Measurement of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s} = 13 \text{ TeV}$

BERGISCHE UNIVERSITÄT WUPPERTAL

Seminar at TU Dortmund May 25, 2023

Content

Theoretical context

- The top-quark
- **Colour reconnection modelling**
- Sensitive observables

Analysis

- **EXECTE EVENT SERVICE CONCOCO EDGE EVENT** EVENT SERVICE **FIGURER**
- **■** Unfolding the sensitive observables
- **■** Estimate systematic uncertainties

Results

■ Compare unfolded data to MC predictions

The top quark

- **Weak-isospin partner of the** b **-quark**
- Electric charge: $\pm 2/3 e$
- Spin: $1/2$
- The heaviest elementary particle $m_t = 172.69 \pm 0.48$ GeV
- Solutive Very short lifetime $\tau \approx 0.5 \times 10^{-24}$ s \Rightarrow decay before forming hadron
- **Large Yukawa coupling to the Higgs boson** y_t \sim 1 ⇒ connection to EW symmetry breaking

Top-quark processes

Top Quark Production Cross Section Measurements

• Dominant production: in pairs via the strong interaction

■ Very high production rate at the LHC ⇒ Produced more than **100M** pairs during Run 2 $(N = L \sigma = 139fb^{-1} \cdot 832pb \approx 116 M)$

Top-quark pair production

- At LO, produced either by gluon-gluon fusion or quark-antiquark annihilation
- § **Mainly via gluon-gluon fusion at the LHC (90%)**

Top-quark pair decay

- **top-quark decay via the weak interaction**
- Since $V_{th} \approx 1$, $B(t \rightarrow Wb) \approx 100\%$

• $t\bar{t}$ has three decay channels, defined by the decay mode of the W -boson from the top-quark

- Measurement in the dilepton channel
	- highest signal-to-background ratio
	- small branching ratio is not a limitation, as we have a large dataset

one important uncertainty is colour-reconnection What is colour reconnection?

 $\overline{8}$

Colour reconnection in $t\bar{t}$ events

Shayma Wahdan

 \mathbf{q}

11

/UPPERTAL

PPERTAL

Colour reconnection (CR)

Mechanism of reassigning colour connections between partons during hadronisation

- In the leading colour (LC) approximation (before CR):
	- ! Each MPI is viewed as separate from all other systems in colour space
	- ! No strings stretched between different MPI systems
- CR allows different MPI systems to be colour-connected to each other (MPI hadronise collectively)
	- **Total colour charge reduced** w.r.t. LC approximation

Overview of CR models in PYTHIA 8

Based on reconstructing a colour potential that minimise the total string length

Overview of CR models in PYTHIA 8

MPI-based model (CR0)

1. Starting from lowest p_T interaction calculate reconnection probability

$$
P_{\text{rec}} (p_T) = \frac{(R_{\text{rec}} p_{\text{TO}})^2}{(R_{\text{rec}} p_{\text{TO}})^2 + p_T^2}
$$
 softed **softer systems easier to reconnect**
CR range **Soft** damping scale

- 2. Iterate (1) for all interactions; if $P_{rec} > \alpha \in [0,1]$ do reconnection stochastic
- 3. Move gluons from softer interactions to high p_T dipole that minimizes the increase in λ

Colour reconnection in $t\bar{t}$ events Shayma Wahdan

Overview of CR models in PYTHIA 8

- § QCD-based (CR1):
	- is a more complete treatment of the QCD multiplet structure
	- includes reconnections of dipoles, which can produce structures of three (anti-)colour indices (junctions) \rightarrow Improves description of baryon production

 \bar{q}

q $q \longrightarrow q \longrightarrow q \longrightarrow q$

 $q \rightarrow q$ $q \rightarrow q$ $q \rightarrow q$

q

 $q \qquad \qquad \bar{q}$

 J \bar{J}

 \bar{q}

based on string minimization

only gluons are considered for reconnection, no quarks reconnection

q

- each gluon reconnect to all MPI systems (not only the ones for softer MPIs)
- As QCD-based model, also based on the minimization of string length

The default CR model in Herwig 7

- "Iterating over quarks in all clusters, try reconnection
- Select reconnection which minimises $m_C + m_D$ if $m_C + m_D < m_A + m_B$
- Accept reconnection with probability P_{reco}

Why do we need colour reconnection?

- Explains the rising trend of $\langle p_T \rangle$ vs. n_{ch} \leftrightarrow CR is needed to describe the data
- It can shed light in the quest for precise SM measurements, such as the top-quark mass:
	- ! top-quark decays take place right in the middle of the showering/hadronization region
	- ! so quarks(and gluons) produced in the decay are subject to CR
	- μ \rightarrow μ \bar{d} , b for sure is colour-connected somewhere else, giving mass ambiguities

\triangleright CR is one of the dominant systematics in m_{top} measurements (up to 400 MeV)

prescription to estimate this uncertainty is not well defined ⇒ In Pythia 8, there are currently more than 15 CR models

1.5

1

Analysis

Colour reconnection in t

Event selection

- Full Run 2 data, $\int L dt = 139 fb^{-1}$
- Select $t\bar{t}$ dilepton channel:
	- $=$ e^{\pm} and μ^{\mp} , $p_T > 25$ GeV
	- $-$ 2 or 3 jets, $p_T > 25$ GeV
	- $-$ 2 b-tags @ 70% efficiency working point
	- $m_{\ell\ell} > 15 \text{ GeV}$

Backgrounds to tt events

- Single top, $t\bar{t}V$, Z +jets and diboson
	- Expected number of events calculated using their theoretical cross-sections
- **Fake lepton background**
	- At least one of the leptons is wrongly reconstructed as prompt
		- An electron from photon conversion $(e \rightarrow \gamma \rightarrow e)$
		- \bullet e or μ from the decay of a bottom or charm hadron
	- $-$ estimated with partial data driven approach using $e^\pm\mu^\pm$ same (charge) sign control region

$N^{\text{fake}} = R \cdot (N^{\text{data,SS}} - N^{\text{prompt,SS}})$
Ratio of OS-to-SS events Observed same-sign Predicted same-sign events with fake leptons

Data-MC comparison plots

- **Uncertainty band includes MC statistical, theoretical and systematics uncertainties**
- **MC describes the data well and deviations are covered by uncertainties**
- \triangleright Backgrounds to $t\bar{t}$ events

Sensitive observables

The observables use tracks outside jets because track contribute significantly to the discrimination power be

Backgrounds to primary hard-scatter tracks

Backgrounds to primary hard-scatter tracks

2. Secondary tracks, decay of long-lived particles

Even after these requirements tracks are still diluted with pileup and secondary tracks

Pile-up background estimation

- we can not subtract the MC prediction directly from data, as MC does not perfectly model collision data
	- ! therefore, we have devised a method which gives a closure in MC
	- then, we subtract this contribution from data in a stochastic way after correcting for Data-MC mismodelling

Hard scatter 87%

Pile-up 12%

Secondaries <1%

Estimate n_{PII}

From simulation, create templates of n_{PU}^{truth} **in bins of track multiplicity**

 \blacksquare For data event, with a known track multiplicity \Rightarrow draw a random number from the template of $n_{\rm PU}^{\rm truth}$ correspond to the given multiplicity

Closure test

" Compare the estimated hard-scatter track multiplicity with the true one

• Non-closure is < 2%, which is taken as an uncertainty

29

Scale factors estimation

- **Perform a binned maximum-likelihood fit to data**
	- $\sim C_{\text{sec}}$: Secondary tracks scale factor $\rightarrow d_0/\sigma_{d_0}$
	- $C_{PU}(n_{trk,out}, \mu)$: Pile-up scale factor \rightarrow z_0

 $C_{\text{sec}} = 2.34 \pm 0.02$

 μ : number of interactions per bunch crossing

BERGISCHE UNIVERSITÄT 30 **WUPPERTAL**

Colour reconnection in $t\bar{t}$ events

 $C_{PU}(n_{\text{trk,out}},\mu)$

Table 3: Summary of the estimated pile-up scale factors c_{PU} , parametrised in μ and $n_{trk,out}$. All values have a statistical precision of 0.01.

Backgrounds to primary-hard scatter tracks also rowPLETED

Colour reconnection in $t\bar{t}$ events

Reconstruction-level observables

• All background contributions are estimated

But, Data distributions are distorted by detector effects and they differ from their true value

BERGISCHE UNIVERSITÄT WUPPERTAL

Colour reconnection in $t\bar{t}$ events and shayma Wahdan 32

How to correct for detector effects?

Unfolding

Procedure to correct for detector effects (finite resolution, and limited efficiency and acceptance)

The master-formula:

Data
\n
$$
\frac{d\sigma_{t\bar{t}}}{dX^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{eff}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{acc}^{j} \cdot \left(N_{obs}^{j} - N_{bkg}^{j}\right)
$$
\nTruth

35

$$
\frac{d\sigma_{t\bar{t}}}{dX^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{\text{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{\text{acc}}^{j} \cdot \left(\frac{N_{\text{obs}}^{j} - N_{\text{bkg}}^{j}}{\Delta X^{j}}\right)
$$

TRUTH

Subtract background events from data $1.$

Colour reconnection in $t\bar{t}$ events

$$
\frac{d\sigma_{t\bar{t}}}{dX^i} = \frac{1}{\mathcal{L} \cdot \Delta X^i \cdot \epsilon_{eff}^i} \cdot \sum_j R_{ij}^{-1} \cdot \frac{f_{acc}^j}{\Delta x^i} \cdot \left(N_{obs}^j - N_{bkg}^j\right)
$$

Obtained from signal MC

BERGISCHE 37

- 1. Subtract background events
- 2. f_{acc}^{j} : correct for $t\bar{t}$ events that fall outside the fiducial acceptance

$$
\frac{d\sigma_{t\bar{t}}}{dX^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \varepsilon_{\text{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{acc}^{j} \cdot \left(N_{\text{obs}}^{j} - N_{\text{bkg}}^{j}\right)
$$
\n
$$
\sum_{\text{setector re}\atop \text{at least similarity}\atop \text{no}\atop \text{short}} \frac{1}{\varepsilon} \cdot \frac{1}{100}
$$

- 1. Subtract background events
- 2. Correct for events that are in the reco-level but aren't in truth
- 3. Remove the detector effects ⇒ using the Iterative Bayesian Unfolding method

$$
\frac{d\sigma_{t\bar{t}}}{dX^i} = \frac{1}{\mathcal{L} \cdot \Delta X^i \cdot \epsilon_{\text{eff}}^i} \cdot \sum_j R_{ij}^{-1} \cdot f_{\text{acc}}^j \cdot \left(N_{\text{obs}}^j - N_{\text{bkg}}^j\right)
$$

- Subtract background events $\mathbf{1}$.
- Correct for events that are in the reco-level but aren't in truth $2.$
- $\overline{3}$. Remove the detector effects
- Extrapolate to the truth phase-space 4.

Colour reconnection in $t\bar{t}$ events

- 1. Subtract background events
- 2. Correct for events that are in the reco-level but aren't in truth
- 3. Remove the detector effects
- 4. Extrapolate to the truth phase-space
- 5. Convert event count to cross-section

Unfolding validation test $-$ Stress test

■ Aims to verify that the IBU able to recover a truth distribution different from the predicted \hookrightarrow ability to maintain unexpected features in the data 0.03

Procedure:

- \blacksquare re-weight the truth distribution
- unfold the corresponding reweighted reco. using nominal migration matrix

Reweighting function:

• Data-driven reweighting $\left(\frac{\text{Data} - \text{bkg}}{\text{signal}}\right)$

Any (non-closure)deviation between the unfolded and the truth is taken as uncertainty

Colour reconnection in $t\bar{t}$ events and the state of \sim Shayma Wahdan 41

Systematic uncertainties

- Experimental uncertainties, related to objects reconstruction (tracks, jets, ..)
	- \triangleright The varied prediction is unfolded
	- Uncertainty is the relative difference of the unfolded systematic variation w.r.t nominal unfolded distribution
- Signal modelling uncertainties:
	- ! Parton shower (Powheg+Herwig713 vs. Powheg+Pythia 8)
	- Colour reconnection
	- Uncertainty is the difference between the unfolded and the particle-level distribution of the systematic variation
- Background modelling uncertainties
	- Event-based backgrounds
	- ! Track-based backgrounds
- Unfolding techniques

Systematic uncertainties

- **Dominant uncertainties:**
	- pile-up tracks background estimation
	- Signal Modelling uncertainties

Results and Summary

Δ4

Colour reconnection in $t\bar{t}$ events

Results (1)

■ Measured distributions are compared to the prediction from different generators

- Measured data disagree with the predictions from Sherpa 2, which does not include CR effects
- The n_{ch} is approximately equally well described by Pythia 8 and Herwig 7
- The $\sum_{n_{\text{ch}}} p_{T}$ has a better agreement with Herwig 7, especially in $\sum_{n_{\text{ch}}} p_{T}$ < 20 GeV

Results (2)

■ Measured distributions are compared to the prediction from different CR models in PYTHIA 8

- The n_{ch} is best described by the CR0 (MPI-based) model
- Similar to the nominal PP8 A14 tune, none of the models can describe $\sum_{n_{ch}} p_T$ < 20 GeV well

Colour reconnection in $t\bar{t}$ events and the state of ~ 46 Shayma Wahdan 46

Results (3)

Comparison with CR and UE parameters variation in Pythia 8

- \triangleright noCR does not describe the data
- \triangleright Maximal probability still compatible with the measurement
- \triangleright Clear sensitivity to pt0ref and Var1 \rightarrow future tuning both parameter should be included

Summary

T[hree observables](https://arxiv.org/abs/2209.07874) sensitive to colour reconnection are measure

- charged particle multiplicity (n_{ch})
- $-$ scalar sum of charged-particles transverse momenta ($\sum_{n_{ch}}$
- $= \sum_{n_{ch}} p_T$ in bins of n_{ch}
- ! Dominant uncertainties are signal modelling:
	- **•** Track-background subtraction (low n_{ch})
	- Parton shower (mainly tail)
- \triangleright Paper is accepted by EPJC journal and available as preprint on ar arXiv:2209.07874

 \triangleright The result can be used as input for future tuning of MC (CR and MPI parameters)

Backup

Colour reconnection in the events

Backup: tracks selection

- $p_T > 500 \text{ MeV}$
- $|\eta|$ < 2.5
- 9 (11) silicon hits for $|\eta|$ < 1.65 ($|\eta|$ > 1.65)
- 1 IBL or B-layer hit
	- IBL: is the innermost layer of ATLAS pixel detectors

Backup: p_T (jet₁) miss-modelling

- In agreement with previous cross-section measurements by ATLAS and CMS
- **Consistently observed a softer top-quark** p_T spectrum (and related distributions)
- This discrepancy is at least partially due to missing NNLO corrections

Backup - Overview of CR models in Pythia8

Parameters summary

Table 9.1: Definition, parameter range and tuned value for the A14, CR0, CR1, and CR2 models in PYTHIA 8 [79]. The parameters that are not defined for a particular model are left blank.

Backup - Overview of CR models in Pythia8

MPI-based model (CRO) reconnection probability

 $\frac{d\sigma}{dp_T^2} \sim \frac{\alpha_S^2(p_T^2)}{p_T^4} \to \frac{\alpha_S^2(p_{T,0}^2 + p_T^2)}{(n_{T,0}^2 + n_{T}^2)^2}$

 \blacksquare p_{T0} regularises the partonic cross-section to avoid divergence at low p_{T}

$$
p_{\text{TO}} = p_{\text{TO}}^{\text{ref}} \left(\frac{E_{\text{CM}}}{E_{\text{CM}}^{\text{ref}}}\right)^{E_{\text{CM}}^{\text{pow}}}
$$
 is the value of p_{TO} at a reference energy $E_{\text{CM}}^{\text{ref}}$

-
$$
E_{CM}^{pow}
$$
 us a tunable parameter

53

 $p_{\text{TO}}^{\text{ref}}$

• use Bayes theorem recursively and use our truth distribution as a prior

Iterations optimisation

- With higher iterations, the negative correlations increases
	- correlations are expected to go from positive to negative it is expected to have a $\frac{1}{2}$ minimum

$$
\rho_{i} = \sqrt{1 - \left(\text{Cov}_{ii} \cdot \text{Cov}_{ii}^{-1}\right)^{-1}}, \qquad \rho_{avg} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} \rho_{i}
$$

$$
\alpha_{i}^{g}
$$

$$
\alpha_{i}^{g}
$$

$$
\beta_{i}^{g}
$$

$$
\alpha_{i}^{g}
$$

$$
\beta_{i}^{g}
$$

$$
\beta_{i}^{
$$

4

6

8

10

 N_{iter}