

Measurement of the inelastic pp cross-section at LHCb

- a look behind the curtain of JHEP 06 (2018) 100 -

Michael Schmelling – MPI for Nuclear Physics

Outline

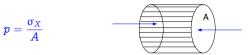
Introduction

- The LHCb experiment
- Cross-section measurement
- Fiducial cross-section
- Extrapolation to full phase space
- Summary

Matthäus Merian, 1647

1 Introduction

 $\boldsymbol{\diamond}$ cross-section σ_X and probability p for X to happen in a scattering process



- ► A: (effective) transverse area of the collision zone
- connection between a number $0\leqslant p\leqslant 1$ and σ_X with dimension of area

fundamental observables in particle physics:

- elastic cross-section σ_{el} : same particles in final and initial state
- inelastic cross-section σ_{inel} : creation of additional particles
- total cross-section σ_{tot}

 $\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}}$

The optical theorem

relation between total cross-section and forward scattering amplitude

$$\sigma_{tot} \sim \sum |\rangle \ll |^2 = \sum \rangle \ll = A(0)$$

proportionality between amplitude for no scattering and total cross-section

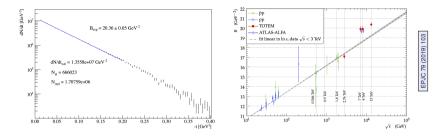
lacksquare can be probed by elastic scattering in the limit t
ightarrow 0

$$|A(0)|^2 \sim \sigma_{\rm tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left. \frac{d\sigma_{\rm el}}{d|t|} \right|_{t=0} \quad \text{with} \quad \rho = \frac{{\rm Re}\,A(0)}{{\rm Im}\,A(0)} = 0.10\dots 0.14$$

• measure elastic pp scattering as a function of t and extrapolate to t = 0

the TOTEM experiment ->

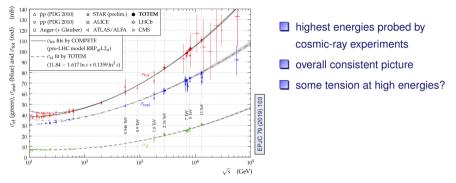
13 TeV pp collisions



- ► $d\sigma_{\rm el}/d|t|$ well described by a simple exponential
- suspicious jump in slope paremeter around 3 TeV

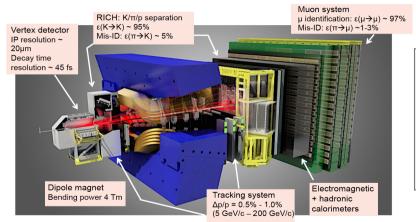
status 🔿

Compilation of cross-section results



- best accuracy at LHC energies: elastic scattering and optical theorem
- complementary: measurement of inelastic particle-production cross-section

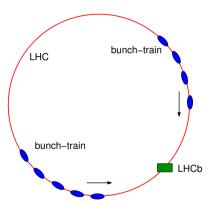
2 The LHCb experiment (Run1&2)



installation in the cavern 20 m long, 10 m hight → 22 countries
 → 98 institutes
 → 1641 members



Experimental setup



counter-propagating bunch trains 25 or 50 ns bunch separation bunch-crossing types beam-beam beam-empty empty-beam empty-empty data for cross-section analysis ▶ 13 TeV pp collisions 691 million events leading bunch crossings nobias triggers

known luminosities

LHCD

Pileup

LHCD

randomly varying number of interactions per beam-beam bunch-crossing
 assume a bunch with *n* protons to collide with another bunch with *N* protons
 ε: probability for two protons to interact and be removed from the beams

combinatorics

▶ probability *P*⁰ that the bunches pass each other without interaction

$$P_0 = (1-arepsilon)^{nN} = q^{nN}$$
 with $q = 1-arepsilon$

• probability for k > 0 interactions

$$P_k = q^{nN} \prod_{m=1}^k rac{q}{1-q^m} (q^{m-1-n}-1)(q^{m-1-N}-1) pprox (1-arepsilon)^{nN} \prod_{m=1}^k rac{arepsilon nN}{m}$$

the approximation requires $\varepsilon n, \varepsilon N \ll 1$ and $n, N \gg k$

LHC conditions

a particles per bunch $n \approx N = O(10^{11})$

 $\blacksquare\,$ gaussian bunch profiles with typical transverse width $\sigma=40\,\mu\text{m}$

I inelastic cross-section around $\sigma_{inel} = 60 \text{ mb}$

$$arepsilon=\sigma_{
m inel}\int dx\;dy\;
ho_1(x,y)
ho_2(x,y)=rac{\sigma_{
m inel}}{4\pi\sigma^2}pprox 3\cdot 10^{-22}$$

► the approximation holds:

$$P_k = e^{-\mu} rac{\mu^k}{k!}$$
 with $\mu = arepsilon \ n \ N$

the number of simultaneous interactions follows a Poisson distribution

3 Cross-section measurement

- working definition of "inelastic pp cross-section" pp interaction with at least one promptly produced massive particle
- experimental problem: finite acceptance and pileup
 - particles are seen only in a limited pseudorapidity range
 - > particles are seen only for momenta above a certain threshold
 - the LHCb tracking system detects only charged particles
 - multiple interactions per event
- measurement strategy
 - measure a fiducial cross-section that is accessible by the detector
 - extrapolate the result to the full phase space

implementation ->

Definitions

fiducial cross-section

pp cross-section for the production of at least one prompt long-lived charged particle with $p>\!\!2\,\mbox{GeV}$ and $2\leqslant\eta<5$

✤ long-lived particle

particle with average proper lifetime $\tau > 30\,\text{ps}$

▶ at LHCb such particles travel macroscopic distances of O(10) cm

prompt particle

particle without long-lived ancestors

- particles created directly in the interaction
- particles created in decay chains of short lived particles

comparison with alternatives \rightarrow

Discussion

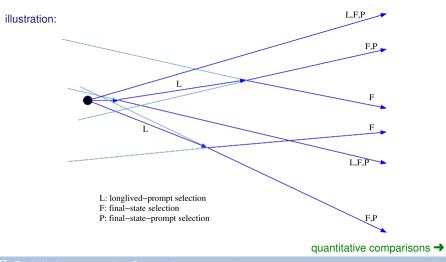
- Iong-lived-prompt (L)
 - all particles with a proper lifetime $\tau > \tau_0$ that have no ancestors with $\tau > \tau_0$
 - definition based on particle properties not on how the event evolved
 - insensitive to detector and independent on Lorentz frame
- 🔲 final-state (F)

all particles that did not decay until the end of the simulation

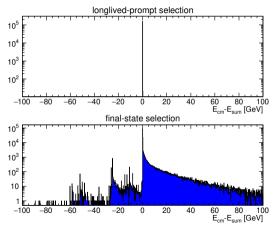
- depends on how long the simulation is being followed
- depends on whether secondary interactions are modelled
- extra random component since e.g. K_S^0 may or may not decay
- final-state-prompt (P)

all final-state particles with impact parameter $D < D_{cut}$ at the primary vertex

- impact-parameter requirement can be matched to experimental resolution
- same caveats as final-state selection



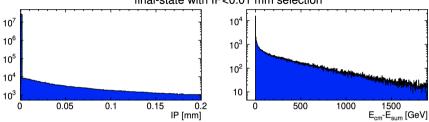
Iong-lived-prompt vs final-state: total energy



total energy of collision in selected configuration

approximate energy conservation; some losses; occasional double counting

* test of energy-conservation for final-state-prompt selection



final-state with IP<0.01 mm selection

finding: long-lived-prompt selection works best

- Lorentz invariant since based on particle properties only
- easily defined in generator-level-only studies, also for 4-momentum-only models

4 Fiducial cross-section

$\boldsymbol{\diamond}$ relation between interaction count N and integrated luminosity L

$$\langle N \rangle = \sigma L \qquad \Rightarrow \qquad \hat{\sigma} = \frac{N_{\rm obs}}{L}$$

L: known integrated luminosity

- given by L = N_{ref}/σ_{ref} with reference cross-section σ_{ref} ("lumi counter") from Van-der-Meer scan and event count N_{ref} from zero-counting method
- \square N_{obs} : number of interactions satisfying fiducial requirements
 - estimated from experimental proxy of the fiducial cross-section by correcting for detector effects

counting interactions \rightarrow

The zero-counting method for unbiased events – step by step

- I fiducial particle: prompt long-lived charged particle with $p>2\,\text{GeV}$ and $2\leqslant\eta<5$
- fiducial interaction: interaction with at least one fiducial particle
- \blacksquare the number of interactions per event is a Poisson random variable with average μ
- \square the total number of events is N_{evt} , the total number of interactions is N_{int}

 $N_{
m int} = N_{
m evt}\,\mu$

l the Poisson average μ is related to the probability p_0 to observe an empty event

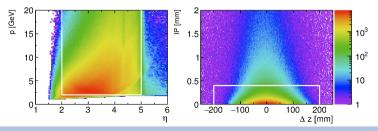
 $p_0 = e^{-\mu}$ and thus $\mu = -\ln p_0$

 \square with N_0 the number of events without fiducial particle the fiducial cross-section is

$$\sigma_{
m acc} = -rac{N_{
m evt}}{L} \, \ln rac{N_0}{N_{
m evt}}$$

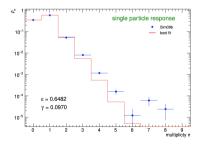
Experimental realisation

- problem: prompt long-lived particles is NOT what is measured
 - experimental information: charged tracks
 - define fiducial tracks as a proxy for fiducial particles
 - \blacktriangleright tracks measured in VELO and main tracker with fake-track p-value $p_{
 m gh} < 0.3$
 - $\blacktriangleright\,$ measured momentum $p>2\,\text{GeV}$ and pseudorapidity $2\leqslant\eta<5$
 - estimated point of origin close to the average interaction point



\clubsuit measurement: estimate p_0 from data

- \blacksquare account for the fact that fiducial track multiplicity \neq fiducial particle multiplicity
- assumption: measurements of fiducial particles are independent
 - good approximation for low multiplicity events
 - deviations at large multiplicities do not affect the empty-event count
 - start from detector response to a single fiducial particle



LHCD

dominant: efficiency ε \bullet 0-track probability $\rho_0 = 1 - \varepsilon$ \bullet 1-track probability $\rho_1 = \varepsilon$ generalisation: fake track parameter γ \bullet 0-track probability $\rho_0 = 1 - \varepsilon$ \bullet 1-track probability $\rho_1 = \varepsilon(1 - \gamma)$ \bullet 2-track probability $\rho_2 = \varepsilon(1 - \gamma)\gamma$

▶ 3-track probability $\rho_3 = \epsilon(1 - \gamma)\gamma^2 \dots$

Probability Generating Functions to handle multiplicity distributions

D PGF definition: sum of probabilities ρ_n weighted with powers of an auxiliary variable x

$$F_{
ho}(x)=\sum_{n=0}^{\infty}
ho_nx^n$$

the individual probabilities are obtained by differentiation

$$\left.
ho_n = rac{1}{n!} \left. rac{d^n F_
ho(x)}{dx^n}
ight|_{x=0} \hspace{1.5cm} ext{in particular} \hspace{1.5cm}
ho_0 = F_
ho(0)$$

 \square when convolving two distributions p_n and q_n the PGFs multiply

$$(p\otimes q)_n = \sum_{i=0}^\infty \sum_{j=0}^\infty p_i q_j \delta_{i+j,n} \hspace{.1in}
arrow \hspace{.1in} F_{p\otimes q}(x) = F_p(x) \hspace{.1in} F_q(x)$$

application \rightarrow

Relation between true multiplicity p_n and observed multiplicity q_n

single particle response PGF given finite efficiency ε and fake track parameter γ

$$g(x) = \sum_{n=0}^{\infty} \rho_n x^n = (1-\varepsilon) x^0 + \frac{\varepsilon(1-\gamma)}{\gamma} \sum_{n=1}^{\infty} (\gamma x)^n = \frac{1-\varepsilon+\varepsilon x - \gamma x}{1-\gamma x}$$

 \blacksquare exploit PGF behaviour under convolutions to relate p_n and q_n

$$F_q(x) = \sum_{n=0}^{\infty} p_n g^n(x) = F_p(g(x)) \quad \Rightarrow \quad F_p(x) = F_q(g^{-1}(x)) = \sum_{n=0}^{\infty} q_n(g^{-1}(x))^n$$

general result: corrected p_0 from the observed multiplicity distribution q_n

$$p_0 = \sum_{n=0}^{\infty} q_n \, lpha^n \quad ext{with} \quad lpha = g^{-1}(0) \stackrel{ ext{model}}{
ightarrow} rac{arepsilon - 1}{arepsilon - \gamma}$$

 \rightarrow a single unfolding parameter α to correct for detector effects!

Determination of the unfolding parameter $\boldsymbol{\alpha}$

strategy: constrain a multiplicity-matched weighted MC estimate by data

 \square extract an initial α^{sim} from p_0 and q_n in fully simulated events

 \square use the model dependent $\alpha_m = (\epsilon - 1)/(\epsilon - \gamma)$ to tie α^{sim} to data

$$lpha = lpha^{ ext{sim}} \; rac{lpha_m}{lpha_m^{ ext{sim}}}$$

• ε^{sim} and γ^{sim} for α_m^{sim} from simulation

- corrected efficiency ε from tabulated correction factors
- estimate of true γ by correcting the MC estimate

$$\gamma = \gamma^{ ext{sim}} rac{f_{ ext{gh}}}{f_{ ext{gh}}^{ ext{sim}}}$$

 f_{gh} : fraction of tracks rejected by the p_{gh} -cut, assumed to be proportional to γ take difference between initial and corrected estimate as systematic uncertainty

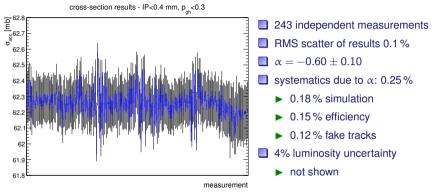
result: $\alpha = -0.60 \pm 0.10$

Configurations used in the measurement

- 243 statistically independent measurements
 - all leading bunch crossings from 49 runs in 8 LHC fills
 - both magnet polarities
 - $\hfill\square$ pileup values in the range $\mu\in[0.4,1.4]$
 - interaction counts determined in 8-second time slices to follow luminosity variations
 - statistical biases due to non-linearity of In-function corrected
 - background subtraction from data in be and eb events
 - variations of selection cuts
- sanity check
 - \Rightarrow ignore detector effect and use q_0 instead of p_0 : \approx 3% larger cross-section

Results

LHCD



blue: statistical uncertainties, black: total uncertainties

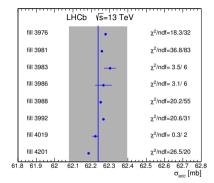
cross-section combination

- uncorrelated statistical errors
- fully correlated systematics
- **Weights** \propto integrated luminosity

 $\sigma_{acc} = 62.237 \pm 0.002 \pm 0.158 \; mb$

LHC-fill averages

- internally consistent within statistics
- significant fill-to-fill variations
- parametrise 243 residuals from global average by linear combination of: average position and extension of luminous region, background level, B-field orientation, pileup

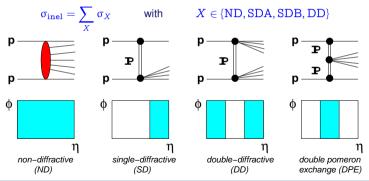


- scatter explained by $\langle y \rangle$ and $\sigma(y)$ of luminous region and background level
- additional systematics of 0.05 %

fiducial cross-section: $\sigma_{acc}=62.2\pm0.2\,\text{mb}$

5 Extrapolation to full phase space

- generator level analysis following LHCb-PAPER-2014-057
 - event generators represent knowledge from 60 years of hadronic physics
 - the inelastic cross-section can be approximated by an incoherent sum



study 32 LHC proton-proton tunes that come with PYTHIA 8.230:

- cross-section fractions f_X
- fractions v_X contributing to the fiducial cross-section
- mean fiducial multiplicity $n_{ch,X}$ of events contributing to the fiducial cross-section

	f_X	v_X	$n_{{\operatorname{ch}},X}$
non-diffractive	0.720 ± 0.012	0.9963 ± 0.0005	17.94 ± 1.45
single diffractive(A)	$\textbf{0.083} \pm \textbf{0.003}$	0.7154 ± 0.0051	8.11 ± 0.52
single diffractive(B)	$\textbf{0.083} \pm \textbf{0.003}$	0.3411 ± 0.0077	7.83 ± 0.44
double diffractive	$\textbf{0.114} \pm \textbf{0.006}$	0.6263 ± 0.0049	6.15 ± 0.31

variance of PYTHIA fractions f_X much smaller than in EPJC 73 (2013) 2456 (ALICE) use only v_X and $n_{ch,X}$ from PYTHIA - don't use the f_X

constructing the cross-section extrapolation factor

$$s = rac{ ext{total}}{ ext{visible}} = rac{\sum_X \sigma_X}{\sum_X \sigma_X \ v_x} = rac{1}{\sum_X f_X \ v_X}$$

determine the distribution of s for all sets $f_X > 0$ satisfying

$$\sum_{X} f_X = 1$$
 and $\sum_{X} f_X \, n_{{
m ch},X} = n_{{
m ch}} = 13.9 \pm 0.9$

- \blacktriangleright 13.9 \pm 0.9 is the mean fiducial multiplicity per interaction in data
- inferred from fiducial multiplicity 15.2 in the LHCb simulation, which fits the data, taking into account an about 3% larger efficiency in data, and an about 5% smaller fraction of tracks associated to true particles

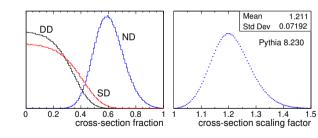
✤ implementation

✤ result

uniform sampling of f_X in the constrained phase space $\sum_X f_X = 1$

I for every set of f_X calculate $n_{
m ch}$ and s

accept s with weight $w = \exp(-(n_{\rm ch} - 13.9)^2/2 \cdot 0.9^2)$



total inelastic cross-section: $\sigma_{\rm inel} = 75.4 \pm 3.0_{\rm exp} \pm 4.5_{\rm extr}$ mb

6 Summary

* fiducial cross-section at $\sqrt{s} = 13 \,\text{TeV}$

inelastic pp interactions with $\geqslant 1$ prompt (produced directly or from short lived ancestors), long-lived ($\tau > 30 \, \text{ps}$) charged particles with $p > 2 \, \text{GeV}$ and $2 \leqslant \eta < 5$

 $\sigma_{acc} = 62.2 \pm 0.2 \pm 2.5_{lumi}\,mb$

intrinsic precision of the measurement 0.25 %

- dominant 4 % uncertainty from luminosity

 $\sigma_{\rm inel} = 75.4 \pm 3.0_{\rm exp} \pm 4.5_{\rm extr}\,mb$

updated (inoficial) results with improved 2021 luminosity calibration

$$\begin{split} \sigma_{acc} &= 61.6 \pm 0.2 \pm 1.2_{lumi} \, mb \\ \sigma_{inel} &= 74.6 \pm 1.2_{exp} \pm 4.4_{extr} \, mb \end{split}$$

LHC cross-section results

measurements at 2.76, 7, 8, and 13 TeV

