E4/E5 Bachelor Programmierkurs

Snakemake ~N\

“A scalable bioinformatics workflow engine”

Tobias Cremer, Hendrik Speiser
(originally by Vukan Jevti¢, Louis Gerken)

April 10, 2024

Technische Universitat Dortmund

Snakemake installation

on your own device:
$ conda config --add channels bioconda
$ conda install snakemake

on our E4 workstations:

- no installation necessary
- do NOT load CVMFS software packages before using snakemake!

Cite as:

* Koster, Johannes and Rahmann, Sven. “Snakemake - A scalable bioinformatics workflow engine”.

Bioinformatics 2012.

Further reading (links)

- Documentation
- snakemake for htcondor

E4/E5 Programmierkurs Snakemake

https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://snakemake.readthedocs.io/en/stable/index.html
https://confluence.tu-dortmund.de/pages/viewpage.action?pageId=214567471

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

E4/E5 Programmierkurs Snakemake 2

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

rule make_plot:
input: "data.csv"
output: "plot.pdf"
shell: "python plot.py"

rule select_data:
input: "raw_data.csv"
output: "data.csv”
shell: "python selection.py"

O 00 N O U1l & WIN -

Minimal console command
$ snakemake

E4/E5 Programmierkurs Snakemake 2

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

rule make_plot:
input: "data.csv"
output: "plot.pdf"
shell: "python plot.py"

rule select_data:
input: "raw_data.csv"
output: "data.csv”
shell: "python selection.py"

O 00 N O U1l & WIN -

Running by specifying output file
$ snakemake plot.pdf

E4/E5 Programmierkurs Snakemake 2

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

rule make_plot:
input: "data.csv"
output: "plot.pdf"
shell: "python plot.py"

rule select_data:
input: "raw_data.csv"
output: "data.csv”
shell: "python selection.py"

O 00 N O U1l & WIN -

Running by specifying name of rule
$ snakemake make_plot

E4/E5 Programmierkurs Snakemake 2

O 0 N O U1l & WN B

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

rule make_plot:

input’

output:
shell: python plot.py

rule select_data:

input:

output:

shell: python selection.py

E4/E5 Programmierkurs Snakemake

To run the snakemake command you always have to define the number of CPU to
use:

$ snakemake -j1

E4/E5 Programmierkurs Snakemake 4

Building DAG of jobs...
Job counts:
count jobs
make_plot
select_data

[Wed Feb 19 15:50:05 2020]
rule select_data:
input: raw_data.csv
output: data.csv
jobid: 1
reason: Missing output files: data.csv

[Wed Feb 19 15:50:05 2020]
rule make_plot:
input: data.csv
output: plot.pdf
jobid: @
reason: Missing output files: plot.pdf; Input files updated by another job: data.csv

Job counts:
count jobs
make_plot
select_data

This was a dry-run (flag -n). The order of jobs does not reflect the order of execution.

Building DAG of jobs...
Using shell: /usr/local/bin/bash
Provided cores: 256
Rules claiming more threads will be scaled down.
Job counts:
count jobs
make_plot
select_data

[Wed Feb 19 15:38:12 2020]
rule select_data:
input: raw_data.csv
output: data.csv
jobid: 1

[Wed Feb 19 15:38:12 2020]
Finished job 1.
1 of 2 steps (50%) done

[Wed Feb 19 15:38:12 2020]
rule make_plot:
input: data.csv
output: plot.pdf
jobid: @

[Wed Feb 19 15:38:14 2020]

Finished job 0.

2 of 2 steps (100%) done

Complete log: /net/nfshome/home/somepath/.snakemake/10g/2020-02-19T153812.433826.snakemake.log

To analyse data, we usually have a raw data file and some data processing steps

1 rule plot_results:
2 input:
3 "data_selected.root",
4 "plot.py"
5 output: "results.pdf"
6 shell: "python plot.py data_selected.root"
7
& rule data_selection:
9 input: "data_preprocessed.root"
10 output: "data_selected.root"
11 shell: "python selection.py data_preprocessed.root data_selected.root"
12
13 rule data_preprocessing:
14 input: "data_raw.root"
15 output: "data_preprocessed.root"
16 shell: ‘"python analysis.py data_raw.root data_preprocessed.root"

input, output, shell etc. are optional
E4/E5 Programmierkurs Snakemake 7

To analyse data, we usually have a raw data file and some data processing steps

1 rule plot_results:
2 input:
3 "data_selected.root",
4 "plot.py"
5 output: "results.pdf"
6 shell: "python plot.py data_selected.root"
7
& rule data_selection:
9 input: "data_preprocessed.root"
10 output: "data_selected.root"
11 shell: "python selection.py data_preprocessed.root data_selected.root"
12
13 rule data_preprocessing:
14 input: "data_raw.root"
15 output: "data_preprocessed.root"
16 shell: ‘"python analysis.py data_raw.root data_preprocessed.root"

Would be nice to reduce amount of repetitions
E4/E5 Programmierkurs Snakemake 7

We can alias files = rules can reference their own parameters

1 rule plot_results:
2 input:
3 data = rules.data_selection.output,
4 py_file = "plot.py"
5 output: "results.pdf"
6 shell: "python {input.py_file} {input.data}"
7
& rule data_selection:
9 input: "data_preprocessed.root"
10 output: "data_selected.root"
11 shell: "python selection.py {input} {output}"
12
13 rule data_preprocessing:
14 input: "data_raw.root"
15 output: "data_preprocessed.root"
16 shell: "python analysis.py {input} {output}"

Strings containing {. ..} are formatted
E4/E5 Programmierkurs Snakemake 8

A Snakefile can be treated almost like a python script:

import uproot
import pandas
import numpy as np

def say_hello(name):
print(f"Hello {name}!")

rule somerule:
input: files = [f"dataset_{num}.root" for num in range(100)]
10 run:
11 say_hello('F4")
12 for tfile in input.files:
13 ds = uproot.open(tfile)['Decayirea’]
14 data = ds.arrays('c P[XY]", outputtype=pandas.DataFrame)
15 print(np.sqrt(data.B_PX*+2 + data.B_PY*%2))

OVCONOUTPES WN R

E4/E5 Programmierkurs Snakemake)

Instead of shell or run a script can be invoked.
(It does not need to be a python script)

rule massfit:
input:
output: 5
params:
fitConstrained = False,
extendedMLFit = True
script:

NOoO oW N

massfit.py:

import ROOT as R
from ROOT import RooFit
fitContrained = snakemake.params.fitConstrained
extendedMLFit = snakemake.params.extendedMLFit
5 # Load datasets, fit something...
E4/E5 Programmierkurs Snakemake 10

S~ W N B

Useful command line options

Just print scheduled rules without running
$ snakemake <rule> -n

Print the reason for running each rule as well
$ snakemake <rule> -n -r

Force execution of target

$ snakemake <rule> -f

Force execution of a target and its workflow
$ snakemake <rule> -F

Force re-execution of rule and its workflow

$ snakemake <rule> -R

E4/E5 Programmierkurs

Run workflow until specified rule

$ snakemake <rule> --until <rule>
Update timestamps —>force files up to date
$ snakemake <rule> --touch

Ignore errors

$ snakemake <rule> --keep-going
Rerun incomplete rules (in case of crash)

$ snakemake --rerun-incomplete
Print shell commands that snakemake runs

$ snakemake -p

Snakemake 1

rule file_requester:
input: "file_A_0.txt",
input: "file_A_1.txt",
input: "file_A_2.txt",
input: "file_B_0.txt",
input: "file_B_1.txt",
input: "file_B_2.txt",

N O oW N

- EXPAND(...)
- WILDCARDS

E4/E5 Programmierkurs Snakemake 12

Snakemake has an integrated method for generating lists of files: expand(...)

1 rule file_requester:
2 input: expand(, cat=[, 1, num=range(3))

The following list is created as input:
file A_0.txt, file_A_1.txt, file A_2.txt, file_B_0.txt, file_B_1.txt, file_B_2.txt

E4/E5 Programmierkurs Snakemake 13

A wildcard rule matches patterns in dependencies

1 rule single_selection:

2 input:

3 output:

4 shell:

5

6 rule select files:

7 input: expand(, n=range(10))

Note:

1. Input and output must contain same wildcards
2. A wildcard rule cannot be called directly by its name

3. Two rules should not contain the same outputs

E4/E5 Programmierkurs Snakemake 14

A wildcard rule matches patterns in dependencies

1 rule single_selection:
input:
output:
shell:

rule select_files:
input: expand(, n=range(10))

N O o B W N

If one runs

$ snakemake select files

rule select_files is going to call the wildcard rule for 10 different files

E4/E5 Programmierkurs Snakemake 14

A wildcard rule matches patterns in dependencies

1 rule single_selection:
input:
output:
shell:

rule select_files:
input: expand(, n=range(10))

N O o B W N

If one runs

$ snakemake data_7_selected.root

rule select_files is going to call the wildcard rule for case num = 7

E4/E5 Programmierkurs Snakemake 14

But what if a certain combination of wildcards needs to be treated differently?
= Use wildcard constraints

1 rule somerule:

2 input:

3 output:

4 wildcard_constraints: year=
5 shell:

6

/ rule somerule_special_case:

8 input: rules.somerule.input
©) output: rules.somerule.output
10 wildcard_constraints: year=
11 shell:

If you need to treat a wildcard value differently from the others, you need to
constrain them for each relevant rule as shown here
Here, regex can be quite useful: regex101.com.

E4/E5 Programmierkurs Snakemake 15

https://regex101.com

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

E4/E5 Programmierkurs Snakemake

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need ©(100) CPUs, for example 300 CPUs and 1TB of RAM?
= Send your jobs to our own cluster!

E4/E5 Programmierkurs Snakemake

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20
This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need ©(100) CPUs, for example 300 CPUs and 1TB of RAM?
= Send your jobs to our own cluster!

But what do you do if you need @(1000) CPUs and ©O(20) GPUs?
= Send your jobs to the LiDO cluster of our university

E4/E5 Programmierkurs Snakemake

E4/E5 Programmierkurs

ADVANCED TOPICS

Snakemake

17

Using snakemake to submit to a computing cluster

A tutorial can be found here: Click me!

Submitting to a HTCondor computing cluster can be as simple as:

$ snakemake <rule> -j500 --profile htcondor

E4/E5 Programmierkurs Snakemake

https://confluence.tu-dortmund.de/pages/viewpage.action?pageId=214567471

1 rule clusterrule:

2 input:

3 output:

4 threads: 12

5 resources:

6 MaxRunHours=24, # Job takes up to a day

7 request_memory=1024 # Request RAM in MB

8 request_gpus=1, # Submit to a machine with GPU
9 request_disk=1000000 # Disk requirement in kB

10 run:

11 print(f)

Submit with the same command lean back while the cluster takes off o

E4/E5 Programmierkurs Snakemake 19

Snakefiles can be connected via subworkflows:
Main Snakefile

1 subworkflow another_worklow:
2 workdir: 'path/to/other/workdir'
3 snakefile: 'path/to/other/workdir/Snakefile'’
4
5 rule master_rule:
6 input: another_worklow(' text . txt")
Another Snakefile
1 rule create_file:
2 output: "text.txt"
3 shell: "touch text.txt"

E4/E5 Programmierkurs Snakemake 20

Some more useful tips

Various file wrappers:

- Timestamp of files wrapped in ancient("filename") is ignored

- Files wrapped in protected("filename") are not deleted by Snakemake
- Afile wrapped in temp("filename") is deleted after rule is finished

- touch("filename") creates an empty file with that name as output

Setting a function as rule input:

get_files(wildcards):

rule arule:
input: get_files

E4/E5 Programmierkurs Snakemake

21

Some more useful tips

Various file wrappers:

- Timestamp of files wrapped in ancient("filename") is ignored

- Files wrapped in protected("filename") are not deleted by Snakemake
- Afile wrapped in temp("filename") is deleted after rule is finished

- touch("filename") creates an empty file with that name as output

Using a config file (json or yaml) for yaml file > exercise

config.json Snakefile

{ configfile:
param_a = config[

} param_b = config|

E4/E5 Programmierkurs Snakemake

21

E4/E5 Programmierkurs

COMMON ERRORS

Snakemake

22

1 rule somerule:

2 output:

3 shell:

A

5 rule requester:
6 input:

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"

E4/E5 Programmierkurs Snakemake 23

Common mistakes: Wrong wildcard deduction

rule somerule:
output:
shell:

rule requester:
input:

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"
This will eventually lead to an error »define what wildcard values are allowed

wildcard_constraints:
year= ,
polarity=

Note: these are regex strings

E4/E5 Programmierkurs Snakemake 23

TIME TO DO IT YOURSELF!

E4/E5 Programmierkurs Snakemake 24

