Discovering New Pulsars with Machine Learning

Max-Planck-Institut für Radioastronomie

CS & Physics Meet-up, TU Dortmund, 30-11-2023

Dr. Vishnu Balakrishnan, Postdoc, Max Planck Institute for Radio Astronomy

Established by the European Commission

What is a Pulsar?

- A pulsar is a highly magnetised rotating neutron star that emits twin beams of electromagnetic radiation.
- Spin Period ranges from 1.4 ms to 23.5 seconds.
- Mass Range $\approx 1.2 2.0 \,\mathrm{M_{\odot}}$, Radius $\approx 10 15 \,\mathrm{km}$
- Inferred Magnetic Fields $\approx 10^8 10^{14} \, \mathrm{G}$

Cosmic lighthouse

Credit: Dr. Joeri Van Leeuwen

Millisecond Pulsars are extremely stable clocks. PSR J0437-4715: Spin Freq: 173.6879458121843(5) Hz

Applications: Testing Einstein's theory of General Relativity

Orbits shrink over time due to emission of Gravitational Waves

Credits: John Rowe

First Binary Pulsar Discovery

Hulse-Taylor Binary

Hulse and Taylor were awarded the Nobel prize in Physics in 1993.

Current Data Challenges

- Hemisphere using MeerKAT radio telescope.
- Quasi-real time survey. We record, analyse and delete 350 TB/week.

ERC funded Project: COMPACT

- ERC starting grant awarded to Dr. Vivek Krishnan
- Record 1.6 PB raw data. Data transferred to Germany by airfreight.
- Processing Deadline: 2-months
- Reduced data product (time series, ~GB) transferred to over 7 HPC clusters located in Australia, Germany, Italy, UK, USA, SA.

MeerKAT Radio Telescope located in South Africa (Image courtesy: SAROO)

• Pulsar Group (led by Prof. Kramer) in MPIfR, Bonn is conducting the most sensitive pulsar survey in the Southern

Prof. Michael Kramer

PI of COMPACT: Dr. Vivek Krishnan

APSUSE High Performance Computing Cluster (Credits: E.Barr)

Traditional Pulsar Search - Parameter estimation Problem

Size: 200 GB - 2 TB/Beam

Correct for Doppler Modulation of Period

Five unknowns: $P_b, x, T0, e, \omega$

Correct for Distance

Average over y axis to form timeseries

EET **Spin-Frequency** J1431-5740 Detection Flux MAN MAN MAN Find Spin Period (hours) $\mathcal{O}(NlogN) \times 10^{12}$ Threshold Time 0.5 الإير والمقهر واستعارية المجار المراجع والمعادية والمتلكة والمتحالة التحاليات والتعاقب والمخاط عليي فالتحدين ليريان و 20 Frequency (Hz) 0.4 0.6 Pulse Phase 0.2 0.8

ML in Traditional Pulsar Searches

What is a Pulsar Candidate?

Four Dimensional Data cube consisting Frequency, time, rotational phase and power of signal.

Classification Problem (Solved!)

- Several published papers (since 2010) attempting to solve this problem.
 - Architectures Used
- MLP, CNN, SVM, GANs, Decision Trees, Boosting Algorithms, Autoencoders, Ensemble Models
 - Recall rate close to 100 %! Already found more than 100 pulsars!

Interesting Problems that ML can help with in Binary Pulsar Searches

Can an ML network read the smeared FFT signal and predict the orbital parameters?

PulsarNet: Attention-based Neural Networks to Discover Pulsar Binaries. Check out his poster!

Much faster than classical approaches (simulated data in white-noise regime)

Mr. Abhinav Tyagi (Master's student)

Interesting Problems that ML can help with in Binary Pulsar Searches

Classical Approach:

Define Parameter Space. (eg 2h PSR-BH binary)

Define Feasible Computation time. (1-2 years)

- 1. State S is the current position in the parameter space. Environment is our data stream.

- 4. No reward for interference signals. Add time penalty to save computation.
- 5. Isn't this a Markov Decision process (MDP)?
- 6. Task: Find a more optimal policy to maximise rewards than our current strategy.
- bright transient events.

Select & Lock search strategy, see results later.

Modelling Pulsar Searching (Parameter Estimation) as a game.

Rules:

2. Agent has multiple actions to choose from. Eg: Run classical algorithm x with some filter setting.

3. High Reward for finding a new exciting pulsar, moderate reward for a redetection of known pulsar.

7. Pros: Can adapt based on changes in environment. For eg: Increased levels of Radio frequency interference,

Can we use Reinforcement Learning for this problem?

Thank You!