

Earth Mover's Distance as a meassure of CP violation

HEP Seminar @TU Dortmund

Based on J. High Energ. Phys. 2023, 98 (2023)

Ahmed Youssef
Ph.D. Candidate, University of Cincinnati
youssead@ucmail.uc.edu

In collaboration with: Adam Davis, Tony Menzo, and Jure Zupan

What is CP violation (CPV)?

What is CP violation (CPV)?

CP violation =

Violation of charge conjugation (C) and parity (P) symmetry

What is CP violation (CPV)?

CP violation =

Violation of charge conjugation (C) and parity (P) symmetry

Indirect CPV

→ CPV in mixing

$$egin{aligned} B^0 &
ightarrow \overline{B}{}^0 \ \overline{B}{}^0 &
ightarrow B^0 \end{aligned} \qquad \begin{array}{c} ext{mixes at a} \ ext{different rate} \end{aligned}$$

Direct CPV

→ CPV in decay

$$\frac{d\Gamma(\mathbf{B} \to \mathbf{f})}{d\Omega} \neq \frac{d\Gamma(\overline{\mathbf{B}} \to \overline{\mathbf{f}})}{d\Omega}$$

What is CP violation (CPV)?

CP violation =

Violation of charge conjugation (C) and parity (P) symmetry

Indirect CPV

→ CPV in mixing

$$egin{array}{c} B^0
ightarrow ar{B}^0 \ ar{B}^0
ightarrow B^0 \end{array}$$
 mixes at a different rate

Direct CPV

CPV in decay

$$\frac{d\Gamma(B \to f)}{d\Omega} \neq \frac{d\Gamma(\overline{B} \to \overline{f})}{d\Omega}$$

Inference between mixing and decay

What is CP violation (CPV)?

CP violation =

Violation of charge conjugation (C) and parity (P) symmetry

Indirect CPV

→ CPV in mixing

$$egin{array}{c} B^0
ightarrow \overline{B}{}^0 \ \overline{B}{}^0
ightarrow B^0 \end{array} \qquad {
m mixes \ at \ a} \ {
m different \ rate}$$

Direct CPV

CPV in decay

$$\frac{d\Gamma(B \to f)}{d\Omega} \neq \frac{d\Gamma(\overline{B} \to \overline{f})}{d\Omega}$$

Inference between mixing and decay

How do we quantify direct CP violation?

p_1, m_1 How do we quantify direct CP violation?

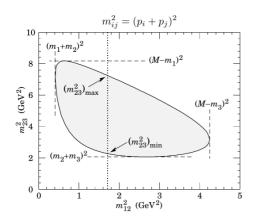
$$p_{2}, M$$

$$p_{2}, m_{3}$$

$$p_{3}, m_{3}$$

$$\frac{d\Gamma(B \to f)}{d\Omega} \neq \frac{d\Gamma(\overline{B} \to \overline{f})}{d\Omega}$$

→ Visualize using Dalitz plots!



 m_{ii} - invariant mas of a final state particle

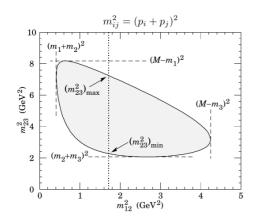
Visualizes the differential decay rate across the phase space of the three-body decay

p_1, m_1 How do we quantify direct CP violation?

$$p_{2}, m_{2}$$

$$p_{3}, m_{3} \frac{d\Gamma(B \to f)}{d\Omega} \neq \frac{d\Gamma(\overline{B} \to \overline{f})}{d\Omega}$$

→ Visualize using Dalitz plots!



 m_{ii} - invariant mas of a final state particle

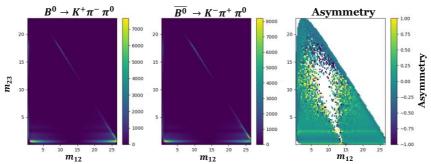
Visualizes the differential decay rate across the phase space of the three-body decay

Compare particle and its antiparticle distribution

→ Hints to CP violation

p_1, m_1 How do we quantify direct CP violation?

 $p_2, M \longrightarrow p_2, m_2$ $p_3, m_3 \qquad \frac{d\Gamma(B \to f)}{d\Omega} \neq \frac{d\Gamma(\overline{B} \to \overline{f})}{d\Omega} \qquad \Rightarrow \qquad \text{Visualize using Dalitz plots!}$



Direct CPV manifests as local density asymmetries between conjugate Dalitz plots!

Model the amplitude

Model the amplitude

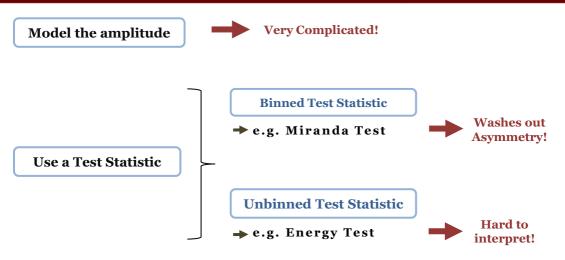
Very Complicated!

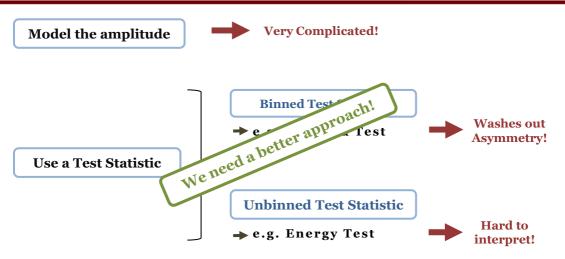
Model the amplitude

Very Complicated!

Use a Test Statistic

Very Complicated! Model the amplitude **Binned Test Statistic** → e.g. Miranda Test **Use a Test Statistic Unbinned Test Statistic** → e.g. Energy Test





What requirements do we need?

What requirements do we need?

Is it highly sensitive to CP violation? Can we interpret it?

What requirements do we need?

Is it highly sensitive to CP violation? Can we interpret it?

Earth Mover's Distance (EMD) as test statistic

What requirements do we need?

Is it highly sensitive to CP violation?

Can we interpret it?

Earth Mover's Distance (EMD) as test statistic

Comparable sensitivity to established method! (Comparison with the Energy Test)

Tells us which part of the Dalitz plot the CPV originated from!

Outline

Current state of the art: Energy Test

Earth Mover' Distance (EMD) as test statistic

→ B decay

Modified EMD for large samples

→ D decay

Conclusion and Outlook

The energy test has already been successfully applied to search for CPV in multibody decays

LHCB Collaboration, Phys. Lett.

R 740 (2015) 158

The energy test has already been successfully applied to search for CPV in multibody decays LHCB Collaboration, Phys. Lett. B 740 (2015) 158

Unbinned two-sample test utilizing a test statistic:

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}},$$

$$\text{Sum over index i} \quad \text{Sum over indices i, j}$$

Weighting distance function:

$$\psi_{ij} \equiv \psi(d_{ij}; \sigma) = e^{-d_{ij}^2/2\sigma^2}$$

$$B^0(\overline{B}^0) \to f(\overline{f})$$
 i $-B^0$ sample j $-\overline{B}^0$ sample

The energy test has already been successfully applied to search for CPV in multibody decays LHCB Collaboration, Phys. Lett. B 740 (2015) 158

Unbinned two-sample test utilizing a test statistic:

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}},$$

$$\text{Sum over index i } \text{Sum over index j } \text{Sum over indices i,j}$$

Weighting distance function:

$$\psi_{ij} \equiv \psi(d_{ij}; \sigma) = e^{-d_{ij}^2/2\sigma^2}$$

$$B^0(\overline{B}^0) \to f(\overline{f})$$
 i - B^0 sample j - \overline{B}^0 sample

Events from two identical distribution

T close to zero

Events from two dissimilar distribution

The energy test has already been successfully applied to search for CPV in multibody decays LHCB Collaboration, Phys. Lett. B 740 (2015) 158

Unbinned two-sample test utilizing a test statistic:

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}},$$

$$\text{Sum over index i} \quad \text{Sum over index j} \quad \text{Sum over indices i,j}$$

Weighting distance function:

$$\psi_{ij} \equiv \psi(d_{ij}; \sigma) = e^{-d_{ij}^2/2\sigma^2}$$

$$B^0(\overline{B}^0) \to f(\overline{f})$$
 $i - B^0 \text{ sample } j - \overline{B}^0 \text{ sample }$

Events from two identical distribution

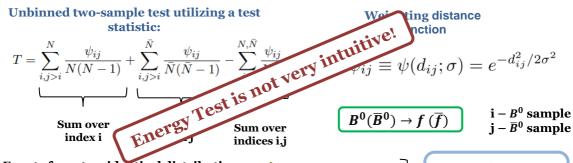
T close to zero

Events from two dissimilar distribution T is non zero

Perform a hypothesis test to obtain a p-value!

The energy test has already been successfully applied to search for CPV in multibody decays LHCB Collaboration, Phys. Lett.

B 740 (2015) 158



Events from two identical distribution

T close to zero

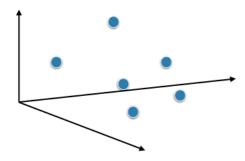
Events from two dissimilar distribution

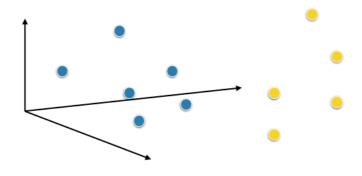
Perform a hypothesis test to obtain a p-value!

The energy test has already been successfully applied to search for CPV in multibody decays LHCB Collaboration, Phys. Lett. B 740 (2015) 158

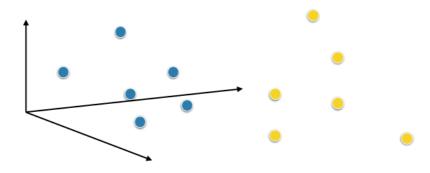
Unbinned two-sample test utilizing a test ting distance statistic: nction $T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} +$ Can we come up with a more intuitive test $(i_i;\sigma) = e^{-d_{ij}^2/2\sigma^2}$ $i - B^0$ sample $j - \overline{B}^0$ sample statistic? (\overline{f}) Sum over index i 111UICCS 141 **Events from two identical distribution** T close to zero Perform a hypothesis test to Events from two dissimilar distribution

T is non zero obtain a p-value!

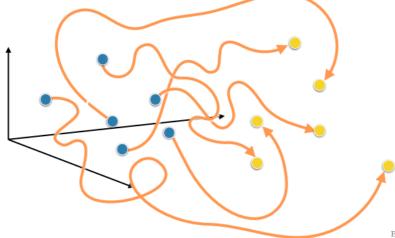




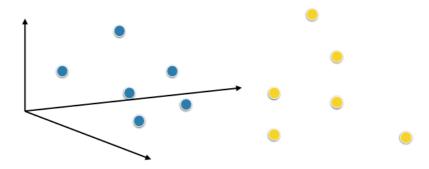
What is the most optimal way to move one sample to another?



What is the most optimal way to move one sample to another?

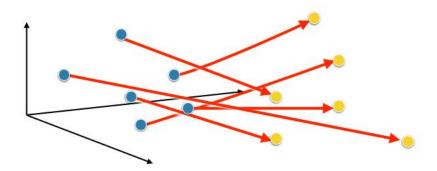


What is the most optimal way to move one sample to another?



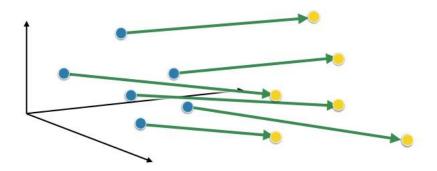
Goal of OT: Find the most "natural" way to move points

What is the most optimal way to move one sample to another?



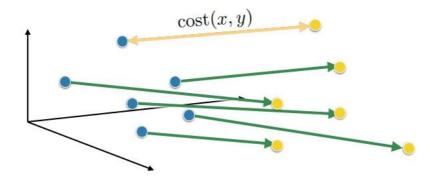
Goal of OT: Find the most "natural" way to move points

What is the most optimal way to move one sample to another?



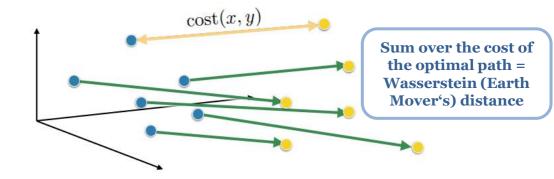
Goal of OT: Find the most "natural" way to move points

What is the most optimal way to move one sample to another?



Goal of OT: Find the most "natural" way to move points

What is the most optimal way to move one sample to another?

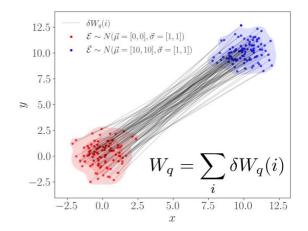


Goal of OT: Find the most "natural" way to move points

Wasserstein Distance

Wasserstein distance (WD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} \left(\hat{d}_{ij}\right)^q\right]^{1/q}$$



Wasserstein Distance

Wasserstein distance (WD)

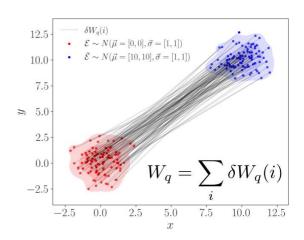
$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} \left(\hat{d}_{ij}\right)^q\right]^{1/q}$$

Events from two identical distribution

→ Small Wq

Events from two dissimilar distribution

→ Larger Wq



Wasserstein Distance

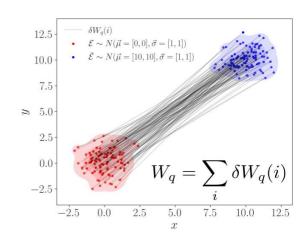
Wasserstein distance (WD)

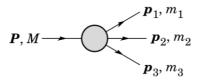
$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} \left(\hat{d}_{ij}\right)^q\right]^{1/q}$$

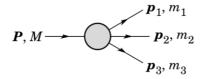
Events from two identical distribution

Events from two dissimilar distribution

Perform a hypothesis test to obtain a p-value!







Sample Size = $\sim 10^3$

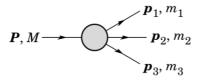
$$B^0
ightarrow K^+ \pi^- \pi^0 \ \overline{B}{}^0
ightarrow K^- \pi^+ \pi^0$$

EMD as a test statistic

Sample Size = $\sim 10^5 - 10^6$

$$egin{aligned} D^0 &
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0 &
ightarrow \pi^-\pi^+\pi^0 \end{aligned}$$

"Modified" EMD as a test statistic



Sample Size = $\sim 10^3$

$$B^0
ightarrow K^+\pi^-\pi^0 \ \overline B{}^0
ightarrow K^-\pi^+\pi^0$$

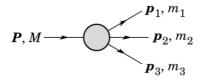
EMD as a test statistic

Sample Size = $\sim 10^5 - 10^6$

$$egin{aligned} D^0 &
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0 &
ightarrow \pi^-\pi^+\pi^0 \end{aligned}$$

"Modified" EMD as a test statistic

- **Compare the sensitivity with the ET**
- **→** Vizualize origin of CP violation



Sample Size =
$$\sim 10^3$$

$$B^0 \rightarrow K^+\pi^-\pi^0$$

 $\overline{B}^0 \rightarrow K^-\pi^+\pi^0$

EMD as a test statistic

Sample Size =
$$\sim 10^5 - 10^6$$

$$D^0
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0
ightarrow \pi^-\pi^+\pi^0$$

"Modified" EMD as a test statistic

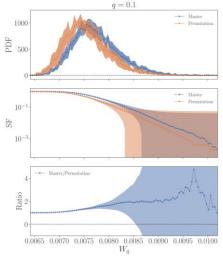
- **Compare the sensitivity with the ET**
- **→** Vizualize origin of CP violation

Hypothese Test

Obtain the null hypotheses pdf from your test statistic by calculating it n times

Hypothese Test

Obtain the null hypotheses pdf from your test statistic by calculating it n times



Permutation Method

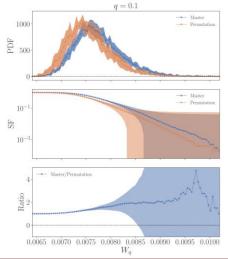
- ightharpoonup Permuting the original B^0 and \overline{B}^0 samples
- **→** Calculate the test statistic for each permutation

Master Method

- → Generate an ensemble of B^0 and \overline{B}^0 decay event samples, using the B^0 decay model for both
- **→** Calculate the test statistic for each sample pair

Hypothese Test

Obtain the null hypotheses pdf from your test statistic by calculating it n times



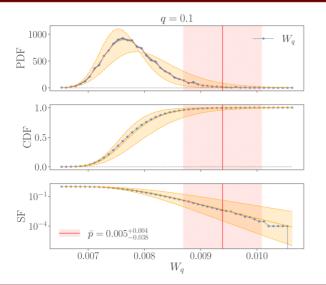
Permutation Method

- ightharpoonup Permuting the original B^0 and \overline{B}^0 samples
- **→** Calculate the test statistic for each permutation

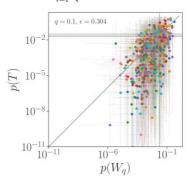
Master Method

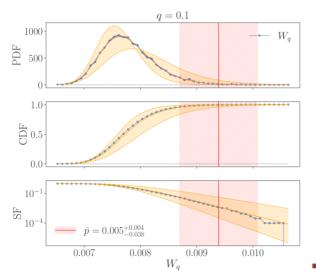
- → Generate an ensemble of B^0 and \overline{B}^0 decay event samples, using the B^0 decay model for both
- → Calculate the test statistic for each sample pair

Compare the sensitivity of W_q and Energy test using the master method

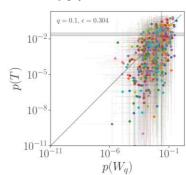


$$\epsilon \equiv \frac{1}{N_e} \sum_{i=1}^{N_e} \begin{cases} +1 & p_i(W_q) < p_i(T), \\ 0 & \text{otherwise,} \end{cases}$$



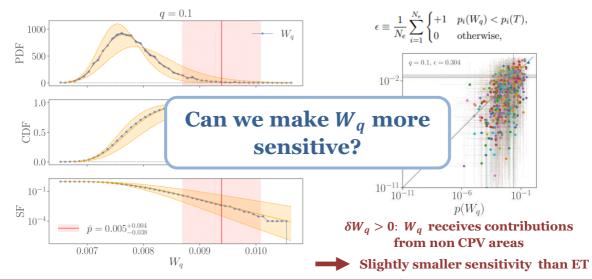


$$\epsilon \equiv \frac{1}{N_e} \sum_{i=1}^{N_e} \begin{cases} +1 & p_i(W_q) < p_i(T), \\ 0 & \text{otherwise,} \end{cases}$$

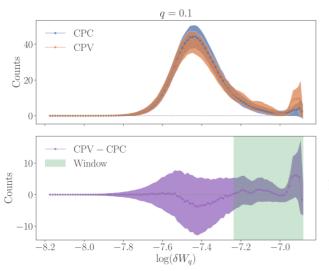


 $\delta W_q > 0$: W_q receives contributions from non CPV areas

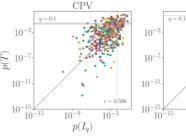
Slightly smaller sensitivity than ET



Windowed Wasserstein distance



$$w(x) = \begin{cases} +1 & x \in [\delta W_{\min}^{\text{win}}, \delta W_{\max}^{\text{win}}], \\ \\ 0 & \text{otherwise.} \end{cases}$$



 10^{-9}

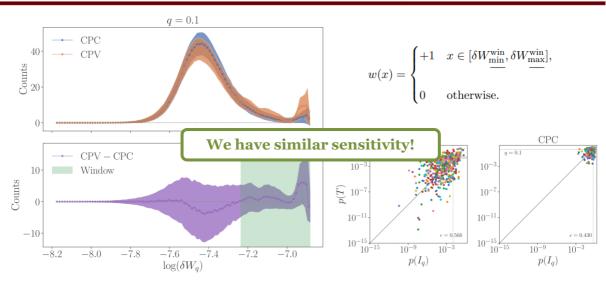
 $p(I_q)$

CPC

 $\epsilon = 0.430$

 10^{-3}

Windowed Wasserstein distance



youssead@ucmail.uc.edu

EMD traces the variation of the CP asymmetry across the Dalitz plot!

EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry:

$$B^0(\overline{B}^0) \rightarrow K^+\pi^-\pi^0 (K^-\pi^-\pi^0)$$

$$\mathcal{A}_{\text{CP}}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$$

BaBar amplitude model

BarBar Collaboration, Phys. Rev. D 83 (2011) 112010

EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry:

$$B^{0}(\overline{B}^{0}) \to K^{+}\pi^{-}\pi^{0} (K^{-}\pi^{-}\pi^{0})$$

$$\mathcal{A}_{\text{CP}}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$$

BaBar amplitude model

BarBar Collaboration, Phys. Rev. D 83 (2011) 112010

$$W_q^q = \sum_i \delta W_q(i) = \sum_{\bar{i}} \delta \bar{W}_q(\bar{i})$$

EMD asymmetry:

$$\mathcal{W}_{\mathrm{CP}}^{q}(s_{12}, s_{13}) = \frac{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) - \sum_{i} \delta W_{q}(i)}{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) + \sum_{i} \delta W_{q}(i)}$$

EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry:

$$B^0(\overline{B}^0) \to K^+\pi^-\pi^0 (K^-\pi^+\pi^0)$$

$$\mathcal{A}_{\text{CP}}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$$

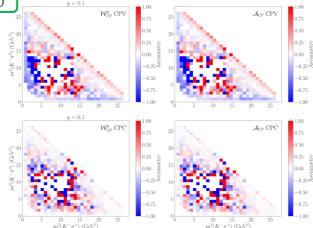
BaBar amplitude model

BarBar Collaboration, Phys. Rev. D 83 (2011) 112010

$$W_q^q = \sum_i \delta W_q(i) = \sum_{\bar{i}} \delta \bar{W}_q(\bar{i})$$

EMD asymmetry:

$$\mathcal{W}_{\mathrm{CP}}^{q}(s_{12}, s_{13}) = \frac{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) - \sum_{i} \delta W_{q}(i)}{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) + \sum_{i} \delta W_{q}(i)}$$



EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry:

$$B^{0}(\overline{B}^{0}) \to K^{+}\pi^{-}\pi^{0} (K^{-}\pi^{+}\pi^{0})$$

$$\mathcal{A}_{\text{CP}}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$$

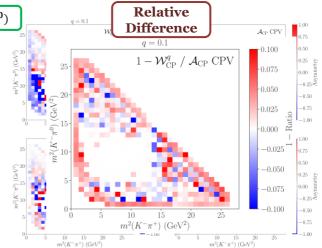
BaBar amplitude model

BarBar Collaboration, Phys. Rev. D 83 (2011) 112010

$$W_q^q = \sum_i \delta W_q(i) = \sum_{\bar{i}} \delta \bar{W}_q(\bar{i})$$

EMD asymmetry:

$$\mathcal{W}_{\mathrm{CP}}^q(s_{12},s_{13}) = \frac{\sum_{\bar{i}} \delta \bar{W}_q(\bar{i}) - \sum_{i} \delta W_q(i)}{\sum_{\bar{i}} \delta \bar{W}_q(\bar{i}) + \sum_{i} \delta W_q(i)}$$



$$egin{array}{cccc} D^0
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0
ightarrow \pi^-\pi^+\pi^0 \end{array} egin{array}{cccc}
ightarrow
ightarrow$$

- **→** Very small non-zero CP violation
- → Studied at the LHCb using the ET

$$D^0
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0
ightarrow \pi^-\pi^+\pi^0$$

Very small non-zero CP violation

 $D^0 o \pi^+ \pi^- \pi^0$ \to Very small non-zero of violation $\overline{D}{}^0 o \pi^- \pi^+ \pi^0$ \longrightarrow Studied at the LHCb using the ET

Can we still use the EMD?

$$D^0
ightarrow \pi^+\pi^-\pi^0 \ \overline{D}{}^0
ightarrow \pi^-\pi^+\pi^0$$

Very small non-zero CP violation

 $D^0 o \pi^+ \pi^- \pi^0$ \to Very small non-zero \subset Violation $\overline{D}{}^0 o \pi^- \pi^+ \pi^0$ \longrightarrow Studied at the LHCb using the ET

Can we still use the EMD?

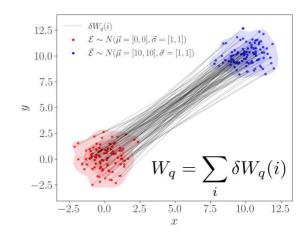
Yes, but ...

Recap:

Wasserstein distance (WD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} \left(\hat{d}_{ij}\right)^q\right]^{1/q}$$

- **→** Computationally expensive
- **→** Very memory intensive



EMD

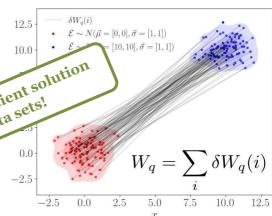
Recap:

Wasserstein distance (WD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} \left(\hat{d}_{ij}\right)^q\right]^{1/q}$$

Computationally expensi

Very memory



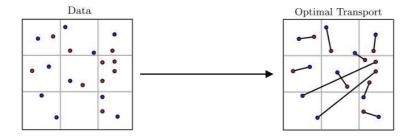
Alternative Solution

We propose two solutions

Binned Wasserstein distance Sliced Wasserstein distance

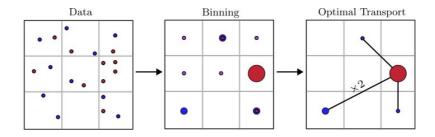
Binned Wasserstein distance

"Normal" Wasserstein distance

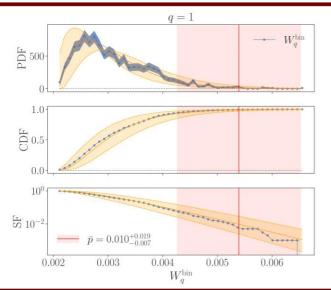


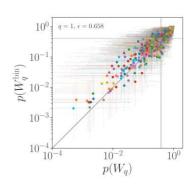
Binned Wasserstein distance

Binned Wasserstein distance



Binned Wasserstein distance





Use Sliced Wasserstein Distance as test statistic!

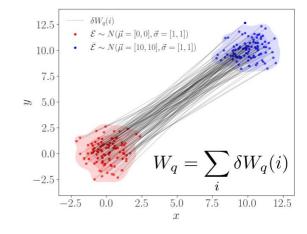
Use Sliced Wasserstein Distance as test statistic!

Wasserstein distance (WD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} (\hat{d}_{ij})^q\right]^{1/q}$$

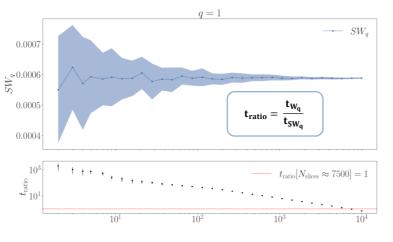
Sliced Wasserstein distance

- → Projects high dimensional data into one dimensional "slices"
- → WD in 1D has a closed form solution
 - **→** Sorted Difference of the two samples



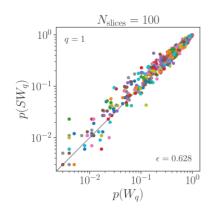
How many slices do we need to converge?

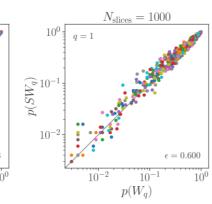
How many slices do we need to converge?

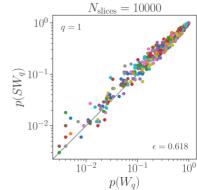


- Starts converging at 1000 slices
- 1000 slices: speed up of a factor \sim 7 over W_q
- \Rightarrow SW_q is faster than W_q for N_{slices} < 7500 slices
- Does not require large memory resources!

Comparison with W_q







Conclusion and Outlook

EMD is a robust, model independent, and unbinned test statistic for CPV!

highly sensitive to CPV

Interpretable

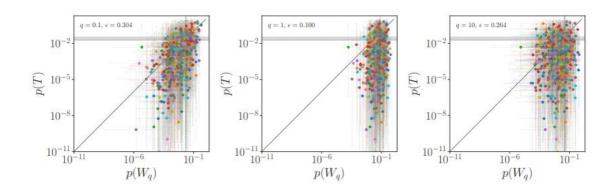
Future work

- Time-dependent CPV
- Flavor Violation
- Improving the test further

Public code:

https://github.com/ada mdddave/EMD4CPV

Back up



Binned EMD

