Very Fast Streaming Submodular Function Maximization

Sebastian Buschjdger, Jan-Philipp Honysz, Lukas Pfahler and Katharina Morik

Submodular Function Maximization arises in many different
applications fields in Machine Learning and Data Science, e.q.

- Selecting the most informative items from a collection

- Maximizing the coverage of objects in an area

- Estimating the parameters of Determinantal Point Processes

max f(S)

SCVISI<K

where f:2" — R is a set-function and K is a cardinality constraint

NelS)=f(SU{e})- f(S)
Ael|A) > Ale|B) forA € B <V
m=max{f({e})]| e€V]}

Gain of item e:
Submodularity:
Maximum singleton:

The groundset V is often large. Therefore, a line of research studies
streaming maximization algorithms which consume one item at a
time. By submodularity we can estimate the optimal function value
as

m< f(S)<Km

Thus, many streaming algorithms compute the gain of an element
and add it to S once it exceeds a given novelty threshold depending
on an estimation of the true f(S) from [m, Km]. However, the
optimal threshold is unknown beforehand so that multiple
thresholds must be used in parallel for sufficient performance.

Using more thresholds leads to a better maximization
performance, but also requires more memory and computations.
Our core idea is to maintain a single, carefully calibrated threshold
which leads to similar performance while using fewer resources.
To do so, we start with a very large threshold (e.qg. assuming f (S) =
K m) and gradually decrease it once there is enough evidence that
no future item in the data stream will ‘out-value” the current
threshold.

We estimate the probability p (e | S, f, v) that the gain of e exceeds
the threshold v given the current summary S. There are two cases:

1) Ifeisnotaddedto S, update p given the negative outcome

2) Ifeisaddedto S, then S changed. Re-start the estimation of p

Note that p is estimated from data and hence comes with its own
confidence interval. The Rule of Three states that the a=0.95
confidence interval after T negative tries is

0<p<3/T

E.qg.: After T = 1000 rejections p < 0.003 with 95% confidence

- Start with largest available threshold and set t =0

- If the gain exceeds the threshold, add e to S and sett =0

- If the gain does not exceed the threshold, increase t by one
- Ift>T, lower threshold and set t =0

Sebastian Buschjdger, Artificial Intelligence Group, TU Dortmund University, Germany (sebastian.buschjoeger@tu-dortmund.de)

2021

VIRTUAL
13-17 September

e ™3

|11IH

Algorithm Apprl(;);itrir(l)ation Memory g;egfjment Stream Ref.
Greedy 1—1/exp(1) O(K) 0(1) X [23]
StreamGreedy 1/2—¢ O (K) O(K) X [13]
PreemptionStreaming 1/4 O (K) O(K) v [4]
IndependentSetImprovement 1/4 O(K) o) v 8]
Sieve-Streaming 1/2—¢ O(K log K /¢) O(log K /¢) v 2]
Sieve-Streaming+-+ 1/2—¢ O(K/e) O(log K /¢) v [16]
Salsa 1/2—¢ O(Klog K /¢) O(log K /¢) (V) [24]
QuickStream 1/(4e) — ¢ O(cKlog K log (1/¢)) O([1/c] 4 ¢) v [18]
ThreeSieves (\i;hsi)(rlol: 1({ e_x;;()lK) O(K) O(1) v’ this paper
ThreeSieves: ~ Smaller resource consumption with better

approximation-ratio to existing work. However, the
approximation-ratio now holds with high probability (T-a)¢

Forestcover KDDCup99 Creditfraud FACT Highlevel FACT Lowlevel

100 Seooos 110
. ..—\HM‘ “wa m: 100 ' * 4+ 100
> 90 y
: 5 gl A7 o it bt a0 £ - H0ED 90
‘(
o i 80
60 N °
© 60 60

Relative Performance

24
0K~
— 27
2 000
) s
s 100+
o . oo 10 s+
PO s : o oo a oot 2
s = vt i ey 10
M ““““ Wr{:'“v““ 1] LaomsnEiibeLE “,,«r;«“:vw”“ PP T T
50 60 50 60 70 80 0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 70 80
e PP i M+ PR At P
+ + + A+
3 O #*Hm *,..¢+“""* ” o .Vr*"“"”
5 ’/«V" L asa 100k eaa 100k A " Py e aa 100}
S g i ¥ i JOOSS ¥ PSSt /("‘ IS A e JODOOOL,
a o e el o £ =
c
@
£ 1 1000] 4
5 o{ 1004 1000
)
: xu 100 . i daiaiel
g R . .m'*"*"“. g P
5 il - nun et el
z 04 f'.‘
10 20 30 40 50 60 70 8

Greedy —=— |IndependentSetimprovement Random +— Salsa SieveStreamin
—=— SieveStreaming++ ThreeSieves T = 500 <+— ThreeSieves T = 1000 ThreeSieves T = 2500 —— ThreeSieves T = 5000

ThreeSieves: Speed and memory is comparable with a random
selection. However, the performance is comparable (or sometimes
better) than existing work.

Submodular ag https://github.com/sbuschjaeger/SubmodularStreamingMaximization

Maximizationd

mailto:sebastian.buschjaeger@tu-dortmund.de
https://github.com/sbuschjaeger/SubmodularStreamingMaximization

