GIT - Bachelor programming course

standard across science and industry

for:

O

O

version control
work in collaborations
backup/save scripts, ...

distributed access from different
machines

Speed

\ Clean History

Scalable Staging Area

Data
o ow
Repositor
@ P Y Collaboration

Open Source

)

Cloud

T
-

bsc_thesis

Exemplary Workflow

| GitHub | :@)

[Laptop] |

Exemplary Workflow

| GitHub | :@)

\

[Laptop] :@

Exemplary Workflow

| GitHub | :@)

e.g.: you
write your
first chapter

[Laptop] :@ :

>;/

N

(

Exemplary Workflow

[GitHub] EC @

\ o/

Lapto :C
Piop N4

,\
—

1

2

—T

Exemplary Workflow

[GitHub] EC @

A

/\

| EAWS | | ©

,\
—

1
—T

1
—

Exemplary Workflow

/

e.g.: you write

your second

chapter
L P

~

Exemplary Workflow

| GitHub | EC (@ (3)

| EAWS | | (2) (3)
&/ O/

=
=
G~
e
-
=
>
A~
3
¥
=
P
<
Fr

l—

| GitHub | [jii)

E4 WS

P —
History | | Find file Edit v]‘

Workflow in practice

git@gitlab.e4.physik.tu-dortmun | [3%

Clone with HTTPS

. https://gitlab.e4.physik.tu-dor | [3
First:

1. Create a repository (e.g. on github or our gitlab)
2. Clone repository on your local machine (git clone ...)

3. Work in local repo (behaves like a traditional folder)

https://git.e5.physik.tu-dortmund.de/

. . History Find file Edit v {J
Workflow in practice o

Clone with SSH

git@gitlab.e4.physik.tu-dortmun | [3
Clone with HTTPS
FII’_St https://gitlab.e4.physik.tu-dor | [
1. Create a repository (e.g. on github or our gitlab)
2. Clone repository on your local machine (git clone ...)

3. Work in local repo (behaves like a traditional folder)

Then reqularly: (e.g. at the end of each day/week)

1. Track your changes: git add --all/<yourfile>

2. Create a commit with description what you changed since your last commit:
git commit -m “Finished chapter 2”

You have to be in a shell inside the
3. Push the changes to the cloud repo: git push

respective folder

https://git.e5.physik.tu-dortmund.de/

Working on multiple devices

e you have to clone the repo on each new machine
e get the last changes from the Cloud Repo: git pull
e after you are finished push your changes to the cloud repo again

e if you forgot to push your changes on a machine you might run into a Merge
Conflict

Merge Conflicts

)

GitHub x ((39:

AC LY/
. \

Merge 2 and 2’ (\3/)

N

(

1
—T

,\
-
—

(>\\

E4 WS

(

Merge Contflicts

e sometimes merge conflicts can be solved automatically by git

e if not, git will ask you to solve the merge conflict by yourself — go to all files with conflicting
lines and edit them as you want to keep them

e if you are using VSCode + git extension, there is a nice overlay to check what you want to keep

e if in doubt ask your supervisor or me for help

gitignore

e usually there are a lot of files which you don't want
to track with git
o data files
o output files .gitignore X

© CaChe ﬂles creme UesKior
. build/
e Yyou can create/edit .gitignore * pdf

3 analysis/bsp.root

e provide a list of files/folders that should be ignored

“Advanced”:
Working in a team

Branches & Rebasing

e especially when working in a team, you don't want to develop on main — main should
be the clean & stable branch including only finished changes the group/maintainers
agreed on

e soif you e.g. want to develop a new feature for the main repository you create a
“feature branch”, which you use for the development of the feature

e after your feature is ready you request to merge the “feature branch” back into main

feature

wan @O

Branches & Rebasing

e especially when working in a team, you don't want to develop on main — main should
be the clean & stable branch including only finished changes the group/maintainers
agreed on

e soif you e.g. want to develop a new feature for the main repository you create a
“feature branch”, which you use for the development of the feature

e after your feature is ready you request to merge the “feature branch” back into main
— rebase/merge

feature

o — @ OO O

Branches & Rebasing

e especially when working in a team, you don't want to develop on main — main should
be the clean & stable branch including only finished changes the group/maintainers
agreed on

e soif you e.g. want to develop a new feature for the main repository you create a
“feature branch”, which you use for the development of the feature

e after your feature is ready you request to merge the “feature branch” back into main
— rebase/merge

feature

main Q O Q [FERE]

In practice

e create & switch to a new branch: git checkout -b my-new-branch

e switch between branches: git checkout <branch>

In practice

e create & switch to a new branch: git checkout -b my-new-branch
e switch between branches: git checkout <branch>

e rebasing: pull latest changes and go to your feature branch and then use
git rebase main

o if the rebase runs into a conflict, you will have to edit the respective files and mark
them ready with git add <file>

o after all conflicts are fixed: git rebase --continue

o if youwant to abort the rebase: git rebase --abort

In practice

e create & switch to a new branch: git checkout -b my-new-branch
e switch between branches: git checkout <branch>

e rebasing: pull latest changes and go to your feature branch and then use
git rebase main

o if the rebase runs into a conflict, you will have to edit the respective files and mark
them ready with git add <file>

o after all conflicts are fixed: git rebase --continue
o if youwant to abort the rebase: git rebase --abort

e if rebase is finished you can push the changes via git push --force

e now your branch is ready to be merge into the main branch in the cloud repo

