

Representing and rendering large noisy radio data cubes

David Bernhardt, Tom David Eibich, Anton Kindsvater, André Hinkenjann

Institute of Visual Computing

Bonn-Rhein-Sieg University of Applied Sciences

Institute of Visual Computing @ H-BRS

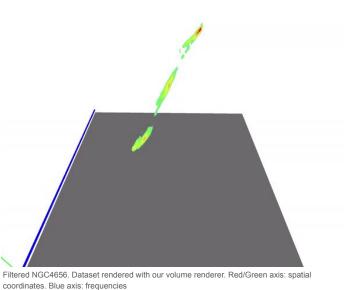
- 40-50 people working on visualisation, HCl, computer vision, interactive systems
- From **basic** to **applied** research

B3D project

Vision for a new type of working environment

Three dimensional interactive visual analysis and collaboration on large HI data cubes

- Explore datasets with multiple users
- In person & remote
- Apply common tools and algorithms to selected regions
- Intuitive user interface
- Stereoscopic 3D view


image generated by Leonardo.ai

Volume renderer for HI Data Cubes

- Distributed volume renderer for large datasets
 - Large data visualisation on multiple GPU
 - XR requirements not met
 - Hybrid Image-/Data-Parallel Rendering Using Island Parallelism [Zellman22]
- Volume renderer using domain knowledge
 - Identified (filtered) sources for empty space skipping
 - Maximum intensity projection
 - Transfer function (maps values to color and transparency) can be altered real-time
 - Renders whatever fits in GPU memory (eg. 48GB)

Unfiltered Test-Dataset (10GB) rendered with "Hybrid Image-/Data-Parallel Rendering Using Island Parallelism"

Visualisation and representation methods

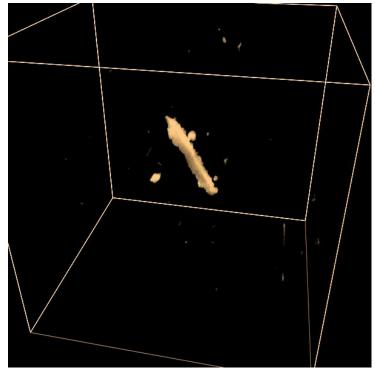
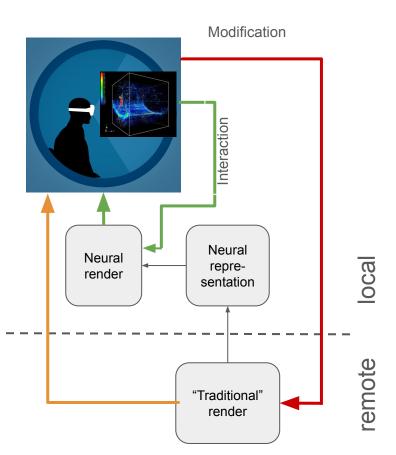

- Some teams want to explore the unfiltered data cubes: Current cubes already too big
- SKA cubes up to 100.000³ voxels
 - way big for "traditional" rendering on a local machine
- Possible Solutions
 - Distributed remote rendering (high latency)
 - Hybrid local rendering
 - Compression by neural representation
 - Neural Rendering

Image: SKAO

Visualizing noisy data with NN


- Trials: Local Neural Rendering
 - Apply source finding (filtering) on data cube
 - Extract NanoVDB from identified sources
 - Use NVIDIA Instant Neural Graphics Primitives code to quickly train and render NN (MLP)
 - Example:
 - Original 2 GByte FITS
 > 8 MByte NanoVDB
 - Traning time: order of seconds
- Trials with non-filtered, noisy data did not show satisfying results
 - MLP tried to learn noise (which is dominant) and spent its capacity on it
 - Open questions: Which neural representation fits problem best? Can denoising be done like in image synthesis? Stream (updates on) neural representations? How to handle dynamic cubes / "scenes"?

Filtered NGC45652 Dataset learned & rendered with Instant-NGP

Visualizing noisy data with NN

- Open: Hybrid/local Neural Rendering
 - Remote Renderer generates high resolution images
 - Continuously train model locally with remotely generated images while user explores data set
 - Use local neural rendering to get (lower quality) images
 - Manipulating data or mapping requires re-training
 - Training has to be very fast (eg. Instant Neural Graphics Primitves)

Thank you very much!

Andre.Hinkenjann@h-brs.de

http://ivc.h-brs.de