Solving Beautiful (and Charming) Puzzles

K. Keri Vos

Maastricht University & Nikhef

= Dortmund Seminar 2024 =

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} \mathbf{V_{ud}} & V_{us} & v_{ub} \\ V_{cd} & \mathbf{V_{cs}} & V_{cb} \\ v_{td} & V_{ts} & \mathbf{V_{tb}} \end{pmatrix}$$

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- · Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} \mathbf{V_{ud}} & V_{us} & v_{ub} \\ V_{cd} & \mathbf{V_{cs}} & V_{cb} \\ v_{td} & V_{ts} & \mathbf{V_{tb}} \end{pmatrix}$$

Our understanding of Flavour is unsatisfactory

$$\overline{ar{
ho}+iar{\eta}=-rac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}}$$

$$ar{
ho}+iar{\eta}=-rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

 $\frac{\text{Huge amounts of data} + \text{theory advances} = \text{Precision frontier}}{\text{Tiny deviations from SM predictions constrain effects of New Physics}}$

- Several puzzles between determinations
- Discussion on |V_{us}|
- CKM unitarity in first row?

Bernlochner, Prim, KKV Eur.Phys.J.ST 233 (2024) 2, 347-358

- Several puzzles between determinations
- Discussion on |V_{us}|
- CKM unitarity in first row?
- Inclusive versus exclusive decays in $|V_{cb}|$ and $|V_{ub}|$

Bernlochner, Prim, KKV Eur.Phys.J.ST 233 (2024) 2, 347-358

- Several puzzles between determinations
- Discussion on |V_{us}|
- CKM unitarity in first row?
- Inclusive versus exclusive decays in $|V_{cb}|$ and $|V_{ub}|$
- $|V_{cs}| \rightarrow \text{CKM}$ unitarity in second row/column?

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Quark level process

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Two options:

- Exclusive decays: pick one final state with the desired quarks ($V_{cb} \to D^{(*)}$ and $V_{ub} \to \pi)$
- Inclusive decays: everything you can think of! (denoted with X_c or X_u)

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Challenge:

- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules = Exclusive Decays
 - Measurable: from data = Inclusive Decays

Inclusive Semileptonic Beauty Decays

- Set up OPE and heavy quark expansion
- Well established framework for beauty decays!
- Extract important CKM parameters $|V_{cb}|, |V_{ub}|$ (and $|V_{cs}|$?)
- Extract power corrections from data
- Cross check of exclusive decays

- Set up OPE and heavy quark expansion
- Well established framework for beauty decays!
- Extract important CKM parameters $|V_{cb}|, |V_{ub}|$ (and $|V_{cs}|$?)
- Extract power corrections from data
- Cross check of exclusive decays
 - Dominated by lattice determinations

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Set up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

• Currently extracted from data

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Set up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Currently extracted from data
- Progress on the lattice Juetner et al. [2305.14092]

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Set up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Currently extracted from data
- $\Gamma_2: \mu_\pi^2$ and μ_G^2 at $1/m_b^2$
- $\Gamma_3: \rho_D^3$ and ρ_{LS}^3 at $1/m_b^3$
- Many more at $1/m_b^{4,5}$ Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_
u + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_
u + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

- Different phase space cuts give additional (correlated) observables
- $\mu_{\pi}^2, \mu_G^2, \rho_D^3 + \cdots$ extracted from data \rightarrow total rate $\rightarrow |V_{cb}|$

Experimental measurements of q^2 moments

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

Centralized moments as function of $q_{\rm cut}^2$

Keri Vos (Maastricht)

#beautifulpuzzles

Moments of the spectrum

Moments and total rate are double expansion in α_s and HQE parameters

$$\begin{split} L_{i} &= \frac{1}{\Gamma_{0}} \int_{E_{l} \geq E_{cut}} dE_{l} dq_{0} dq^{2} (E_{l})^{i} \frac{d^{3}\Gamma}{dq^{2} dq_{0} dE_{l}} \\ &= (m_{b})^{i} \left[L_{i}^{(0)} + L_{i}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} + L_{i}^{(2)} \left(\frac{\alpha_{s}(\mu_{s})}{\pi} \right)^{2} + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(L_{i,\pi}^{(0)} + L_{i,\pi}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \right. \\ &+ \frac{\mu_{G}^{2}(\mu_{b})}{m_{b}^{2}} \left(L_{i,G}^{(0)} + L_{i,G}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + \frac{\rho_{D}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,D}^{(0)} + L_{i,D}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \\ &+ \frac{\rho_{LS}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,LS}^{(0)} + L_{i,LS}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + O\left(\frac{1}{m_{b}^{4}} \right) \right] \,, \end{split}$$

Moments of the spectrum

Moments and total rate are double expansion in $\alpha_{\rm s}$ and HQE parameters

$$\begin{split} L_{i} &= \frac{1}{\Gamma_{0}} \int_{E_{l} \geq E_{\text{cut}}} dE_{l} dq_{0} dq^{2} (E_{l})^{i} \frac{d^{3}\Gamma}{dq^{2} dq_{0} dE_{l}} \\ &= (m_{b})^{i} \bigg[L_{i}^{(0)} + L_{i}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} + L_{i}^{(2)} \left(\frac{\alpha_{s}(\mu_{s})}{\pi} \right)^{2} + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(L_{i,\pi}^{(0)} + L_{i,\pi}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \\ &+ \frac{\mu_{G}^{2}(\mu_{b})}{m_{b}^{2}} \left(L_{i,G}^{(0)} + L_{i,G}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + \frac{\rho_{D}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,D}^{(0)} + L_{i,D}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \\ &+ \frac{\rho_{LS}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,LS}^{(0)} + L_{i,LS}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + O\left(\frac{1}{m_{b}^{4}} \right) \bigg] , \end{split}$$

- Systematic framework for power-corrections
- Higher precision: Include higher-order $1/m_b$ and α_s corrections in rate and moments!
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - $31~\mathrm{up}$ to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109

Summary of $|V_{cb}|$ inclusive

Fael, Prim, KKV, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

- Up to $1/m_b^3$ HQE terms
- Need new (branching ratio) measurements!

Experimental Inclusive Prospects

Belle II Physics Week https://indico.belle2.org/event/9402/overview

- New hadronic mass, lepton energy and q^2 moments
- Updated branching ratio measurements (with $q^2 \operatorname{cut}$)*
- Unconventional cuts (Lepton energy moments with q² cut?)?
- Forward-Backward asymmetry?

*RPI observable = reduced set of parameters

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Milutin, KKV [2409.15007]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- HQE predictions for several observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2 \rangle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Milutin, KKV [2409.15007]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- HQE predictions for several observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2 \rangle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut

Features:

- Includes power corrections up to $1/m_b^5$ Mannel, Milutin, KKV [2311.1200]
- Employs kinetic scheme for m_b and $\overline{\mathrm{MS}}$ for m_c
- Interface with CRunDec for automatic RGE evolution Chetyrkin, Kuhn, Steinhauser, Smidth, Herren
- Includes New Physics effects Fael, Rahimi, KKV [JHEP 02 (2023) 086]

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

Quirks:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

• Inputs for $B o X_u \ell
u$, B lifetimes and $B o X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.

First combined Fit

- Complementarity between different measurements
- + Full analysis including $1/m_b^{4,5}$ in progress Bernlochner, Prim, Fael, Milutin, KKV

Inclusive *B_s* decays?

Inclusive *B_s* decays?

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael

Full $m(X_c)$ spectrum can be reconstructed as sum-over-exclusives

- Requires non-overlapping resonances to avoid interference effects
- B_s spectrum is well separated

Inclusive *B_s* decays?

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael

Full $m(X_c)$ spectrum can be reconstructed as sum-over-exclusives

- Requires non-overlapping resonances to avoid interference effects
- *B_s* spectrum is well separated
- To do: measure all exclusive branching fractions of the $B_s o X_{cs} \ell
 u$ spectrum
De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael

Full $m(X_c)$ spectrum can be reconstructed as sum-over-exclusives

- Requires non-overlapping resonances to avoid interference effects
- *B_s* spectrum is well separated
- To do: measure all exclusive branching fractions of the $B_s \to X_{cs} \ell \nu$ spectrum
- Note only moments of the M_X spectrum would be available

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael

Full $m(X_c)$ spectrum can be reconstructed as sum-over-exclusives

- Requires non-overlapping resonances to avoid interference effects
- *B_s* spectrum is well separated
- To do: measure all exclusive branching fractions of the $B_s o X_{cs} \ell
 u$ spectrum
- Note only moments of the M_X spectrum would be available

Why measure B_s decays?

- HQE parameters depend on the initial state meson
- Study SU(3) breaking of HQE
- Necessary to study f_s/f_d and lifetimes of B_s decays

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael. PRD 101 (2020),072004

First study of the possibilities using sum-over-exclusive technique

Constructed M_X spectrum:

- $B_s \rightarrow D_s^{(*)} \ell \nu$ (LHCb)
- First higher excited states $B_s \rightarrow D_{s0}(D_{s1}')\ell\nu$ (not known)
- Second higher excited states $B_s \rightarrow D_{s1}(D_{s2}^*) \ell \nu$ (measured with 20 35% unc)
- Non-resonant decays modelled modified Goity-Roberts

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael. PRD 101 (2020),072004

First study of the possibilities using sum-over-exclusive technique

Constructed M_X spectrum:

- $B_s \rightarrow D_s^{(*)} \ell \nu$ (LHCb)
- First higher excited states $B_s \rightarrow D_{s0}(D_{s1}')\ell\nu$ (not known)
- Second higher excited states $B_s \rightarrow D_{s1}(D_{s2}^*) \ell \nu$ (measured with 20 35% unc)
- Non-resonant decays modelled modified Goity-Roberts
- Extracted moments depend highly on non-resonant moment
- Estimate for HQE parameters provided
- + V_{cb} extraction requires Branching ratio from Belle II! \rightarrow 5% extraction from current data!

Inclusive B_s decays as a precision measurement?

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael. PRD 101 (2020),072004

First study of the possibilities using sum-over-exclusive technique

Improvements:

- First measurements of $B_s
 ightarrow D_{s0}^*(D_{s1}')\ell
 u$
- Updated measurements of higher excited states $B_s o D_{s1}(D_{s2}^*) \ell
 u$
- Improved knowledge D_s^{**} decays
- Understand non-resonant contribution

Inclusive B_s decays as a precision measurement?

De Cian, Feliks, Rotondo, KKV [2312.05147]. Pic from M. Fael. PRD 101 (2020),072004

First study of the possibilities using sum-over-exclusive technique

Improvements:

- First measurements of $B_s
 ightarrow D^*_{s0}(D'_{s1})\ell
 u$
- Updated measurements of higher excited states $B_s o D_{s1}(D^*_{s2}) \ell
 u$
- Improved knowledge D_s^{**} decays
- Understand non-resonant contribution

With these improvements a precise measurement of the HQE parameters in B_s decays can be obtained!

Exclusive Charm decays and the $|V_{cs}|$ puzzle

Modes included in PDG

Pure leptonic modes

•
$$D_s^+ \rightarrow \{\mu^+, \tau^+\}\nu$$

Semileptonic modes

- $D^0 \rightarrow K^- \{e^+, \mu^+\} \nu$
- $D^+ \rightarrow \bar{K}^0 \{e^+, \mu^+\} \nu$

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

Data from Belle, BES, BESIII, CLEO-c

Pure leptonic modes

- $D_s^+ \rightarrow \{\mu^+, \tau^+\}\nu$
- $D_s^{*+}
 ightarrow e^+ \nu$

Semileptonic modes

- $D^0 \rightarrow K^- \{e^+, \mu^+\} \nu$
- $D^+ \rightarrow \bar{K}^0 \{e^+, \mu^+\} \nu$
- $\Lambda_c \to \Lambda \ell^+ \nu$

Differential q^2 Semileptonic rate

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

Data from Belle, BES, BESIII, CLEO-c

Pure leptonic modes

•
$$D_s^+ \to \{\mu^+, \tau^+\}\nu$$

• $D_s^{*+} \rightarrow e^+ \nu$

Semileptonic modes

•
$$D^0 \rightarrow K^- \{e^+, \mu^+\} \nu$$

•
$$D^+ \rightarrow \bar{K}^0 \{e^+, \mu^+\} \nu$$

•
$$\Lambda_c \to \Lambda \ell^+ \nu$$

 $\frac{\text{Differential } q^2 \text{ Semileptonic rate}}{\text{Total of 51 observations}}$

ightarrow Decay constants etm, fnal/milc, clqcd, qcdsr

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

Data from Belle, BES, BESIII, CLEO-c

Pure leptonic modes

•
$$D_s^+ \to \{\mu^+, \tau^+\}\nu$$

• $D_s^{*+} \rightarrow e^+ \nu$

\rightarrow Decay constants etm, fnal/milc, clqcd, qcdsr

Semileptonic modes

•
$$D^0 \rightarrow K^- \{e^+, \mu^+\} \nu$$

•
$$D^+ \rightarrow \bar{K}^0 \{e^+, \mu^+\} \nu$$

•
$$\Lambda_c \to \Lambda \ell^+ \nu$$

 $\frac{\text{Differential } q^2 \text{ Semileptonic rate}}{\text{Total of 51 observations}}$

Form factors for semileptonic charm decays

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145] EOS/DATA-2024-01: Supplementary material for

EOS/ANALYSIS-2023-08, 10.5281/zenodo.12688257.

BGL like fit with dispersive bounds in EOS flavour software

- HPQCD + FNAL/MILC: p-value = 4%
- HPQCD + FNAL/MILC + ETM: p-value < 0.1%

Form factors for semileptonic charm decays

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145] EOS/DATA-2024-01: Supplementary material for

EOS/ANALYSIS-2023-08, 10.5281/zenodo.12688257.

BGL like fit with dispersive bounds in EOS flavour software

- HPQCD + FNAL/MILC: p-value = 4%
- HPQCD + FNAL/MILC + ETM: p-value < 0.1%

Nominal fit: no ETM results

Incompatible data: use also PDG-like scale factor* $S^2 \equiv \frac{\chi^2}{N_{\rm d.o.f.}} = 6.34$

Form factors for semileptonic charm decays

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145] EOS/DATA-2024-01: Supplementary material for

EOS/ANALYSIS-2023-08, 10.5281/zenodo.12688257.

• HPQCD + FNAL/MILC: p-value = 4%

• HPQCD + FNAL/MILC + ETM: p-value < 0.1%

Nominal fit: no ETM results

Incompatible data: use also PDG-like scale factor* $S^2 \equiv \frac{\chi^2}{N_{dot}} = 6.34$

Branching ratios

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

Branching ratios

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

Branching ratios

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

• Nominal result: $|V_{cs}| = 0.957 \pm 0.003$ with p-value 41%

Extracting $|V_{cs}|$

45

50

57.0

54.5

 0.957 ± 0.007

 0.963 ± 0.005

42.7

48.2

 $D \rightarrow \bar{K} \ell \nu$

joint fit

scale factor

Extracting $|V_{cs}|$

- Our results are compatible with PDG at 2.5σ level
- Only reproduce PDG results if we do not include universal EW corrections (Sirlin factor)*
- Specifically: update form factors + Sirlin factor shift $|V_{cs}| = 0.952$

- · Interesting to check second row and column unitarity
- Use PDG average for other elements $\!\!\!\!^*$

$$\begin{split} |V_{cd}|^{\text{PDG}} &= 0.221 \pm 0.004 \,, \qquad |V_{cb}|^{\text{PDG}} = (40.8 \pm 1.4) \times 10^{-3} \,, \\ |V_{us}|^{\text{PDG}} &= 0.2243 \pm 0.0008 \,, \qquad |V_{ts}|^{\text{PDG}} = (41.5 \pm 0.9) \times 10^{-3} \,. \end{split}$$

	PDG	nominal	scale factor
$ V_{cs} $	0.975 ± 0.006	0.957 ± 0.003	0.963 ± 0.005
2 nd row	$1.00\pm0.014~(0.08\sigma)$	$0.966 \pm 0.008 \; (4.3 \sigma)$	$0.978 \pm 0.012 \; (1.9 \sigma)$
2 nd column	$1.00\pm0.012~(0.22\sigma)$	$0.968\pm0.006~(5.2\sigma)$	0.979 ± 0.010 (2.0 σ)

CKM Unitarity?

- · Interesting to check second row and column unitarity
- Use PDG average for other elements*

$$\begin{split} |V_{cd}|^{\text{PDG}} &= 0.221 \pm 0.004 \,, \qquad |V_{cb}|^{\text{PDG}} = (40.8 \pm 1.4) \times 10^{-3} \,, \\ |V_{us}|^{\text{PDG}} &= 0.2243 \pm 0.0008 \,, \qquad |V_{ts}|^{\text{PDG}} = (41.5 \pm 0.9) \times 10^{-3} \,. \end{split}$$

	PDG	nominal	scale factor
$ V_{cs} $	0.975 ± 0.006	0.957 ± 0.003	0.963 ± 0.005
2 nd row	$1.00\pm0.014~(0.08\sigma)$	$0.966 \pm 0.008 \; (4.3 \sigma)$	$0.978 \pm 0.012 \; (1.9 \sigma)$
2 nd column	$1.00\pm0.012~(0.22\sigma)$	$0.968\pm0.006~(5.2\sigma)$	$0.979\pm0.010~(2.0\sigma)$

- Requires looking into normalization of $B \rightarrow K$ modes
- Or New Physics?

CKM Unitarity?

- · Interesting to check second row and column unitarity
- Use PDG average for other elements*

$$\begin{split} |V_{cd}|^{\text{PDG}} &= 0.221 \pm 0.004 \,, \qquad |V_{cb}|^{\text{PDG}} = (40.8 \pm 1.4) \times 10^{-3} \,, \\ |V_{us}|^{\text{PDG}} &= 0.2243 \pm 0.0008 \,, \qquad |V_{ts}|^{\text{PDG}} = (41.5 \pm 0.9) \times 10^{-3} \,. \end{split}$$

	PDG	nominal	scale factor
$ V_{cs} $	0.975 ± 0.006	0.957 ± 0.003	0.963 ± 0.005
2 nd row	$1.00\pm0.014~(0.08\sigma)$	$0.966 \pm 0.008 \; (4.3 \sigma)$	$0.978 \pm 0.012\;(1.9\sigma)$
2 nd column	$1.00\pm0.012~(0.22\sigma)$	$0.968\pm0.006~(5.2\sigma)$	$0.979\pm0.010~(2.0\sigma)$

- Requires looking into normalization of $B \rightarrow K$ modes
- Or New Physics?
 - Strong constraints on potential (pseudo)scalar and tensor effects
 - Large CP-violating effects in right-handed currents allowed

Inclusive charm decays?

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb, Belle II.
- Constrain Weak Annihilation (WA) contributions

 $ightarrow B_d
ightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb, Belle II.
- Constrain Weak Annihilation (WA) contributions

 $ightarrow B_d
ightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

• Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small \ldots
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb, Belle II.
- Constrain Weak Annihilation (WA) contributions

 $ightarrow B_d
ightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

- Extraction of $|V_{cs}|$ and $|V_{cd}|$?
- Test HQE parameters across species and test SU(3) symmetry

Open Questions:

- Valence and non-valence WA operators at higher orders
- Scale for radiative corrections
- Charm mass definition

 $D \to X_q \ell \nu$ is not a copy of $B \to X_c \ell \nu!$

OPE for $b
ightarrow c \ell ar{
u}$: $m_Q \sim m_q \gg \Lambda_{
m QCD}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{lpha}\cdots iD^{eta})Q_{
 u}$
- IR sensitivity to mass m_q

$$\Gamma\Big|_{1/m_Q^3} = \left[\frac{34}{3} + 8\log\rho + \dots\right] \frac{\rho_D^3}{m_Q^3}, \quad \text{with } \rho = (m_q/m_Q)^2$$

Fael, Mannel, KKV, JHEP 12 (2019) 067 [1910.05234]

OPE for $c ightarrow s \ell ar u$: $m_Q \gg m_q \sim \Lambda_{ m QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $\log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

Fael, Mannel, KKV, JHEP 12 (2019) 067 [1910.05234]

OPE for $c \to s \ell \bar{\nu}$: $m_Q \gg m_q \sim \Lambda_{\rm QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

- Additional HQE parameters for $c \to q$: $T_i \equiv \frac{1}{2m_D} \langle D | O_i^{4q} | D \rangle$
- Up to $1/m_c^4$ only two extra HQE params: τ_m and τ_ϵ .
- RPI quantities depend on reduced set

Fael, Mannel, KKV, JHEP 12 (2019) 067 [1910.05234]

OPE for $c ightarrow s \ell ar u$: $m_Q \gg m_q \sim \Lambda_{ m QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $\log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

- Additional HQE parameters for $c \to q$: $T_i \equiv \frac{1}{2m_D} \langle D | O_i^{4q} | D \rangle$
- Up to $1/m_c^4$ only two extra HQE params: τ_m and τ_ϵ .
- RPI quantities depend on reduced set

Let's test the HQE for charm on data!

Extracting weak annihilation from data

CLEO data, Gambino, Kamenik [1004.0114]

- Lepton energy moments extracted from spectrum
- Kinetic mass for charm at $\mu=$ 0.5 GeV threshold, HQE parameters as input
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell v$

Extracting weak annihilation from data

CLEO data, Gambino, Kamenik [1004.0114]

- Lepton energy moments extracted from spectrum
- Kinetic mass for charm at $\mu=$ 0.5 GeV threshold, HQE parameters as input
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell
 u$
- Future prospects: Feasibility study to measure q² moments at BESIII Bernlochner, Gilman, Malde, Prim, KKV, Wilkinson [2408.10063]

Prospects for BESIII

Bernlochner, Gilman, Malde, Prim, KKV, Wilkinson [2408.10063]

- Future prospects: Experimental and Theory program for inclusive charm
- Interesting experimental prospects

Prospects for BESIII

Bernlochner, Gilman, Malde, Prim, KKV, Wilkinson [2408.10063]

- Future prospects: Experimental and Theory program for inclusive charm
- Interesting experimental prospects
- Quite some theory challenges

Thank you for your attention!

Backup
Comparison with PDG

$$\mathcal{H}^{sc\nu\ell} = -\frac{4G_F}{\sqrt{2}}\tilde{V}^*_{cs}\sum_i \mathcal{C}^\ell_i(\mu_c)\mathcal{O}^\ell_i + \text{h.c.}$$

$$\begin{split} \mathcal{O}_{V,L}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_L c \right] \left[\bar{\nu} \gamma_{\mu} P_L \ell \right], \qquad \mathcal{O}_{V,R}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_R c \right] \left[\bar{\nu} \gamma_{\mu} P_L \ell \right], \\ \mathcal{O}_{S,L}^{\ell} &= \left[\bar{s} P_L c \right] \left[\bar{\nu} P_L \ell \right], \qquad \qquad \mathcal{O}_{S,R}^{\ell} &= \left[\bar{s} P_R c \right] \left[\bar{\nu} P_L \ell \right], \\ \mathcal{O}_{T}^{\ell} &= \left[\bar{s} \sigma^{\mu \nu} b \right] \left[\bar{\nu} \sigma_{\mu \nu} P_L \ell \right]. \end{split}$$

- Account for universal electroweak corrections via Sirlin factor $C_{V,L}^{\ell}(\mu) = 1 + \frac{\alpha_e}{\pi} \ln\left(\frac{M_Z}{\mu}\right) \simeq 1.01,$
- Define in SM: $V_{cs} = \tilde{V}_{cs}$

Comparison with PDG

$$\mathcal{H}^{sc\nu\ell} = -\frac{4G_F}{\sqrt{2}}\tilde{V}^*_{cs}\sum_i \mathcal{C}^\ell_i(\mu_c)\mathcal{O}^\ell_i + \text{h.c.}$$

$$\begin{split} \mathcal{O}_{V,L}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_L c \right] \left[\bar{\nu} \gamma_{\mu} P_L \ell \right], \qquad \mathcal{O}_{V,R}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_R c \right] \left[\bar{\nu} \gamma_{\mu} P_L \ell \right], \\ \mathcal{O}_{S,L}^{\ell} &= \left[\bar{s} P_L c \right] \left[\bar{\nu} P_L \ell \right], \qquad \mathcal{O}_{S,R}^{\ell} &= \left[\bar{s} P_R c \right] \left[\bar{\nu} P_L \ell \right], \\ \mathcal{O}_{T}^{\ell} &= \left[\bar{s} \sigma^{\mu\nu} b \right] \left[\bar{\nu} \sigma_{\mu\nu} P_L \ell \right]. \end{split}$$

- Account for universal electroweak corrections via Sirlin factor $C_{V,L}^{\ell}(\mu) = 1 + \frac{\alpha_e}{\pi} \ln\left(\frac{M_Z}{\mu}\right) \simeq 1.01,$
- Define in SM: $V_{cs} = \tilde{V}_{cs}$

- Our results are compatible with PDG at 2.5σ level
- Can only reproduce PDG results if we do not include this factor
- Specifically: update form factors + Sirlin factor shift $|V_{cs}| = 0.952$

WET correlations

Bolognani, Reboud, van Dyk, KKV JHEP 09 (2024) 099 [2407.06145]

WET NP analysis

$$\mathcal{H}^{sc\nu\ell} = -\frac{4G_F}{\sqrt{2}} \tilde{V}_{cs}^* \sum_i \mathcal{C}_i^\ell(\mu_c) \mathcal{O}_i^\ell + \text{h.c.}$$

$$\mathcal{O}_{V,L}^\ell = [\bar{s}\gamma^\mu P_L c] [\bar{\nu}\gamma_\mu P_L \ell], \quad \mathcal{O}_{V,R}^\ell = [\bar{s}\gamma^\mu P_R c] [\bar{\nu}\gamma_\mu P_L \ell],$$

$$\mathcal{O}_{S,L}^\ell = [\bar{s}P_L c] [\bar{\nu}P_L \ell], \quad \mathcal{O}_{S,R}^\ell = [\bar{s}P_R c] [\bar{\nu}P_L \ell],$$

$$\mathcal{O}_T^\ell = [\bar{s}\sigma^{\mu\nu} b] [\bar{\nu}\sigma_{\mu\nu} P_L \ell].$$

$$\begin{split} & \operatorname{Re} \, \mathcal{C}_{V,L}^{\ell} = \left[\begin{array}{c} 0.957, & 1.002 \right], \\ & \operatorname{Re} \, \mathcal{C}_{V,R}^{\ell} = \left[-0.026, -0.012 \right], & \operatorname{Im} \, \mathcal{C}_{V,R}^{\ell} = \left[-0.225, 0.225 \right], \\ & \operatorname{Re} \, \mathcal{C}_{S,L}^{\ell} = \left[-0.019, & 0.014 \right], & \operatorname{Im} \, \mathcal{C}_{S,L}^{\ell} = \left[-0.030, 0.030 \right], \\ & \operatorname{Re} \, \mathcal{C}_{S,R}^{\ell} = \left[-0.026, & 0.006 \right], & \operatorname{Im} \, \mathcal{C}_{S,R}^{\ell} = \left[-0.028, 0.028 \right], \\ & \operatorname{Re} \, \mathcal{C}_{T}^{\ell} = \left[-0.021, & 0.046 \right], & \operatorname{Im} \, \mathcal{C}_{T}^{\ell} = \left[-0.068, 0.068 \right]. \end{split}$$

WET NP analysis

$$\mathcal{H}^{sc\nu\ell} = -\frac{4G_F}{\sqrt{2}} \tilde{V}^*_{cs} \sum_i \mathcal{C}^\ell_i(\mu_c) \mathcal{O}^\ell_i + \text{h.c.}$$

$$\mathcal{O}^\ell_{V,L} = [\bar{s}\gamma^\mu P_L c] [\bar{\nu}\gamma_\mu P_L \ell], \qquad \mathcal{O}^\ell_{V,R} = [\bar{s}\gamma^\mu P_R c] [\bar{\nu}\gamma_\mu P_L \ell],$$

$$\mathcal{O}^\ell_{S,L} = [\bar{s}P_L c] [\bar{\nu}P_L \ell], \qquad \mathcal{O}^\ell_{S,R} = [\bar{s}P_R c] [\bar{\nu}P_L \ell],$$

$$\mathcal{O}^\ell_T = [\bar{s}\sigma^{\mu\nu} b] [\bar{\nu}\sigma_{\mu\nu} P_L \ell].$$

$$\begin{split} & \operatorname{Re} \, \mathcal{C}_{V,L}^{\ell} = [\ \ 0.957, \ \ 1.002] \,, \\ & \operatorname{Re} \, \mathcal{C}_{V,R}^{\ell} = [-0.026, -0.012] \,, \quad & \operatorname{Im} \, \mathcal{C}_{V,R}^{\ell} = [-0.225, 0.225] \,, \\ & \operatorname{Re} \, \mathcal{C}_{S,L}^{\ell} = [-0.019, \ \ 0.014] \,, \quad & \operatorname{Im} \, \mathcal{C}_{S,L}^{\ell} = [-0.030, 0.030] \,, \\ & \operatorname{Re} \, \mathcal{C}_{S,R}^{\ell} = [-0.026, \ \ 0.006] \,, \quad & \operatorname{Im} \, \mathcal{C}_{S,R}^{\ell} = [-0.028, 0.028] \,, \\ & \operatorname{Re} \, \mathcal{C}_{T}^{\ell} = [-0.021, \ \ 0.046] \,, \quad & \operatorname{Im} \, \mathcal{C}_{T}^{\ell} = [-0.068, 0.068] \,. \end{split}$$

- Strong constraints on potential (pseudo)scalar and tensor effects, large CP-violating effects in right-handed currents allowed
- Results provide in EOS \rightarrow fit your favorite NP model

What mass to use?

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

- Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$

What mass to use?

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

- Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$.
- $\Lambda_{QCD} < \mu < m_Q$: expansion parameters μ/m_Q
 - Well established for m_B : $\mu/m_B\simeq 0.2$
 - Charm??

$$ightarrow \mu = 1 \text{ GeV}
ightarrow \mu/m_c \simeq 1$$

ightarrow \mu = 0.5 GeV
ightarrow \mu/m_c \simeq 0.4

Challenge: $\mu = 0.5$ GeV touches upon the non-perturbative regime?

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

• Replace *m_c* by moments of the spectral density!

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Replace *m_c* by moments of the spectral density!
- First study shows small improvement in pert. series

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Replace *m_c* by moments of the spectral density!
- In progress: Similar approach for the charm + power corrections

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

 $\overline{m_c}(2 \text{ GeV})$ not ideal choice

 $\overline{m_c}$ (3 GeV) better

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

Full combined analysis and updated q^2 fits in progress!