

Credit: CTAO

Interdisciplinary Challenges in Astroparticle Physics

Dominik Elsässer, Tim Ruhe LAMARR CS & Physics Meet-Up

Fakultät Physik

Multimessenger-Astronomy

 The Milky Way in Neutrinos
→ See Talk by M. Hünnefeld (tomorrow at 9.50) TIN A BILLION DIN A BILLION DIN A BILLION

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astroparticle Physics

The IceCube Neutrino Observatory (at the South Pole)

IceCube Event Signatures

Cascade like events:

- v_e CC and all flavour NC interactions
- Interaction inside instrumented volume
- Poor angular resolution ≈ 15° (!!!)
- Good energy resolution

Track like events:

- ν_{μ} CC interactions
- Interaction may happen outside instrumented volume
- Good angular resolution $pprox 1^\circ$
- Poor energy resolution

Image Source: By SimpleIcon http://www.simpleicon.com/http://www.flaticon.com/packs/simpleicon-places, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=47381827 Image Source: By Maxim Kulikov - https://thenounproject.com/term/tools/943586/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64806239 **7**

Image Source: By Jordan Ray - https://thenounproject.com/term/list/119366/, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=67857097

Diffrerent Components 10-1 10-2 E³ · Φ/GeV² · m⁻² · s⁻¹ · sr⁻¹ 10-3 10^{-4} 10-5 Conventional V₄ 10^{-6} Prompt ve Diffuse Astrophysical 10^{-7} Sum of Components 10⁵ 106 107 10³ 10^{4} Energy/GeV

Measurable Spectrum is a sum of the differennt components.

9

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astroparticle Physics

 indirect detection of neutrinos

- spectral reconstruction is based on energy estimators
- Additional smearing, due to several detector effects

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astroparticle Physics

Four Challenges in Neutrino Astronomy

Signal-to-Noise Ratio

Image Source: By Steaphan Greene - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5535164

Simulation and Simulation Dependence

Variable Reconstruction

Ill-Posed Problems

Image Source: Von Google - https://github.com/googlei18n/noto-emoji/tree/v2018-08-10-unicode11/svg/emoji_u1f974.svg, Apache License 2.0, https://commons.wikimedia.org/w/index.php?curid=76923393

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astroparticle Physics

Imaging air Cherenkov telescopes

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astroparticle Physics

GRB 190114C: fast VHE follow-up

- "Long" GRB, z = 0.4245
- MAGIC TeV follow-up after one minute
- Study of the temporal evolution of the afterglow emission
- High-energy peak can be modelled as inverse Compton emission

From: Nature 575, 455–458 (2019). https://doi.org/10.1038/s41586-019-1750-x

D. Elsässer, T. Ruhe, Interdisciplinary Challenges in Astropartic

CTAO-NORTH Alpha Configuration at Roque de los

Projected CTAO sensitivity

CTA-LST Project: About **380 members** (scientists/engineers/technicians) from **11 countries 1 Telescope** (soon to get siblings)

CTA-LST Project

A-LST Project

LST-1 and LST-1+MAGICs –> impressive science enabler

Development of analysis framework based on CTA tools to analyze MAGIC & LST-1 data:

- Dedicated MC simulations
- Validation of combined analysis using Crab Nebula data
- 3-telescope system sensitivity about 1.5 times better compared to MAGIC 2-tel
- Angular resolution improved by almost 20% (especially at low energies)
- Better reconstruction of events → energy resolution+

Nova RS Ophiuchi 2021

- First VHE detected nova
- Symbiotic binary system → recurrent nova
- LST 1 measured SED well compatible with those from H.E.S.S. and MAGIC
- Directly makes contact with Fermi – LAT data

rom BL Lac with the LST-1

n 13 Jul 2021: 21:03 UT

-energy gamma-ray emissi

BL Lac in the Summer of 2021

1e-9 SED (Aug 8) 10^{-9} 1.6 Preliminary Preliminary 1.4 ____ د 100 GeV) [cm⁻² 3 100 geV) [cm⁻² 3 0.6 $E^{2\frac{d\phi}{dE}}$ [erg cm⁻² s⁻¹] 10-10 10-11 <) xnl Crab MAGIC (JHEAp 2015) BL Lac (src-indep, standard) 0.2 EBL de-absorbed 0.0 10^{-12} 10^{-1} 20 100 120 10-2 0 40 60 80 100 101 Time (MJD - 59435) [minutes] E [TeV] Credit: CTA-LST Project Credit: CTA-LST Project

- Energy Threshold: ~25GeV
- Intranight variability may allow us to pinpoint acceleration mechanism

Conclusions

- \rightarrow The era of CTA physics has begun
- →LST performance follows CTAO requirements
- → Science program already up and running
- → Analysis chain development staying important
- Low energy sensitivity and initial physics results of LST-1 highlight the discovers potential of CTA

Backup slides

CTAO-SOUTH Alpha Configuration at Atacama Desert, Chile

IceCube Detection Principle

The Fundamental Unit of IceCube: The DOM

- Downward facing 10" PMT (Hammamatsu R7081-02), 25% Peak QE
- High Voltage Supply
- Electronics
- Flasher LEDs
- Higher QE (34%) for DeepCore DOMs (Hammamatsu R7081MOD)
- Very few DOM failures (mostly during deployment)
- Slightly larger fraction of DOMs with issues (mostly non-standard Local Coincidence)

Background Rejection via Machine Learning

Event Selection via MLI: Feature Selection

~ 200 neutrino candidates per day

~ 80 neutrino candidates per day

Expected Purity well above 99.5% for both analyses.

Tim Ruhe, Atmospheric Neutrinos: From MeV to PeV

T. Ruhe, TU Dortmund, Colloquium University of Alberta Edmonton Ackermann et al., Journal of Geophysical Research 111, (2006)

A Typical Analysis Pipeline

Source: https://www.pinterest.com/pin/550354016946043419/

Picture: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.p hp?curid=14260

Detection of Data/MC Mismatches

Challenges when inspecting distributions by eye:

- only looking at onedimensional distributions
- Systematic errors in simulation will also affect correlations between features
- Which metric ???
- Which threshold ???

Detection of Data/MC Mismatches

T. Ruhe, TU Dortmund, Colloquium University of Alberta Edmonton

Advancements: Energy-Dependent Score Cut

technische universitä dortmund

~ 300 neutrino candidates per day

Score cut as a function of energy and zenith.

M. Börner, PhD thesis (2018)