco Colonna Overview on C++, ROOT (CERN) and Make

Compilation

» C++4 Code Execution:

» C++ scripts cannot be executed directly.

» A compiler (e.g., g++) is required to generate an executable file.

» Pre-installed on Linux.
» What is Compilation?

» Compilation is the process of converting C++ source code into an executable program.
» Steps of Compilation:

» Preprocessing: Handles directives like #include and #define.

» Compilation: Translates source code into assembly code.

» Assembly: Converts assembly code into machine code (object files).

» Linking: Combines object files and libraries to create the final executable.

» Compilation Syntax:
P g++ <input file> <maybe additional files> -o <output file>

» — Produces the final executable <output file>

Marco Colonna Overview on C++, ROOT (CERN) and Make

Compilation Example: Triangle Class

» Why Separate Compilation?

» Improves compilation speed—only modified files need recompiling.
» Helps manage large projects with multiple source files.

» Compile Separately:

P> g++ -c main.cpp # generates standalone object file (.0)
» g++ -c triangle.cpp
» Link Object Files:
» g++ main.o triangle.o -o runMain
> Execute:
» ./runMain
» Alternatively, Compile and Link in One Step:

» g++ -o runMain main.cpp triangle.cpp
» — Does not create .o files separately

Marco Colonna Overview on C++, ROOT (CERN) and Make

Brief C4++ overview... what do we have?

» Variables and Types:
» C++ requires explicit variable type declaration: int, float, char, bool, etc.
» Example: int x = 5;
» Control Structures:
» Similar to Python, C++ supports if, else, for, while loops.
> Syntax: if (x > 0) { ...}
» Arrays:
» C++ arrays are of fixed size: int arr[5] = {1, 2, 3, 4, 5};
» Unlike Python lists, arrays cannot change size after initialization.
» Error Handling:

» C++ uses try, catch, and throw for exception handling.
» Example: try { throw 10; } catch (int e) { std::cout << "Error: " << e <<
std::endl; }

Find everything in the https://en.cppreference.com/w/

Marco Colonna Overview on C++, ROOT (CERN) and Make

https://en.cppreference.com/w/

Console: Input/Output

» C++ Input/Output (1/0) requires:

» #include <iostream> at the beginning of the program.

» The std namespace can be used or omitted with std: :.
» Standard Output (cout):

» Used to display output on the console.

P> Example: std::cout << "Hello World" << std::endl;
» Standard Input (cin):

» Used to read input from the keyboard.
» Example: int x; std::cin >> x;

Example Program:

#include <iostream>
int main() {
int age;
std::cout << "Enter your age: ";
std::cin >> age;
std::cout << "You are " << age << " years old." << std::endl;
return O;

Marco Colonna Overview on C++, ROOT (CERN) and Make

Pointers

» A pointer stores the memory address of an object.

» Dereferencing a pointer with ‘*' to access the object pointed.

» Grants efficient direct memory manipulation.

» Pointer arithmetic allows navigation through memory by adding offsets.
Examples of code:

int main() {

int myArray[5] = {0, 1, 2, 3, 4};

int *ptr = myArray; int main() {

for (int i = 0; i < 5; i++) { int *ptr = new int;

*(ptr + i) = i * 2; *ptr = 42;

} std::cout << "Value: " << *ptr << std::endl;
for (int i = 0; 1 < 5; i++) { delete ptr;

std::cout << myArray[i] << " "; return O;

} ¥

return O;

¥

Marco Colonna Overview on C++, ROOT (CERN) and Make

Functions in C++

» A function is a block of code that performs a specific task.

» Function syntax consists of:
» Return type: The type of value the function will return (e.g., int, float, ...).
» Function name: The name of the function (e.g., add).
» Parameters (optional): The values passed to the function (e.g., int a, int b).
> Return statement: The value returned by the function (optional depending on the return type).

Example: Function that adds two integers
#include <iostream>
int add(int a, int b) {

return a + b;

int main() {

int result = add(3, 4);
std::cout << "Sum: " << result << std::endl;

Marco Colonna Overview on C++, ROOT (CERN) and Make

Classes in C++

P> A class is a blueprint for creating objects, defining attributes and methods.

» Attributes: Variables that store the object’s data.
» Methods: Functions that define object behavior.

» Access specifiers control visibility:

» Public: Accessible from anywhere.

» Private: Accessible only inside the class.

» Protected: Similar to private, but accessible in derived classes.
P> A constructor is a method that runs when an object is created, to initialize attributes.
» Classes can inherit from other classes, allowing code reuse and hierarchy creation.

» Example: A general Animal class can be inherited by a Dog class, which is further inherited by a
Dalmatian class.
» The derived class (Dog) has all methods from the base class (Animal) and can define additional ones.

Marco Colonna Overview on C++, ROOT (CERN) and Make

Classes: Implementation

P Class implementation is typically divided into:

> A header file (.h) that defines the class structure.

> A source file (.cpp) that implements the class methods.
» Example:

» MyClass.h - Header file defining the class structure.
» MyClass.cpp - Implementation file defining the methods.

Header File (MyClass.h)

Implementation File (MyClass.cpp)
class MyClass {

#include "MyClass.h"

private:
void MyClass::setFloats(float myVaril, float myVar2)

{

this->myVarl = myVari;

float myVarl, myVar2;
public:

MyClass();
i this->myVar2 = myVar2;

}

float MyClass::add() {

void setFloats(float, float);
float add();
}s

#endif

return this->myVarl + this->myVar2;

Marco Colonna Overview on C++, ROOT (CERN) and Make

What is ROOT?

» Open-source data analysis framework

» Primarily C++-based, with support for Python (PyROOT)

» Developed at CERN to efficiently handle large-scale data

» Widely used in particle physics, but also in finance, medicine, and big data

Why learn ROOT?
» Standard tool in High Energy Physics

» Essential for working with experimental data ; R O OT

Data Analysis Framework

» Powerful features: plotting, statistical analysis, ML

» Developed from physicists for physicists!

ROOT is a toolbox that provides multiple complex methods for data analysis.

Marco Colonna Overview on C++, ROOT (CERN) and Make

Using ROOT via LCG-Releases

» ROOT includes Cling, a C++ interpreter with Just-In-Time (JIT) compilation
» This allows executing C++4 code interactively, like a calculator

» Example: Evaluating a geometric series sum in ROOT

N—-1 N
i=0 q

Try this in your terminal:

root -1

double q = 0.5;

int N = 10;

double s_N = (1 - pow(q, N)) / (1 - q);
double s_N2=0;

for (int i=0;i<N;++i) s_N2 += pow(q,i);
std::cout << s_N << " " << s_N2 <<std::endl;

Marco Colonna Overview on C++, ROOT (CERN) and Make

Where to Find Information on ROOT?

» Official Documentation (ROOT Reference Guide)
» Comprehensive but technical; best for in-depth understanding
» User Guide (ROOT User Guide)
» Step-by-step tutorial with explanations
» Tutorials and Code Examples (ROOT Tutorials)
» Ready-to-run scripts for learning by example
» Community and Support

» ROOT Forum — Ask questions and discuss with users
» GitHub Repository — Report issues and contribute

Marco Colonna Overview on C++, ROOT (CERN) and Make

https://root.cern/doc/master/
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch/
https://github.com/root-project/root

Application Example: TLorentzVector

» A ROOT class for relativistic four-vectors ((x, y, z, t))
» Used for kinematic calculations in particle physics
» Can be used standalone or in data analysis frameworks
Example usage:
TLorentzVector vi;
v1.SetXYZT(1.0, 2.0, 3.0, 4.0);
TLorentzVector v2 = vl + vi;
v1.Boost (0.1, 0.2, 0.3);
double scalar_product = vl * v2;
v1.Print();

ROOT provides Classes to describe physical concepts (like 4-vectors) including multiple
methods ready to be used.

Marco Colonna Overview on C++, ROOT (CERN) and Make

What are T Trees?

» A TTree is the main data structure in ROOT for storing large datasets

» It organizes data into branches, where each branch can hold a specific variable (e.g., a
number, vector, or object)

» Each branch is made up of entries (rows of data), and the TTree allows efficient access
to these entries

» Typically used for storing data from experiments or simulations, like particle collision
events

» Benefits: Efficient storage, fast reading, and writing of data, especially for large datasets

Marco Colonna Overview on C++, ROOT (CERN) and Make

ROOT Files

» ROOT uses its own file format: .root

» Files are loaded into ROOT using the TFile class

» .root files store structured data, often used for sequential data storage

» ROOT files often contain NTuples for efficient data organization and access
Example: Loading a ROOT file:

» TFile *file = TFile::Open("data.root");

» TTree *tree = (TTreex)file->Get("myTree");

P tree->Scan("variablel:variable2");

Marco Colonna Overview on C++, ROOT (CERN) and Make

How to Handle TTrees

Example of handling TFiles and TTree:

» TFile *file = TFile::Open("data.root", "UPDATE");
» TTree *tree = (TTree*)file->Get("myTree");

int var, newVar;

tree->SetBranchAddress ("branchName", &var);
tree->Branch("newBranch", &newVar, "newBranch/I");

for (int i = 0; i < tree->GetEntries(); ++i){
tree->GetEntry(i);

newVar = 2xvar;

tree->Fill(); }

tree->Write();

P file->Close();

vvyyy

\4

Marco Colonna Overview on C++, ROOT (CERN) and Make

The TBrowser

» ROOT's file browser: A GUI tool to view and interact with ROOT files
» Double-clicking on a ROOT file: In most cases, it's not the best way to inspect the

contents of a ROOT file

» TBrowser: The graphical interface within ROOT to explore and plot data from a ROOT
file

» To launch it within a ROOT session: new TBrowser();

L XeX) I\ ROOT Object Browser L XeX) '\ ROOT Object Browser
i o o o e o T i

Browser ‘ File Edit View Options Tools
Fles | Canvas_1 ¥ | Edtor 1
piP

Y & Draw Option. - YR L
temp.

Q@mwot - [SE - 1
DrawClonePad lwan 4136204
CrooT Fies Caro0TFaes — Su0m_2steson
=1 =1
SetCanvassize
= agn S Gw&v" SeiRealAspectRatio
& Eusen - & Eusen
mookonna ™
E?am tuples E?E Duide
wup UseCurrentstyle
E-E9B4_DsiTauny_taum E bl | pon
[=R=T Range
Qe Savens
SetBorderhode

SetBorderSize
SetCrosshair
v SeiEditable
SefFixedAspeciRatio
SetGridx
SetGridy = beto
SetLogx 150 200 250 300 350
SetLogy
> SetLogz
Command | SefTickx
SetTicky =]

Command (local): - .
DrawClass

= |
Marco Colonna Overview on C++, ROOT (CERN) and Make

Fles | Canvas 1 () Edior 1 1]

BuildLegend

Clvmes_vwun

DSiD_Tau_cut. oot

90D Tau_cute_ sl 21.m0t

2DsiData0S _cuts_ol ot

o 2|

First Steps with the TBrowser - Options

» Clicking on a leaf directly generates a histogram of the data

» The default action displays the histogram on a TCanvas with a statistics box

» Right-click on the TCanvas for customization options:
» Example: SetLogy to enable logarithmic scaling on the y-axis

ece |X| ROOT Object Browser X| ROOT Object Browser
Browser | Fle Edit View Options Tools Heip Browser | Fle Edit View Options Toois Help
s | Ganvas_1 &) o1] s | Ganvas_1 ®)| edtor1
YR T pi_P - as| newtitle | @ © @ X Canva...
=P - E = =P - 7 :m«a | Binning | =
PROOF Sess . o2 PROOF Sess C ame
o & n drosaion o 6000 hlemp:THIF
(QR00T Fies Taxis::yaxis ot (QR00T Fies F
£ Line ————————
=l LabelsOption =l £
& Eounn 5000 romete & Eounn s000f |-[2 El
& EJusers SetDecimats E-Eueers = —
Eam a0 ChenaeLavel Bam 000f Opacity L
=2+ SetLimits =€ Fl 4 |
B SetMoreLogLabels E |» H Al
SetNoExponent H K
300 30003
SelRange i - . |-
SefRangeUser q Opacity
200(SetTicks 2000 1
SetTimeDispiay d
e ———————— ||
> SetTimeFormat >
100¢ Unzoom 1000 newtitie]
ZoomOut Histogram
SetName o b<1g 0 Plot
SetTitle 150 200 250 300 350 P & 2D (3D
i
DrawClass P
Dump | Eror: [NoErors [-] | |
Gomm ngpect Gomman | e
Comn|_SaveAs & | Command (ocal): | []
‘ » ‘ »
D SetAxisColor D
Filter: [AirFie]~ SetLabeicoor Filter: [AirFie]~
== SsetLaberront T - T T T

Marco Colonna Overview on C++, ROOT (CERN) and Make

First Steps with the TBrowser - Saving

» After customizing your plot and data view, you can save the result

» Save your plot as a PDF or PS file using the TBrowser’'s GUI options

» The TBrowser also provides functions like fitting curves to histograms, accessible via
right-click options

X| ROOT Object Browser NE XX) X| Fit Panel
Browser | Fle Edit View Options Tools Help Browser |Fle Edit View Optons Tod DamSet [rirmems ||
Files | Canvas_1)| Editor 1 Files | canvas 1]| Edita - Fit Function
EINd-a5| newtitle YR Type: [preder 1D [¥] [gaus I~
= — or
Dot X| Save As... oy Qreot = 3
(L3PROOF Sess = = {2 (CIPROOF Sess 0001 @ MNop (Add € NomAdd (Gonv
(rooT Fies ey = Roat v & e o e (ro0T Fies F ==
/ £
= e & L Selected:
[EE=E e _biarp B oenh 5000
- E gaus SetParameers.
- Eusers &-EQussrs E
Em Bam F
g BE 4000/~ General | winimization |
E |y E |y it
3000 Chi-square - User-Defined.
- . 2000) I Linear fit N Robust:| 095 j
ile name: |unnamed.pdf save FitOpt
»|| Files ortype: |PDF ("pan ~ Gancer | > I integral I Use range
POF (~pan = 1000 I Bestemars I improve fit resuits
& PostSeript (*ps) All weights = 1 Add o lst
Encapsulated PostScript (* eps)) o N o
> 10 | I Empty bins, weights=1 [Use Gradient
GG sve i) 300 350 50
TeX (*tex) o P Draw Opt
GIF (i)
ROOT macros (*.C) T sae
Command | [ROOT fles (“.root) - Command | LI Nodrwing
| o | - Commanotooay [| | T onatsorsnan
0 , «0 » o =
%[000 3]
Tad graphion fame [TFmme [200.431 [x=to0202, yotoro.83 . T

Marco Colonna Overview on C++, ROOT (CERN) and Make

ROOT Macros: Introduction

» Working in the session can be a bit tedious, despite ROOT history
» A sequence of ROOT commands should be reliably reproducible
» 2nd level after ROOT session: Macros

» Small standalone files that perform simple tasks

» A macro consists of a .C file with the following structure:
void MacroName() {

<your lines of C++ code>
code line ends with;

Marco Colonna Overview on C++, ROOT (CERN) and Make

ROOT Macros: Usage

» ROOT macros can be executed in three different ways:

» 1. Shell:
root MacroName.C

» 2. ROOT session:

root [0] .x MacroName.C

» or:
root [0] .L MacroName.C
root [1] MacroName()

» Note: In the second case, the macro is compiled; otherwise, it is interpreted by Cling

» There is even more possible with macros, see the documentation as always

Marco Colonna Overview on C++, ROOT (CERN) and Make

Introduction to make

» make is a build automation tool used to compile and link programs

P It reads a special file called Makefile that defines build rules

» With make, you define dependencies between files and commands for building them
P It's widely used to manage large projects and automate repetitive tasks

» ROOT can also benefit from make to streamline building and running macros

Marco Colonna Overview on C++, ROOT (CERN) and Make

Creating a Makefile for ROOT Macros

> A Makefile is a simple text file that specifies how to compile and link programs

P In the context of ROOT macros, a Makefile helps automate the compilation of macros
and related libraries

» Example of a basic Makefile:
ROOTCFLAGS = $(shell root-config --cflags)
ROOTLIBS = $(shell root-config --libs)

CXX = g++

SRC = macro.C
OUT = macro.exe
all: $(0UT)

$(0UT) : $(SRC)
g++ $(SRC) $(ROOTCFLAGS) -o $(OUT) $(ROOTLIBS)

» This Makefile compiles macro.C and links it with the necessary ROOT libraries

Marco Colonna Overview on C++, ROOT (CERN) and Make

Running the Makefile

» After creating the Makefile, you can run it by executing:
» make in the terminal

» This will compile your ROOT macro and produce an executable, for example macro.exe

» Once compiled, you can run the macro with:
» . /macro.exe

» If you make any changes to the .C file, just run make again to recompile the updated
code

Marco Colonna Overview on C++, ROOT (CERN) and Make

Advanced Usage with Makefile

» You can add more complex features to your Makefile, such as:
» Specifying multiple source files
» Defining separate rules for cleaning up compiled files (e.g., make clean)
» Automatically linking against shared libraries
» Example for cleaning up compiled files:
clean:
rm -f $(0UT)

» You can also use make with multi-step processes, for example, building a library before
compiling the macro

Marco Colonna Overview on C++, ROOT (CERN) and Make

ur Attention

» Thank you for your attention throughout this presentation!
» We've covered a lot:

» C++ fundamentals + 1 phrase on polymorphism of classes

» Using C++ in ROOT for data analysis

» Navigating and manipulating ROOT files, classes, and macros
» Automating tasks with make and creating efficient workflows

P |t was a lot to digest, come back to these concepts and explore them in time.
» Don't be scared of trying out new programming methods in your projects.
» Don't hesitate to reach out if you have any questions later on.

HAPPY CODING!

Marco Colonna Overview on C++, ROOT (CERN) and Make

