
GIT - Bachelor programming course
(git gud)



Why git?

● standard across science and industry 
for:

○ version control

○ work in collaborations

○ backup/save scripts, …

○ distributed access from different 
machines



Structure

Cloud

Local

bsc_thesis

bsc_thesis
(E4 workstation)

bsc_thesis
(your laptop)

…



Exemplary Workflow

GitHub

Laptop

1



Exemplary Workflow

GitHub

Laptop

1

1



Exemplary Workflow

GitHub

Laptop

1

1 2

e.g.: you 
write your 
first chapter



Exemplary Workflow

GitHub

Laptop

1

1 2

2



Exemplary Workflow

GitHub

Laptop

1

1 2

2

E4 WS 2



Exemplary Workflow

GitHub

Laptop

1

1 2

2

E4 WS 2

e.g.: you write 
your second 
chapter

3



Exemplary Workflow

GitHub

Laptop

1

1 2

2

E4 WS 2 3

3



Exemplary Workflow

GitHub

Laptop

1

1 2

2

E4 WS 2 3

3

3



Workflow in practice

First:

1. Create a repository (e.g. on github or our gitlab)

2. Clone repository on your local machine (git clone ……)

3. Work in local repo (behaves like a traditional folder)

https://git.e5.physik.tu-dortmund.de/


Workflow in practice

First:

1. Create a repository (e.g. on github or our gitlab)

2. Clone repository on your local machine (git clone ……)

3. Work in local repo (behaves like a traditional folder)

Then regularly: (e.g. at the end of each day/week)

1. Track your changes: git add --all/<yourfile> 

2. Create a commit with description what you changed since your last commit:
git commit -m “Finished chapter 2” 

3. Push the changes to the cloud repo: git push
You have to be in a shell inside the 

respective folder

https://git.e5.physik.tu-dortmund.de/


Working on multiple devices

● you have to clone the repo on each new machine

● get the last changes from the Cloud Repo: git pull 

● after you are finished push your changes to the cloud repo again

● if you forgot to push your changes on a machine you might run into a Merge 
Conflict



Merge Conflicts

GitHub

Laptop

1

1 2

2

E4 WS 31 2’ Merge 2 and 2’

3



Merge Conflicts

● sometimes merge conflicts can be solved automatically by git (e.g. if the conflicting changes 
are in different files)

● if not, git will ask you to solve the merge conflict by yourself → go to all files with conflicting 
lines (marked by git) and edit them as you want to keep them

● if you are using VSCode + git extension, there is a nice overlay to check what you want to keep

● if in doubt ask your supervisor or me for help (ChatGPT is also pretty useful)



gitignore

● usually there are a lot of files which you don’t want 
to track with git
○ data files
○ output files (e.g. plots)
○ cache files

● you can create/edit .gitignore (in the main folder 
of your repo)

● provide a list of files/folders that should be ignored 
(wildcards are supported)



“Advanced”:
Working in a team



Branches & Rebasing

main

feature

● especially when working in a team, you don’t want to develop on main → main should 
be the clean & stable branch including only finished changes the group/maintainers 
agreed on

● so if you e.g. want to develop a new feature for the main repository you create a 
“feature branch”, which you use for the development of the feature

● after your feature is ready you request to merge the “feature branch” back into main



Branches & Rebasing

main

feature

● especially when working in a team, you don’t want to develop on main → main should 
be the clean & stable branch including only finished changes the group/maintainers 
agreed on

● so if you e.g. want to develop a new feature for the main repository you create a 
“feature branch”, which you use for the development of the feature

● after your feature is ready you request to merge the “feature branch” back into main
→ rebase/merge (usually you want to rebase for a cleaner history)



Branches & Rebasing

main

feature

● especially when working in a team, you don’t want to develop on main → main should 
be the clean & stable branch including only finished changes the group/maintainers 
agreed on

● so if you e.g. want to develop a new feature for the main repository you create a 
“feature branch”, which you use for the development of the feature

● after your feature is ready you request to merge the “feature branch” back into main
→ rebase/merge (usually you want to rebase for a cleaner history)

rebase



In practice

● create & switch to a new branch: git checkout -b my-new-branch

● switch between branches: git checkout <branch>



In practice

● create & switch to a new branch: git checkout -b my-new-branch

● switch between branches: git checkout <branch>

● rebasing: pull latest changes and go to your feature branch and then use
git rebase main

○ if the rebase runs into a conflict, you will have to edit the respective files and mark 
them ready with git add <file>

○ after all conflicts are fixed: git rebase --continue 

○ if you want to abort the rebase: git rebase --abort



In practice

● create & switch to a new branch: git checkout -b my-new-branch

● switch between branches: git checkout <branch>

● rebasing: pull latest changes and go to your feature branch and then use
git rebase main

○ if the rebase runs into a conflict, you will have to edit the respective files and mark 
them ready with git add <file>

○ after all conflicts are fixed: git rebase --continue 

○ if you want to abort the rebase: git rebase --abort

● if rebase is finished you can push the changes via git push --force
(since you changed the history of your branch, you need --force)

● now your branch is ready to be merge into the main branch in the cloud repo (→ Merge 
request)


