Treasure Maps for Detections of Extreme Energy Cosmic Rays

Anatoli Fedynitch

High-Energy Theory Group, Institute of Physics, Academia Sinica, Taipei

TU Dortmund Teilchenseminar, 2023/07/07

<u>Cosmic Rays drive</u> Multimessenger astrophysics

Vu

Source model and distribution

SHOCKWAVE

Physics of astrophysical neutrino sources = physics of cosmic ray sources

radiation model

Se

e

e

Ve

π°

 π -

transport/propagation model

Cosmic Rays observations

Dembinski, AF, Engel, Gaisser, Stanev PoS(ICRC2017)533

Physics of extensive air (particle) showers from cosmic rays in the atmosphere

(Column-) depth

Pierre Auger Observatory in Malargüe (Argentina)

Exposure

M. Unger, ICRC2017

Telescope array in Utah (USA)

Photos courtesy of the Telescope Array Collaboration

1. Physics challenges in UHECR source identification

Fate of cosmic rays below ultra-high energies

Deflections

Credit: Ebisuzaki? (RIKEN)

- Magnetic deflection in galactic and extragalactic magnetic fields is a function of **RIGIDITY (E/Z)**
- Anisotropic "by design"
- If an experiment measures the CR energy but not the charge (or mass number)

Hybrid air shower detection (Pierre Auger Observatory)

Template method for measuring average UHECR mass composition

Current mass measurements not good enough

- Template method (backup) gives "all-sky average" of masses, not the mass of each event
- The errors are still large ~InA=1, because the impact on the shift of mean X_{max} is quite small
- The conversion from <Xmax> to <lnA> is model dependent (dashed vs solid line)
- Needs Fluorescence Detector FD (for X_{max})
 - Small duty cycle
 - Smaller exposure

Other means of mass determination

R. Prado, ISVHECRI 2018

• In 3 - 10 years?

Partial solution: Brute Force -- Explore higher energies. High EeV = high EV?

2. Conceptual challenges in UHECR source identification

Searching for clustering in the direction of potential sources

- 1. Assume that a catalog of sources astrophysical objects are the sources (here Starburst galaxies)
- 2. Assume isotropic and circular deflection scale here 25deg and an energy threshold
- 3. Assume that all sources have the same brightness (or so)
- 4. Test the compatibility of simulated pattern with observed one

Common search radius at low rigidities misleading

Figure 1. Trajectories of antiparticles corresponding to a spot of 3° square, after a backward propagation in the GMF in two different configurations of the magnetic turbulence (in orange and blue, respectively).

Deflections are anisotropic, individual, energy and composition dependent

Keito Watanabe, Francesca Capel, AF, Hiroyuki Sagawa, UHECR2022, in prep.

Deflections are anisotropic, individual, energy and composition dependent

Deflections are anisotropic, individual, energy and composition dependent

PAO 2022, proton assumption, JF12

A simple, "circular" search radius is misleading

Keito Watanabe, Francesca Capel, AF, Hiroyuki Sagawa, UHECR2022, in prep.

Bayesian Hierarchical Model More realism: Bayesian inference and detailed modeling (implemented in Python + STAN) Francesca Capel & Mortlock, 1811.06464 Production ά D_k ω_k B k = 1...NThe highest energy cosmic rays are not highly deflected Propagation and lose energy quickly Detection i = 1...NLower energy cosmic rays Source Flux are more deflected but have a longer energy loss length **Evolution of:**

Source fraction:

Background Flux

Watson+2012

Soiaporn+2013

Khanin+2016

Keito Watanabe, Francesca Capel, AF, Hiroyuki Sagawa, UHECR2022, in prep.

More realism: Bayesian inference and detailed modeling

Bayesian Hierarchical Model (implemented in Python + STAN)

- Fits source associations of each cosmic ray with each source (summing these to obtain the total)
- **Physics model uncertainties** (such as B fields, source spectrum) latent (nuisance) parameters
- Machinery can absorb more realistic models compared to 1811.06464
- "Source fraction" is a catalog search/question, other questions can be asked ☺

Francesca Capel & Mortlock, 1811.06464

The highest energy cosmic rays are not highly deflected and lose energy quickly

Lower energy cosmic rays are more deflected but have a longer energy loss length

Are source fraction and catalog searches really the right tool?

Keito Watanabe, Francesca Capel, AF, Hiroyuki Sagawa, UHECR2022, in prep.

This Bayesian inference model solves some conceptual issues

- No need for choosing threshold energy or search radius
 - Too low energy/rigidity events have large deflection radii associated → don't contribute significantly
- Knowledge about the magnetic field, detector uncertainties etc. can be fed directly into the model
- Tells more than a simple couting excess:
 - Reconstructs source spectrum
 - magnetic field values
 - Etc
- A simple, model independent, significant result might be a wrong expectation from UHECR research
- But if the dominant sources are transients? Not in any of the catalogs? Happened Myrs ago?

3. The EECR horizon EE = extreme energy >> 100 EeV

Astrophys. J., 945(1):12, 2023, 2210.15885 TREASURE MAPS FOR DETECTIONS OF EXTREME ENERGY COSMIC RAYS

NOÉMIE GLOBUS^{1,2}, ANATOLI FEDYNITCH^{3,4}, ROGER D. BLANDFORD^{5,6}

The GZK cutoff K. Greisen, PRL 16 (17): 748–750. (1966), G.T. Zatsepin and V.A. Kuz'min, JETP Letters. 4: 78–80 (1966)

$$p + \gamma_{\text{CMB}} \rightarrow p + \pi^0 \rightarrow p + \gamma\gamma$$
, and
 $p + \gamma_{\text{CMB}} \rightarrow n + \pi^+ \rightarrow p + \nu_{e,\mu}$.

For Protons - expect

- cosmogenic neutrinos
- cosmogenic photons
- distant horizon

For nuclei - expect:

- disintegration via Giant Dipole Resonance
- fewer secondary messengers
- shorter horizon

Sky should become anisotropic!

UHECR sky > 100 EeV

The EECR horizon for nuclei for $E_{obs} > 150 \text{ EeV}$

Assume a source spectrum:

$$\frac{\mathrm{d}N_s}{\mathrm{d}E_s}(E_s, E_{s,\min}, E_{s,\max}) \propto \left(\frac{E_s}{E_{s,\min}}\right)^{-\gamma} e^{-\frac{E_s}{E_{s,\max}}}, E_s > E_{s,\min}$$

Loss of number in spectrum at Earth (dT/dE):

$$a_{\text{GZK}}(A_s, d_s, E_{s,\max}, \gamma \mid A_{\text{obs}}, E_{\text{obs}}) = \\ = \frac{\sum_{A_i \ge A_{\text{obs}}} \int_{E_{\text{obs}}}^{\infty} dE \frac{dT_{A_i}}{dE}(d_s, \gamma, E_{s,\max})}{\int_{E_{\text{obs}}}^{\infty} dE_s \frac{dN_s}{dE_s}(E_s, E_{s,\max})}$$

Weak dependence on source spectrum choice for p & Fe. Stronger for Nitrogen.

Define 2x2 cases:

- Threshold $E_{obs} = 150 \text{ EeV}$ and 300 EeV
- Mass threshold $A_{obs} = 1$ (everything) or 12 carbon \rightarrow composition sensitive observatory

The EECR horizon for nuclei for $E_{obs} > 300 \text{ EeV}$

Assume a source spectrum:

$$\frac{\mathrm{d}N_s}{\mathrm{d}E_s}(E_s, E_{s,\min}, E_{s,\max}) \propto \left(\frac{E_s}{E_{s,\min}}\right)^{-\gamma} e^{-\frac{E_s}{E_{s,\max}}}, E_s > E_{s,\min}$$

Loss of number in spectrum at Earth (dT/dE):

$$a_{\text{GZK}}(A_s, d_s, E_{s,\max}, \gamma \mid A_{\text{obs}}, E_{\text{obs}}) = \\ = \frac{\sum_{A_i \ge A_{\text{obs}}} \int_{E_{\text{obs}}}^{\infty} dE \frac{dT_{A_i}}{dE}(d_s, \gamma, E_{s,\max})}{\int_{E_{\text{obs}}}^{\infty} dE_s \frac{dN_s}{dE_s}(E_s, E_{s,\max})}$$

Weak dependence on source spectrum choice for p & Fe. Stronger for Nitrogen.

GZK horizon for nuclei few MpC, for protons still ~30 Mpc \rightarrow we can control the horizon by choosing the thresholds!

4. What can we expect to find in our neighborhood using EECR?

Following arxiv: 2210.15885 TREASURE MAPS FOR DETECTIONS OF EXTREME ENERGY COSMIC RAYS

NOÉMIE GLOBUS^{1,2}, ANATOLI FEDYNITCH^{3,4}, ROGER D. BLANDFORD^{5,6}

Define "find": Looking for multiplet candidates (simplicity)

Isotropic energy required to produce a EECR doublet at Earth

$$U_{\rm iso,2} \sim 4.38 \cdot 10^{52} {\rm erg} \, (\tau_d / 10^3 {\rm yr}) d_{50}^2 \, E_{200} (\mathcal{E} / \mathcal{E}_{\rm PAO})^{-1} a_{\rm GZK}^{-1} M^{-1} n_{\rm yr}^{-1}$$

The GMF and EGMF introduce a temporal dispersion (spread of the time delays distribution)

Geometric setup and correction (important when considering times)

Total time dispersion (= loss of luminosity!) $\sqrt{\tau_{d,\text{GMF}}^2 + \tau_{d,\text{EGMF}}^2}$

Correct for curvature of sampling sphere

$$t_i = \vec{\omega_0} \cdot \vec{b_i} / c + t_{\text{trajectory},i}$$

Simulation setup:

- Lots of CRPropa3 for galactic transport (backtracking) 5e8 per setup
- Extragalactic: analytical
- JF12(Planck) and TF17 magnetic fields
- Use Healpix with NSIDE=64, 1.7deg pixels
- Thanks to all open source authors!!

Potential transient host galaxies \rightarrow ALL GALAXIES

LVG, Karachetsev et al. https://www.sao.ru/lv/lvgdb/introduction.php

Local volume galaxies within: 2, 5, 10, 20, 40 Mpc radius

Magnification Factors: North vs South

Pixels can be magnified and demagnified through magnetic lensing. Watch out the log scale!

A treasure map (TM)

Transparency = magnification factor (exposure)

Background color: temporal dispersion due to GMF

Markers: local galaxy catalog

Marker color: dispersion in GMF + EGMF in yrs (log scale)

Dot trasparency: GZK horizon (sources fade out and not shown > d_{95%})

TMs for **protons** JF12 magnetic fields, $\langle B_{EGMF} \rangle = 0.1 \text{ nG}$

TMs for **protons** JF12 magnetic fields, $\langle B_{EGMF} \rangle = 1 \text{ nG}$

TMs for **iron** JF12 magnetic field, $\langle B_{EGMF} \rangle = 1.0 \text{ nG}$

TMs for **nitrogen** JF12 magnetic field, <B_{EGMF}> = 1.0 nG

Counting the candidates

Including the effect of the:

- The dispersion in GMF + EGMF (0.1 -10 nG)
- The 2x2 cases of A_{obs} and E_{obs}
- The GZK horizon
- The magnification factors
- → There are EECR source cadidates remaining
- → Comparing with volumeaveraged GRB, TDE, ... rates, no statistically guaranteed observation
- → Radio-bright/jetted sources ~far away, transient luminosity suppressed

EECR transient spatial signature

At very high **rigidity**, deflections are "under control"

EECR transient temporal signature

We expect strict ordering of cosmic ray arrival rigidities from the same source due to random deflections

The TA hotspot

Clustering above 57 EeV: local significance 5-ish sigma, much smaller global. 20 degrees oversampling

Summary

- 1. Identifying patterns generated nearby sources in data is challenging due to the many "ingredients", uncertainties and unknown rigidities of the observed UHECR events
- 2. We looked at the **issue of magnetic deflections** (again) with the motivation to investigate:
 - if there is a meaningful science goal above the cutoff energies (where defelctions are smaller)
 - whether a composition-sensitive observatory is needed (~excludes space observatories)
 - how many source host candidates are within an "energetically reasonable radius"
- 3. We characterized the magnetic dispersion in the galaxy and found that
 - preferential directions in the Northern (TA's) hemisphere with low magnetic dispersion
 - That EGMF dispersion dominates for sources within the local group for B_{EGMF} > 0.1 nG
- 4. If we would know the rigidity, EECR analyses should attempt to use the temporal and spacial rigidity ordering to search for transient phenomena
- Radio-bright/jetted, and Starburst galaxies are too far or require extremely bright transients to be observed as multiplets

Master, PhD, and RA opportunities in my group anatoli@gate.sinica.edu.tw

The PPSC dilemma and why oversampling is concerning

INDICATIONS OF A COSMIC RAY SOURCE IN THE PERSEUS-PISCES SUPERCLUSTER

 $\mathbf{5}$

The TA Collaboration has observed a new excess of events in the arrival direction distribution. We found the excess over the isotropic background to have local significances of 4.4σ , 4.2σ , and 4.0σ for events of energy $E \ge 10^{19.4}$ eV, $E \ge 10^{19.5}$ eV, and $E \ge 10^{19.6}$ eV, respectively, by using the Li-Ma method and a 20°-radius circle oversampling analysis. This excess overlaps with

- Local significances above 25 39 EeV
- Implying PAO average composition, it's 3-6 EV range
- Fixed radius (to avoid trials).
 Why a circle?
- Behind the spot is the Perseus-Pisces supercluster @ ~70 Mpc

PAO – catalog searches

PAO, 2206.13492

- Catalog searches performed, varying threshold, search radius
- Tested assumptions for luminosity correlations
- Highest post-trial p-values in $10^{-3} 10^{-4}$ range for all catalogs
- Search radius "circle" (vMF) because of the magnetic field uncertainty, and lack of knowledge about it
- PAO careful to interprete the result

