

Charm Physics at LHCb: Legacy of Run 1+2 and prospects for Run 3

Sascha Stahl, CERN

8/2/2024

Outline

- My last talk here was in 2019
 - Since then LHCb published 32 papers on charm physics,
 I will only cover a few of them 01 are devided by them 10 are devided by them 10
- Today:
 - Introduction (charm physics + LHCb)
 - Measurements of direct CP violation
 - Measurements of time-dependent CP violation
 - Rare charm
 - Outlook to Run 3

ecision measurement of the Ξ_{cc}^{++} mass
pdated measurement of decay-time-dependent CP asymmetries in $D^0 o K^+K^-$ and $D^0 o \pi^+\pi^-$ decays
easurement of S_{cc}^{++} production in pp collisions at $\sqrt{s}=13~{\rm TeV}$
earch for the doubly charmed baryon Ξ_{cc}^+
ecision measurement of the Λ_c^+,Ξ_c^+ and Ξ_c^0 baryon lifetimes
search for $arepsilon_{cc}^{++} o D^+ p K^- \pi^+$ decays
bservation of CP violation in charm decays
easurement of the mass difference between neutral charm-meson eigenstates

h

P S

2303.04062 [PDF]	site of (cocs) out	07 1101 2023	Ĩ
22C-043 23C 04733 [PDF]	Phys. Rev. Lett. 131 (2023) 131902	09 Feb 2023	17
2301.07010 [PDF]	JHEP 07 (2023) 228	17 Jan 2023	2
2-2022-029 2212.11203 [PDF]	Phys. Rev. Lett. 131 (2023) 041804	21 Dec 2022	
2-2022-030 2209.09840 [PDF]	JHEP 07 (2023) 204	20 Sep 2022	8
R-2022-024 2209.03179 [PDF]	Phys. Rev. Lett. 131 (2023) 091802	07 Sep 2022	
2-2022-020 2208.06512 [PDF]	Phys. Rev. D108 (2023) 052005	12 Aug 2022	9
	JHEP 06 (2023) 044	05 Aug 2022	5
2-2022-002 2208.03262 [PDF]	Phys. Rev. D 108 (2023) 012023	05 Aug 2022	11
	JHEP 04 (2023) 081	26 Apr 2022	5
2-2021-041 2202.09106 [PDF]	Phys. Rev. D 105, 092013	18 Feb 2022	17
	JHEP 05 (2022) 038	11 Feb 2022	
2-2021-035 2111.03327 [PDF]	Phys. Rev. Lett. 128 (2022) 221801	05 Nov 2021	10
		15 Sep 2021	
2-2021-021 2109.01334 [PDF]	Science Bulletin 67 (2022) 479	03 Sep 2021	34
R-2021-009 2106.03744 [PDF]	Phys. Rev. Lett. 127, (2021) 111801, https://link.aps.org/doi/10.1103/PhysRevLett.131.079901	07 Jun 2021	58
2-2020-045 2105.09889 [PDF]	Phys. Rev. D 104, 072010	20 May 2021	36
	Sci.China Phys.Mech.Astron. 64, 101062 (2021)	14 May 2021	18
2-2020-047 2105.01565 [PDF]	Phys. Rev. D 104, L031102	04 May 2021	18
2-2021-001 2103.11058 [PDF]		20 Mar 2021	
2-2020-007 2011.00217 [PDF]	JHEP 06 (2021) 044	31 Oct 2020	24
		23 Jul 2020	
2-2019-026 2006.03145 [PDF]	Eur. Phys. J. C80 (2020) 986	04 Jun 2020	22
2-2020-004 2003.13649 [PDF]	Phys. Rev. Lett. 124 (2020) 222001	30 Mar 2020	63
the //lhchnroidet web carn chil			
ublication	s/I HChProjectPu		40
1909.12273 [PDF]			
immary Charm html			
1905.02421 [PDF]		07 May 2019	
2-2019-006 1903.08726 [PDF]	Phys. Rev. Lett. 122 (2019) 211803	20 Mar 2019	360
2-2019-001 1903.03074 [PDF]		07 Mar 2019	

What is charm physics?

- Study of particles (mesons, baryons) that contain charm quark
 - Second generation up-type quark
 - Theorized in 1964 and discovered in 1974 via the J/Ψ meson (cc)
- Top quark too heavy to form bound states
 - Charm hadrons complementary to kaons and b-hadrons in the down-type sector
- Measurements of properties of charm mesons and baryons (and their decays) allow to test the Standard Model of Particle Physics.

Charm is different, part 1

• Charm quark mass similar to hadronic scale

 $\Lambda_{QCD}/m_c = \mathcal{O}(1)$

• Strong coupling constant at charm mass

 $\alpha_S = 0.33 \pm 0.01$

• Higher order corrections likely important and there might be sizable non-perturbative effects

- Effects referred to as Long distance effects or rescattering
- Theoretical predictions at today's experimental precision not easy

Charm is different, part 2

$$\sim |\sum_{q=d,s,b} c_q (m_q/m_W) (V_{uq}^* V_{cq})|^2$$

short distant, virtual states

- Small mixing from SM box diagrams
 - Effective GIM cancellation of d and s diagrams $(m_d \approx m_s)$.
 - m_b /m_W small unlike m_t /m_W.
 - $|V_{cb} V_{ub}|^2 = 10^{-8}$

$$\begin{split} V_{CKM} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\ &\approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \\ &\lambda \approx 0.22 \end{split}$$

Charm is different, part 2

short distant, virtual states

- Small mixing from SM box diagrams
 - Effective GIM cancellation of d and s diagrams $(m_d \approx m_s)$.
 - m_b / m_W small unlike m_t / m_W .
 - $|V_{cb}^* V_{ub}|^2 = 10^{-8}$
- Short distant and long distant processes of similar size (O(10⁻³)).
- Similar arguments also make CP violation small

$$egin{aligned} & V_{CKM} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \ & pprox \left(egin{aligned} & 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho - i\eta) \ & -\lambda & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}
ight) \ & \lambda pprox 0.22 \end{aligned}$$

From A. Dziurda and S. Stahl CERN seminar 8/6/2021, The beauty and charm of fast and slow neutral meson oscillations at LHCb

Charm is different, part 3

Mixing and CP violation effects are very small
 → need a lot of

data

The LHCb experiment

- Records LHC proton-proton collisions
 - Run 1 3 fb⁻¹ (7 and 8 TeV),
 - Run 2 6 fb⁻¹ (13 TeV)
 - Run 3 after upgrade ongoing
- b and c quarks produced in pairs
 - Predominantly in forward direction
- Coverage 2<η<5:
 - Boosted pairs
 - 45 kHz bb pairs and 1 MHz cc pairs or bzw.
 O(10¹¹) bb Paare und O(10¹³) cc Paare

Challenge for the trigger and offline storage

- Limit is offline storage (1GB/s for the whole physics programme (Run 1 + 2))
 - Charm bandwidth = (signal eff.*signal rate+background eff.*LHC rate)*event size
 - Ignoring background and assuming 1.5% efficiency, bandwidth with full raw event would be 1 GB/s for charm alone
- Three handles: reduce background efficiency, reduce signal efficiency, reduce event size
 - Raw event size 70 kB, only charm decay 7 kB

Real-time analysis and selection

- Selections mostly based on momentum, particle identification and displacement
- Requirements
 - Good impact and momentum resolution
 - Good particle identification
 - Reconstruct all particles in trigger
- Detector aligned and calibrated in real-time, best possible reconstruction in trigger in Run 2 and going forward in Run 3.
- Impact of new strategy for Run 2 seen later.

Direct CP violation

Two body modes

Direct CPV in CP conjugate final states

$$D^0 \to K^- K^+$$
 and $\overline{D}^0 \to K^- K^+$ exis

$$\mathcal{A}(D^0 \to f) = A(f) + iB(f)$$
$$\mathcal{A}(\overline{D}^0 \to f) = A(f) - iB(f)$$

Direct CPV in CP conjugate final states

• Take away from Feynman diagrams CP violation possible in SM and it is not big

$$\begin{aligned} \mathcal{A}(D^{0} \to f) &= A(f) + iB(f) \\ \mathcal{A}(\overline{D}^{0} \to f) &= A(f) - iB(f) \\ a_{CP}^{dir} &= \frac{|\mathcal{A}|^{2} - |\overline{\mathcal{A}}|^{2}}{|\mathcal{A}|^{2} + |\overline{\mathcal{A}}|^{2}} \approx 2 r_{CKM} \frac{|B(f)|}{|A(f)|} \sin \arg \frac{B(f)}{A(f)} \\ & \text{weak phases} \qquad \text{strong phases} \end{aligned} \qquad r_{CKM} = \operatorname{Im} \frac{V_{cb}^{*} V_{ub}}{V_{cs}^{*} V_{us}} \approx 6.2 \cdot 10 \end{aligned}$$

PHYS. REV. LETT. 122 (2019) 211803

Flavour tagging and detection asymmetries

- Need to know flavour of charm meson (D^0 or \overline{D}^0 ?)
 - Charge of extra pion determines initial state
- Breaks symmetry of the final state

 \rightarrow Measurement becomes sensitive to efficiency difference to reconstruct positive and negative particles

Measurement of CP asymmetries

- Production asymmetry from asymmetric production of baryons and mesons in pp collisions
 - 2 baryons in initial state
- Need to either determine detection and production asymmetries or cancel them with another mode which has the same asymmetries.

Measurement of CP asymmetries

Full LHCb result

• Run 2 result:

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \text{ (stat.)} \pm 0.9 \text{ (syst.)}] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \text{ (stat.)} \pm 5 \text{ (syst.)}] \times 10^{-4}$$

• Run1 result:

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-10 \pm 8 \text{ (stat.)} \pm 3 \text{ (syst.)}] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [+14 \pm 16 \text{ (stat.)} \pm 8 \text{ (syst.)}] \times 10^{-4}$$

Increase in statistical precision from more luminosity and higher crosssection but also factor 2-3 more efficient trigger

• Combination

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

First observation of CP violation in charm decays!

What to do with the result?

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- Can the size be explained within the SM? \rightarrow Difficult
 - Doesn't mean it's New Physics, problem is a good estimate of the hadronic effects.
- Naive expectation that $A_{CP}(\pi^-\pi^+)$ and $A_{CP}(K^-K^+)$ have opposite sign.
 - SU(3) flavour symmetry ($m_d = m_u \approx m_s$)
 - $|V_{us|} \approx -|V_{cd}|$
- Next steps:

Measure individual asymmetries to get handle on hadronic effects (and also confirm CP violation in other decay channels).

 $\mathcal{A}(D^0 \to f) = \mathcal{A}(f) + i\mathcal{B}(f)$

 $\mathcal{A}(\overline{D}^0 \to f) = A(f) - iB(f)$

 $a_{CP}^{dir} \approx 2 r_{CKM} \frac{|B(f)|}{|A(f)|} \sin \arg \frac{B(f)}{A(f)}$

Measurement of A_{CP}(K⁻K⁺)

• Initial problem:

$$A_{\rm raw}(K^-K^+) = A_{CP}(K^-K^+) + A_D(\pi^+) + A_P(D^{*+})$$

• Can get detection and production asymmetry **from** $D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}$

$$A_{\rm raw}(K^-\pi^+) = A_D(\pi^+) + A_P(D^{*+}) + A_D(K^-\pi^+)$$

- $\mathbf{K}^{-}\pi^{+}$ is a charged neutral state but not symmetric
 - Different interaction rate of positive and negative kaons with detector material

$$K^{-} = (\overline{u}s)$$

 $K^{+} = (u\overline{s})$
"LHCb" = (ud)

Determination of K⁻π⁺ asymmetry

• Can use D^+ and D_s^+ decays to get $K^-\pi^+$ asymmetry:

with
$$\overline{K}^0 \to \pi^+ \pi^-$$

New method developed for Run 2 measurement!

• Final measurement:

$$C_{D^{+}}: \mathcal{A}^{CP}(K^{-}K^{+}) = A(K^{-}K^{+}) - A(K^{-}\pi^{+}) + A(K^{-}\pi^{+}\pi^{+}) - A(\overline{K}^{0}\pi^{+}) + A(\overline{K}^{0}),$$

$$C_{D^{+}_{s}}: \mathcal{A}^{CP}(K^{-}K^{+}) = A(K^{-}K^{+}) - A(K^{-}\pi^{+}) + A(\phi\pi^{+}) - A(\overline{K}^{0}K^{+}) + A(\overline{K}^{0}).$$
(6)

• Both methods have similar sensitivity

Weighting and consistency checks

• Weighting:

•

Consistency checks:

A lot of detailed work needed to check that the method is correct and reliable at 10⁻⁴ precision.

Results

Run 2 result:

 $\mathcal{A}^{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4},$

• Combination with Run 1, ΔA_{CP} and time dependent CPV to extract direct asymmetries in both modes:

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4},$$

 $a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4},$

- Significances of 1.4 and 3.8 sigma
 - First evidence of a single non-zero asymmetry

Uncertainty significantly improved due to extra method and better trigger

Discussion

• U-spin symmetry $a_{CP}^{\text{dir}}(D^0 \to K^+ K^-) + a_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-) \stackrel{U-\text{spin limit}}{=} 0$, $m_d = m_s$

Broken by 2.7 sigma

Discussion

• U-spin symmetry $a_{CP}^{\text{dir}}(D^0 \to K^+ K^-) + a_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-) \stackrel{U-\text{spin limit}}{=} 0$, $m_d = m_s$

Broken by 2.7 sigma

• Improved version ($m_d \approx m_s$): See S. Schacht, arXiv:2207.08539, for a review

$$\frac{\Gamma(D^0 \to K^- K^+)}{\Gamma(D^0 \to \pi^- \pi^+)} = -\frac{a_{CP}^{dir}(D^0 \to \pi^- \pi^+))}{-a_{CP}^{dir}(D^0 \to K^- K^+))}$$

 $2.81 \pm 0.06 \neq -3 \pm 0.95$

• Biggest "problem" both asymmetries have same sign.

 \rightarrow not easy to explain with theory

 \rightarrow More precise measurements and measurement in other channels needed

Mixing and time-dependent CP violation

Mixing and time-dependent CP violation

• Neutral meson mixing:

$$|D_1\rangle = p |D^0\rangle + q |\overline{D}^0\rangle, |D_2\rangle = p |D^0\rangle - q |\overline{D}^0\rangle$$

with mixing parameters $x = \frac{m_2 - m_1}{\Gamma}$ and $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$

CP violation in mixing if $\left|\frac{q}{p}\right| \neq 1$

• CP violation in mixing and decay if weak phase $\phi_f = \arg\left(\frac{q}{p}\frac{\overline{A_f}}{A_f}\right) \neq 1$

Search for time-dependent CP violation in $D^0 \rightarrow h^+h^-$

• Time-dependent asymmetry between D^0 and $\overline{D}{}^0$ measured in decays to CP eigenstates $\pi^-\pi^+$, K^-K^+

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \rightarrow f) - \Gamma(\overline{D}^{0}(t) \rightarrow f)}{\Gamma(D^{0}(t) \rightarrow f) + \Gamma(\overline{D}^{0}(t) \rightarrow f)} \approx a_{dir}^{f} + \Delta Y_{f} \frac{t}{\tau_{D}}$$

$$\Delta Y_{f} \approx -A_{\Gamma}^{f} \text{ (Used in previous measurements)}$$

- Standard model predictions O(10⁻⁵-10⁻⁴) below experimental sensitivity 2×10⁻⁴
- Needed for interpretation of time-integrated asymmetries (not mentioned before).
- Basically like direct CPV measurement but in bins of time

Detection asymmetries

 $A_{\rm raw}(f,t) = A_{CP}(f,t) + A_D(\pi_{\rm s}^+, p(t)) + A_P(D^{*+}, p(t))$

- Correlation between decay-time and momentum induced by trigger requirements
 - \rightarrow fakes time-dependent CPV
- Control mode Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$,
- Weighting of D^0 and anti- D^0 , and π^+ and π^- momentum distributions to equalise kinematics

Results

No significant slopes observed \rightarrow no CPV. Slopes consistent between modes.

- Run 2 only: $\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4},$ $\Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4},$
- All LHCb measurements combined

 $\Delta Y_{K^+K^-} = (-0.3 \pm 1.3 \pm 0.3) \times 10^{-4},$ $\Delta Y_{\pi^+\pi^-} = (-3.6 \pm 2.4 \pm 0.4) \times 10^{-4},$ $\Delta Y = (-1.0 \pm 1.1 \pm 0.3) \times 10^{-4},$

• Last combination is assuming that the final state has negligible impact.

Most precise measurement. No sign of time-dependent CPV yet.

Interpretation of ΔY_{f}

• Observable connected to mixing and CPV parameters as

$$\Delta Y_f \approx x \sin \phi - y(|\frac{q}{p}| - 1) - y a_{CP}^{dir,f} (1 + \frac{x}{y} \cot \delta_f)$$
$$\Delta Y \approx x \sin \phi - y(|\frac{q}{p}| - 1)$$

- To extract CP violating phase and |q/p|, y and x need to be non zero and need to be known.
 - \rightarrow precise measurement of mixing parameters needed

• About the middle in case we need a break

How to measure mixing?

• Cabibbo-favoured $D^0 \rightarrow K^- \pi^+$

How to measure mixing?

• Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$ and doubly-Cabibbo-suppressed $D^0 \rightarrow \pi^-K^+$ decays

Count! R = RS(t)/WS(t)

How to measure mixing?

• Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$ and doubly-Cabibbo-suppressed $D^0 \rightarrow \pi^-K^+$ decays Count! R = RS(t)/WS(t)

What is measured?

• Observable:

$$R(t) = \frac{N(\text{wrong})(t)}{N(\text{right})(t)}$$

• Theory:

$$R(t) pprox r_D + \sqrt{r_D} y' rac{t}{ au} + rac{x'^2 + y'^2}{4} \left(rac{t}{ au}
ight)^2$$
(Interference) (Pure mixing)

• Strong phase rotates x and y

$$\frac{A(D^0 \to K^+ \pi^-)}{A(\overline{D}^0 \to K^+ \pi^-)} = -\sqrt{R_D} e^{-i\delta}$$
$$y' = y \cos \delta - x \sin \delta$$
$$x' = x \cos \delta + y \sin \delta$$
$$\cos \delta \approx 1 \blacktriangleleft$$

Interference enhances sensitivity!

Mostly measurement of y.

Currently need experiments like BES III for that!

There is an update with some Run 2 data, but the full update is not yet out.

Multi-particle final states

• Look at

$$D^0 \to K^0_s \pi^+ \pi^-$$

• Phase-space described by two variables

For
$$D^0 \begin{cases} m_+^2 \equiv m^2 (K_S^0 \pi^+) \\ m_-^2 \equiv m^2 (K_S^0 \pi^-) \end{cases}$$

Swapped for \overline{D}^0

Multi-particle final states

• Look at

$$D^0 \to K^0_s \pi^+ \pi^-$$

• Phase-space described by two variables

For
$$D^0 \begin{cases} m_+^2 \equiv m^2 (K_S^0 \pi^+) \\ m_-^2 \equiv m^2 (K_S^0 \pi^-) \\ \text{Swapped for } \overline{D}^0 \end{cases}$$
 Doubly Cabibbo suppressed.

• Structures coming from strongly decaying intermediate resonances, e.g.

$$K^*(892)^{\pm} \to K^0_S \pi^{\pm}$$

 $f_0(908) \to \pi^+ \pi^-$

Measure mixing with Binflip method

• Perform "WS/RS" measurement in bins of Dalitz plot

$$R_{b}(t) = \frac{N_{-b}(t)}{N_{b}(t)} , \quad R_{b}(0) = r_{b}$$
$$R_{b}(t) \approx r_{b} - \frac{t}{\tau} \sqrt{r_{b}} [(1 - r_{b})c_{b} \ y - (1 + r_{b})s_{b} \ x] (\text{no CPV}).$$

- Parameters c_b and s_b are the so-called amplitude weighted strong phase differences
 - \rightarrow Measured with quantum correlated DD pairs at CLEO and BESIII \rightarrow See Alex talk
- Varying strong phase allows to separate x and y
- Enhanced sensitivity to x.
- Acceptance effects (mostly) cancel in ratio

Full fit accounting for CP violation

• Ratios measured separately for D^0 and $\overline{D}{}^0$

$$R_{bj}^{\pm} \approx \frac{r_b + r_b \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}$$

$$\begin{aligned} z_{CP} \pm \Delta z &\equiv -(q/p)^{\pm 1} (y + ix) \\ x_{CP} &= \operatorname{Im}(z_{CP}) \\ y_{CP} &= \operatorname{Re}(z_{CP}) \\ \Delta x &= \operatorname{Im}(\Delta z) \\ \Delta y &= \operatorname{Re}(\Delta z) \end{aligned}$$
 Xb contain cb and sb

- Observables $x_{\mbox{\scriptsize CP}}$ and $y_{\mbox{\scriptsize CP}}$ equal x and y in case of CP symmetry
- Δx , Δy ("slope differences") unequal 0 sign of CP violation

Event selection of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

- Signal yields determined with fit to $\Delta m = m(D^{*+}) m(D^{0})$.
- 31 Million signal $D^{*+} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \pi^+$, \rightarrow 30 times more D^{*+} than in Run 1 (3 fb⁻¹)

Decay-time acceptance

- Requirements in trigger to suppress prompt tracks.
 →correlate Dalitz-plot coordinate with decay time.
- Effect most pronounced in $m(\pi^+\pi^-)$ (diagonal in Dalitz plot)
- Dalitz-plot binning too coarse for full cancellation of variations in ratios.
- Mimics time-dependent variation of strong phases.
 - \rightarrow Large biases on x and y (if not corrected)

t/T

Acceptance correction

- Absolute efficiencies not needed due to ratios.
- Oscillations move events from one side of the diagonal to the other.
- Define small regions symmetrically across the diagonal.
 - Calculate efficiency relative to phase-space integrated distribution on data.
 - Align decay-time distributions across all these regions
 (≈ 50% correction at low decay times).
- About 1% extra correction due to "physical" correlations from mixing accounted for in fit.
- Mainly y, no effect due to x. (Dalitz bin 1 shown)
- Method validated with pseudo-experiments

0.000

• Data — Fit ----- Fit $(x_{cp}=0)$

- χ^2 fit to determine mixing and CP violation parameters
- Effect of mixing clearly visible

Mixing fit

- χ^2 fit to determine mixing and CP violation parameters
- Effect of mixing clearly visible
- Significant x_{CP} needed to describe data.

Mixing fit

- χ2 fit to determine mixing and CP violation parameters
- Effect of mixing clearly visible
- Significant x_{CP} needed to describe data.
 - $x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$ $y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3}$

Strong phases uncertainty included in statistical uncertainty, contributes about 50% (e.g. $0.4 \rightarrow 0.46$).

CP violation fit

- Look at differences of ratios for D^0 and $\overline{D}{}^0$
- Measurement consistent with CP symmetry.

$$\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$$

 $\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

LHCb Run 2 legacy x, y, |q/p|, ϕ from D⁰ $\rightarrow K_{S^0} \pi^+ \pi^-$

• Also performed analysis with a differently tagged sample (B-decays).

- First observation of the mass difference x of charm meson mass eigenstates with significance of 8 sigma
- D_2 (with $CP|D_2 > \approx |D_2 >$) now D_H , D_1 now D_L ?

World average x, y, $|\mathbf{q}/\mathbf{p}|, \phi$

Improvements driven by LHCb measurements of x, (y), $q/p, \phi \text{ with } D^0 \rightarrow K_S^0 \pi^+ \pi^- \text{ and }$ ΔY and y_{CP} with two body decays

- Mass and lifetime differences of D_1 and D_2 well established now.
- No sign of CP violation in mixing or in interference of mixing and decay yet.

0.1 Note the different scales!

2023

1σ

2 σ

3σ

4 σ

5σ

x (%)

1 σ 2 σ 3 σ

4 σ

5 σ

|q/p|-1

0.8

0.7

Rare charm

- Huge event rates can be used for ultra precise measurements or study very rare decays
 - Almost exact GIM cancellation of $|\Delta c| = |\Delta u| = 1$ processes (Non resonant contribution < 10⁻¹⁰, resonant contribution 10⁻⁶)
- 1) Searches for extremely rare and forbidden decays, eg.
 - D⁰→μμ (PHYS. REV. LETT. 131 (2023) 041804)
 - D⁺ $\rightarrow \pi \mu e$ (JHEP 06 (2021) 044)

- 2) Study of angular observables and CP asymmetries in resonance dominated semileptonic decays (e.g. D⁰→ππµµ)
 - Null tests based on (approximate) symmetries

Study of $D^0 \rightarrow hh\mu\mu$

- Rarest charm meson decays observed
 - B(D⁰ $\rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}) \sim 9.6 \times 10^{-7}, 3500 \text{ events}$
 - $B(D^0 \rightarrow K^+K^-\mu^+\mu^-) \sim 1.5 \times 10^{-7}, 300 \text{ events}$

Study of $D^0 \rightarrow hh\mu\mu$

- Rarest charm meson decays observed
 - B(D⁰ $\rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}) \sim 9.6 \times 10^{-7}, 3500 \text{ events}$
 - $B(D^0 \rightarrow K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}, 300 \text{ events}$
- Dominated by resonances (η not observed)

Phase-space and differential decay rate

• Phase space described by 5 variables

$$q^2 = m^2(\mu^+\mu^-), p^2 = m^2(h^+h^-), \theta_\mu, \theta_h, \phi$$

• Differential decay-rate:

$$\frac{d\Gamma}{d\cos\theta_{\mu}d\cos\theta_{h}d\phi} = I_{1} + I_{2} \cdot \cos 2\theta_{\mu} + I_{3} \cdot \sin^{2} 2\theta_{\mu} \cos 2\phi + I_{4} \cdot \sin 2\theta_{\mu} \cos \phi + I_{5} \cdot \sin\theta_{\mu} \cos\phi + I_{6} \cdot \cos\theta_{\mu} + I_{6} \cdot \cos\theta_{\mu} + I_{7} \cdot \sin\theta_{\mu} \sin\phi + I_{8} \cdot \sin 2\theta_{\mu} \sin\phi + I_{8} \cdot \sin 2\theta_{\mu} \sin\phi + I_{9} \cdot \sin^{2}\theta_{\mu} \sin 2\phi$$

• Depending on integration different terms survive, e.g.

$$I_2 = \int_{-\pi}^{\pi} d\phi \left[\int_{-1}^{-0.5} d\cos\theta_{\mu} + \int_{0.5}^{1} d\cos\theta_{\mu} - \int_{-0.5}^{0.5} d\cos\theta_{\mu} \right] \frac{d^5\Gamma}{dq^2 dp^2 d\vec{\Omega}}.$$

S. De Boer and G. Hiller, , Phys. Rev. D98 (2018) 035041

Measured observables (sketch)

- Integrate observable I_i over p^2 and $cos \theta_h.$
- Observables I_i determined separately for D^0 and $\overline{D}{}^0$ and in bins of q^2
- Integration over θ_{μ} can be expressed as angular asymmetries, e.g.

$$\langle I_2 \rangle = \frac{1}{\Gamma} \left[\Gamma(|\cos \theta_{\mu}| > 0.5) - \Gamma(|\cos \theta_{\mu}| < 0.5) \right].$$

• Then CP averages and CP asymmetries are defined as

$$\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right] \qquad \langle S_{5,6,7} \rangle \stackrel{\text{SM}}{=} 0 \langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right] \qquad \langle A_i \rangle \stackrel{\text{SM}}{=} 0 \text{for CP even (CP odd) coefficients}$$

Important point, it is possible to define Flavour averages and CP asymmetries which are null-tests of the SM.

Results

- In total 17 observables per channel, 12 are SM null tests, in 5 (2) bins of $m(\mu\mu)$ for $\pi\pi\mu\mu$ (KK $\mu\mu$)
 - 4 examples shown
 - Phase space corrected for efficiencies and detection asymmetries are corrected when necessary
- SM null hypothesis with overall p values of 79% (0.8%) for the 12 tests, for ππμμ (KKμμ) corresponding to 0.3 (2.7) sigma

LHCb Run 3 (Upgrade 1) and beyond (Upgrade 2)

- Upgrade of detector for LHC Run 3 (2022-2025)
 - All detector upgrades are now installed
 - Velo RF foil repaired
- Nominal instantaneous luminosity increases by factor 5
 - Hard work ongoing to reach it quickly this year
 - Goal is to collect 14 fb⁻¹ in 2024 and 2025 (~2 times more than Run1+2)
- Long term goals
 - 50 fb⁻¹ by Run 4 (small detector upgrades)
 - 300 fb⁻¹ by Run 6 (complete detector upgrade)

Trigger-less read-out with Upgrade 1

- Of course all detectors upgraded to withstand higher luminosity
- Biggest conceptual change is trigger-less read-out at full LHC frequency without hardware trigger
- First level trigger implemented in software running on GPUs in Event builder farm
- Second level trigger running full event reconstruction, producing output for analysis
 → no offline reconstruction anymore
- Big improvement in efficiencies (factor 2+) possible

Now triggering here in first stage: Displacement plus momentum, secondary vertices

First charm signals with new detector

• Several people in this room actively working on analyses of charm decays with Run 3 data.

Charm in the upgrade(s)

- Need to confirm direct CP violation
 - Same channels but different detector
 - Need to measure more channels

$$D^0 \rightarrow K^0_S K^0_S$$

Suppressed decay with potentially enhanced CPV

$$D^0 \to \pi^+ \pi^- \pi^0$$

Similar as h+h- but multi-body final state gives more information on hadronic parameters

$$D^+_{(s)} \to h^+ \pi^0 \qquad ^*$$
$$D^+_{(s)} \to h^+ \eta$$

SU3f symmetry can be used to relate to h^+h^- modes

- More precise measurements of time-dependent CP violation
 - Systematics will be a challenge
 - Likely need some help from BESIII or find a way to determine hadronic parameters at LHCb
- Expand rare-charm programme
 - Increased efficiencies will help to accumulate more data

PHYS. REV. D 104, L031102

Measurement of *CP* asymmetry in $D^0 \rightarrow K_s K_s$ decays

- From Ks lifetime one would expect DD>LD>LL
- Trigger efficiency should be much improved in Run 3 and beyond
 - Dedicated lines trigger KS from charm in HLT1 already working.
 - Downstream reconstruction in HLT1 would help even further.

PHYS. REV. D 104, L031102

Measurement of *CP* asymmetry in $D^0 \rightarrow K_s K_s$ decays

- From Ks lifetime one would expect DD>LD>LL
- Trigger efficiency should be much improved in Run 3 and beyond
 - Dedicated lines trigger KS from charm in HLT1 already working.
 - Downstream reconstruction in HLT1 would help even further.

Two body modes with neutral particle in final state

JHEP 06 (2021) 019 JHEP 04 (2023) 081

- Motivation: SU3f symmetry can be used to relate to h⁺h⁻ modes
- π^0 and η predominantly decay to two photons (98% and 40%)
 - One charged particle plus calorimeter signals not enough to reject background.
- Reconstruct neutral particles as π⁰→e⁺e⁻γ (suppressed decay, 14%) or π⁰→γ(→e⁺e⁻)γ (conversion in material, 86%) η → π⁺π⁻γ has 5% branching fraction

Results

 $\mathcal{A}^{CP}(D^+ \to \eta \pi^+) = (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%,$ $\mathcal{A}^{CP}(D_s^+ \to \eta \pi^+) = (0.32 \pm 0.51 \pm 0.12)\%,$ $\mathcal{A}^{CP}(D^+ \to \eta' \pi^+) = (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%,$ $\mathcal{A}^{CP}(D_s^+ \to \eta' \pi^+) = (0.01 \pm 0.12 \pm 0.08)\%,$ $\mathcal{A}_{CP}(D^+ \to \pi^+ \pi^0) = (-1.3 \pm 0.9 \pm 0.6)\%,$ $\mathcal{A}_{CP}(D^+ \to K^+ \pi^0) = (-3.2 \pm 4.7 \pm 2.1)\%,$ $\mathcal{A}_{CP}(D^+ \to \pi^+ \eta) = (-0.2 \pm 0.8 \pm 0.4)\%,$ $\mathcal{A}_{CP}(D^+ \to K^+ \eta) = (-6 \pm 10 \pm 4)\%,$ $\mathcal{A}_{CP}(D_{s}^{+} \to K^{+}\pi^{0}) = (-0.8 \pm 3.9 \pm 1.2)\%,$ $\mathcal{A}_{CP}(D_s^+ \to \pi^+ \eta) = (0.8 \pm 0.7 \pm 0.5)\%,$ $\mathcal{A}_{CP}(D_{s}^{+} \to K^{+}\eta) = (0.9 \pm 3.7 \pm 1.1)\%.$

- No CP violation observed in these modes.
- In these modes LHCb is competing with Belle/Belle 2.
 - Some are better, some are worse.
- Likely significantly more precision needed to observe CP violation in these modes
- Calorimeter Upgrade planned already for Run 4

Measurement of y_{CP}

• Ratio of lifetimes of flavour specific and CP conjugate decays $\frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to f)} = y_{CP}^f - y_{CP}^{K\pi} \approx y(1 + \sqrt{r_D})$

 $D^0 \longrightarrow \pi^+\pi^-$ and K^+K^-

• Measured by

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

- Analysis uses selection which cuts on decay-time already in first trigger stage to control systematics from efficiency correction.
 - 44 versus 18 Million KK events
- Might need more selections like that (at high efficiency though)

Measurement of y_{CP}

• Ratio of lifetimes of flavour specific and CP conjugate decays $\frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to f)} = y_{CP}^f - y_{CP}^{K\pi} \approx y(1 + \sqrt{r_D})$

 $D^0 \longrightarrow \pi^+\pi^-$ and K^+K^-

• Measured by

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

- Analysis uses selection which cuts on decay-time already in first trigger stage to control systematics from efficiency correction.
 - 44 versus 18 Million KK events
- Might need more selections like that (at high efficiency though)

Combination beauty and charm

- Hadronic parameters are also important for extraction of CP violating angle gamma in $\rm B \to Dh$ decays

$$\Gamma(B^{\pm} \to (K^{\mp}\pi^{\pm})_D h^{\pm}) \propto |r_D^{K\pi} e^{-i\delta_D^{K\pi}} + r_B^{Dh} e^{i(\delta_B^{Dh} \pm \gamma)}|^2$$

= $(r_D^{K\pi})^2 + (r_B^{Dh})^2 + r_D^{K\pi} r_B^{Dh} \cos(\delta_D^{K\pi} \pm \delta_B^{Dh} \pm \gamma),$

• Combined fit of charm mixing and CP violation in B decays can improve precision on charm parameters

Admittedly in this case y_{CP} alone would have been enough.

But might be useful in other decay channels, $K\pi\pi\pi$, $K_{s}{}^{0}\pi\pi$ etc.

Summary

- LHCb has performed the world's best measurements of standard charm observables.
 - ΔA_{CP} , x, y q/p, ϕ
 - Non-zero mass difference of neutral charm meson eigenstates now established
 - CP violation observed in difference of CP asymmetries in $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$
 - Interpretation currently limited by understanding of theory.
- Expanding programme with many more decay channels to provide more input to theory.
- More data to come in Run 3 and beyond

home.cern