
Resource Aware Machine Learning@Lamarr

Sebastian Buschjäger

CS & Physics Meet-Up by Lamarr & B3D – November, 29th



Resource consumption of computing hardware

Question How many resources are required by new computing hardware in general?

Idea Report carbon footprint as a (weak) proxy for general resource consumption

Apple’s Product Environmental Report[https:/www.apple.com/environment/]

(excluding end-of-life processing here)

iPhone-14 1 Year [%] 3 Years [%] 10 Years [%]

Production 90.8 79.0 56.0

Transport 2.3 1.9 1.4

Useage 6.9 18.0 42.5

(Percentages may not total 100 due to rounding.)

Clear Use an iPhone-14 for around 13 years to break even with production costs!

But Average life-cycle for an iPhone-14 are 3 to 4 years
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A Closer Look at Older / Smaller Hardware

Common Microcontroller Units[Branco et al. 2019]

MCU CPU Flash (S)RAM

Arduino Uno (ATMega128P) 16MHz 32KB 2KB

Arduino Mega (ATMega2560) 16MHz 256KB 8KB

STM32L0 (Cortex-M0) 32MHz 192KB 20KB

Arduino MKR1000 (Cortex-M0) 48MHz 256KB 32KB

STM32F2 (Cortex-M3) 120MHz 1MB 128KB

STM32F4 (Cortex-M4) 180MHz 2MB 384KB

RPi A+ 700MHz SD Card 256MB

RPi Zero 1GHz SD Card 512MB

RPi 3B 4@1.2GHz SD Card 1GB

Apple A7 (iPhone 5) 2@1.4 Ghz 16-64 GB 1GB
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Empirical Risk Minimization Revisited

f∗ = arg min
f∈F

1
N

∑
(x,y)∈D

`(f(x), y) + λR(f)

Use resource-friendly

model class F directly

⇒ Guaranteed resource con-

sumption, but maybe weak loss

Guide selection via regularization

⇒ Direct trade-off between loss

and model complexity via λ
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Additive Tree Ensembles

In many applications Random Forests are outperforming Deep Learning methods

Axis-aligned Decision Trees Split data into groups of increasing label purity

x0 ≤ 1.0

x1 ≤ 0.6

x0 ≤ 1.6x0 ≤ 1.4

x1 ≤ 1.0

x0 ≤ 0.4
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h(x) =
L∑

i=1
yiπi(x), πi(x) = 1 if x in leaf i else 0

Random Forest Train multiple DTs on bootstrap samples and average predictions

f(x) = 1
M

M∑
i=1

hi(x)
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Training Additive Ensembles for Small Devices

Wait DTs are simple! RFs is a set of trees. Hence, aren’t RF already resource-aware?!

Unfortunately RFs can easily grow in size, even for smaller datasets.

adult avila bank eeg elec mnist

accuracy [%] 86.78 98.58 90.39 93.42 88.98 96.53

model size [MB] 24.99 32.85 24.99 14.95 24.99 56.99

Can we compute a small and accurate tree ensemble?
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Ensemble Pruning Revisited

Idea 1 Given a large forest with M trees select only a few trees

Formally

fw(x) = 1
K

M∑
i=1

wihi(x)

solve

arg min
w∈{0,1}M

∑
(x,y)∈S

` (fw(x), y) s.t. ‖w‖0 = K � M
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Ensemble Pruning Revisited (2)

Ensemble Pruning Standard method to select fewer trees in a forest

• Ranking[Martínez-Muñoz and Suárez 2004, Li et al. 2012, Margineantu and Diettereich 1997]

Assign a score to each tree and select the top-k trees

• Clustering[Giacinto et al. 2000, Bakker and Heskes 2003, Lazarevic and Obradovic 2001, ...]

Cluster trees and then select a representative from each cluster

• MQIP[Cavalcanti et al. 2016, Zhang et al. 2006]

Construct Mixed Quadratic Integer Program to select trees

• Ordering[Jiang et al. 2017, Lu et al. 2010, Margineantu and Dietterich 1997, ...]

Order the trees according to their overall contribution and select the first K trees
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Leaf-Refinement

Idea 2 Use a small forest from the beginning and refine it[Ren et al. 2015, Buschjäger and Morik 2021]

Formally Perform SGD on the leaf nodes θi = (yi,1, . . . , yi,Li
), θ = [θ1, . . . , θM ]

arg min
θ∈RM·L1...LM

∑
(x,y)∈S

` (fθ(x), y)
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Leaf-Refinement and Pruning combined

Why not combine both approaches?[Buschjäger and Morik 2023]

arg min
w∈[0,1]M

θ∈RM·L1...LM

∑
(x,y)∈S

` (fw,θ(x), y) + λ‖w‖1

Challenge Constraint optimization → use Proximal Gradient Descent
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Experiment 1: Compare with Vanilla Random Forest

adult avila bank eeg elec mnist

RF
accuracy [%] 86.78 98.58 90.39 93.42 88.98 96.53

model size [MB] 24.99 32.85 24.99 14.95 24.99 56.99

LR+L1
accuracy [%] 87.25 99.78 90.5 95.55 92.49 98.05

model size [MB] 0.06 3.52 0.07 5.88 14.37 28.49
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Experiment 2: Perform systematic experiments on more datasets

Comparison with more algorithms on more datasets

15 datasets, 10 methods, 920 hyperparameter configs per datasets

13 800 models cross-validated
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Towards Sustainable Life Cycle Management of ML Projects

Possible Research Questions

• How can we measure the {energy, performance, embodied carbon} of ML systems?

• What {abstraction,language} is required to {reason about, optimize} ML systems?

• How can we reduce {bandwidth, voltage, model size, runtime}?

• Can we re-use old/existing hardware for new models?

• Is {anytime, online, preiodical} training more efficient than batch processing?

• How do you manage a fleet of ML systems?
12



Summary

Use the iPhone-14 for ≈ 10 years to make it worth building it

Ensmeble Pruning

• Ensemble Pruning removes unncessary trees; Leaf-Refinement improves trees

• Leaf-Refinement + Pruning leads to smaller and better models

Sustainable Life Cycle Management of ML Projects

• Explore ML Projects while looking at resource constraints

• Explore the entire pipeline of ML projects from training to deployment
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