Atmospheric Noise Removal for FYST: Current Methods and ML Prospects

Ankur Dev Universität Bonn

for Astronomy & Astrophysics Bonn and Cologne INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Nov 30, 2023

CS & Physics Meet-Up | Lamarr & B3D

A novel sub-mm telescope: 2025

The Fred Young Submillimeter Telescope (FYST): wide-field, 6-m aperture sub-mm telescope.

Site location: at 5600 meters on Cerro Chajnantor in northern Chile.

Fig above: FYST model at Cerro Chajnantor (<u>www.ccatobservatory.org</u>) Fig below: Prime-Cam instrument design with the seven instrument modules (Vavagiakis+2018)

Under development : FYST Detector Arrays

~ 3500 detectors per array times x3 ;
400Hz sampling rate
⇒ Big data volume

Fig Credit: Silicon feedhorn package, and 280GHz aluminum array (Cody Duell, Jordan Wheeler)

Nov 30, 2023

Correlated Atmospheric Noise is a Challenge

Fig left: Atmospheric transmission spectra for FYST Site (Choi et al 2020)

Fig right: Array of detectors observing through inhomogeneous atmosphere (Morris+2022) ; Adapted with FYST model

Simulated Detector Timestream - Scan 1, Elev.: 63.23 deg 2 1 0 -1-2 02:10:00 02:42:59 02:18:15 02:26:30 02:34:44 Brightness temperature [K] Simulated Observation Time UTC [hh:mm:ss] Simulated Detector Timestream - Scan 5, Elev.: 51.68 deg MMMMmm 03:42:40 03.46.25 03:50:10 03:53:54 03:57:39 Simulated Observation Time UTC [hh:mm:ss] Simulated Detector Timestream - Scan 8, Elev.: 42.61 deg 2 0 -1MMMAAAAAAM -2 04:29:40 04:32:55 04:36:10 04:39:24 04:42:39 Simulated Observation Time UTC [hh:mm:ss]

We want to remove the correlated noise component, while retaining the underlying cosmological signal

 $d_v(t) = < d_v > P_{cel} \ \Delta s^v_{science} \ + n_{white}(t) + n_{corr}(t)$

Detector Timestreams / Time-ordered Data (TOD)

We want to remove the correlated noise component, while retaining the underlying cosmological signal

 $+ n_{white}(t) + n_{corr}(t)$

$$d_v(t) = < d_v > P_{cel} \ \Delta s^v_{science}$$

 $n_{corr}(t)$

We want to remove the correlated noise component, while retaining the underlying cosmological signal

$$h_v(t) = < d_v > P_{cel} \ \Delta s^v_{science} \ + n_{white}(t)$$

 d_{n}

We want to remove the correlated noise component, while retaining the underlying cosmological signal

Data reduction includes:

- Data selection
- Detrending
- Filtering : Polynomial and Fourier space
- Principal Component Analysis (PCA)
- Flagging operations
- Map-making from Timestream

Power Spectral Density: Atmosphere introduces 1/f Noise

Nov 30, 2023

Data-processing for removing Atmospheric Noise

Data: Detector timestream to be processed for removing trends

Step 1: Common mode
removed from all detectors
Step 2: 0th Order Polynomial
subtracted
Step 3: Excluding extreme
statistical outliers (4-sigma clip)

Time-domain analysis

Timestream Cleaned to White Noise Level

Power Spectral Density Comparison of Cleaned Timestream

Power Spectral Density Comparison of Cleaned Timestream

Can ML methods contribute to current data reduction techniques?

- Convolutional Neural Networks (CNNs)
 - Layered, hierarchical architectures for spatial/temporal pattern recognition.
 - Adaptability in identifying and reducing diverse noise components through encoding-decoding structures.
- Gaussian Process Regression (GPR)
 - non-parametric, Bayesian approach to model and predict time-series data.
 - modeling complex noise structures
- Monitoring Data Quality
 - Outlier Detection: Leveraging ML for identification of anomalies in detector timestreams.
 - Data Selection and Cuts

Can ML methods contribute to current data reduction techniques?

