Measurement of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s} = 13 \text{ TeV}$

BERGISCHE UNIVERSITÄT WUPPERTAL

Seminar at TU Dortmund May 25, 2023

Content

Theoretical context

- The top-quark
- Colour reconnection modelling
- Sensitive observables

Analysis

- Event selection and Background estimation
- Unfolding the sensitive observables
- Estimate systematic uncertainties

Results

Compare unfolded data to MC predictions

The top quark

- Weak-isospin partner of the *b*-quark
- Electric charge: + 2/3 e
- Spin: 1/2
- The heaviest elementary particle $m_{\rm t} = 172.69 \pm 0.48 \ {\rm GeV}$
- Very short lifetime $\tau \approx 0.5 \times 10^{-24}$ s \Rightarrow decay before forming hadron
- Large Yukawa coupling to the Higgs boson $y_t \sim 1$ ⇒ connection to EW symmetry breaking

Top-quark processes

Top Quark Production Cross Section Measurements

- Dominant production: in pairs via the strong interaction
- Very high production rate at the LHC \Rightarrow Produced more than **100M** pairs during Run 2 $(N = L \sigma = 139 \text{fb}^{-1} \cdot 832 \text{pb} \approx 116 \text{ M})$

Δ

Top-quark pair production

- At LO, produced either by gluon-gluon fusion or quark-antiquark annihilation
- Mainly via gluon-gluon fusion at the LHC (90%)

Top-quark pair decay

- top-quark decay via the weak interaction
- Since $V_{tb} \approx 1$, $\mathcal{B} (t \rightarrow Wb) \approx 100\%$

tt
 has three decay channels, defined by the decay mode of the W-boson from the top-quark

Channel	Branching ratio
Dilepton	10.5 %
lepton+jets	43.8%
All-hadronic	45.7%

- Measurement in the dilepton channel
 - highest signal-to-background ratio
 - small branching ratio is not a limitation, as we have a large dataset

one important uncertainty is colour-reconnection What is colour reconnection?

8

Colour reconnection in $t\bar{t}$ events

9

11

Colour reconnection in $t\bar{t}$ events

Shayma Wahdan

WUPPERTAL

Shayma Wahdan

13

VUPPERTAL

Colour reconnection (CR)

Mechanism of reassigning colour connections between partons during hadronisation

- In the leading colour (LC) approximation (before CR):
 - Each MPI is viewed as separate from all other systems in colour space
 - No strings stretched between different MPI systems
- CR allows different MPI systems to be colour-connected to each other (MPI hadronise collectively)
 - Total colour charge reduced w.r.t. LC approximation

Overview of CR models in PYTHIA 8

Based on reconstructing a colour potential that minimise the total string length

Overview of CR models in PYTHIA 8

MPI-based model (CR0)

1. Starting from lowest p_T interaction calculate reconnection probability

$$P_{\text{rec}}(p_T) = \frac{(R_{\text{rec}} p_{\text{T0}})^2}{(R_{\text{rec}} p_{\text{T0}})^2 + p_T^2} \qquad p_T \downarrow \Rightarrow P_{\text{rec}} \uparrow$$

Softer systems easier to reconnect
CR range Soft dampening scale

- 2. Iterate (1) for all interactions; if $P_{rec} > \alpha \in [0,1]$ do reconnection \rightarrow stochastic
- 3. Move gluons from softer interactions to high p_T dipole that minimizes the increase in λ

Colour reconnection in $t\bar{t}$ events

Overview of CR models in PYTHIA 8

- QCD-based (CR1):
 - is a more complete treatment of the QCD multiplet structure
 - includes reconnections of dipoles, which can produce structures of three (anti-)colour indices (junctions) \rightarrow Improves description of baryon production
 - based on string minimization

- only gluons are considered for reconnection, no quarks reconnection
- each gluon reconnect to all MPI systems (not only the ones for softer MPIs)
- As QCD-based model, also based on the minimization of string length

The default CR model in Herwig 7

- Iterating over quarks in all clusters, try reconnection
- Select reconnection which minimises $m_{\rm C} + m_{\rm D}$ if $m_{\rm C} + m_{\rm D} < m_{\rm A} + m_{\rm B}$
- Accept reconnection with probability P_{reco}

Why do we need colour reconnection?

- Explains the rising trend of ⟨p_T⟩ vs. n_{ch}
 GR is needed to describe the data
- It can shed light in the quest for precise SM measurements, such as the top-quark mass:
 - top-quark decays take place right in the middle of the showering/hadronization region
 - so quarks(and gluons) produced in the decay are subject to CR
 - $t \rightarrow bu\bar{d}$, b for sure is colour-connected somewhere else, giving mass ambiguities

> CR is one of the dominant systematics in m_{top} measurements (up to 400 MeV)

prescription to estimate this uncertainty is not well defined \Rightarrow In Pythia 8, there are currently more than 15 CR models

1.5

Analysis

Event selection

- Full Run 2 data, $\int L dt = 139 f b^{-1}$
- Select tt dilepton channel:
 - e^{\pm} and μ^{\mp} , $p_T > 25$ GeV
 - 2 or 3 jets, $p_T > 25 \text{ GeV}$
 - 2 b-tags @ 70% efficiency working point
 - $m_{\ell\ell} > 15~{\rm GeV}$

Backgrounds to $t\bar{t}$ events

- Single top, ttV, Z +jets and diboson
 - Expected number of events calculated using their theoretical cross-sections
- Fake lepton background
 - At least one of the leptons is wrongly reconstructed as prompt
 - An electron from photon conversion $(e \rightarrow \gamma \rightarrow e)$
 - e or μ from the decay of a bottom or charm hadron
 - estimated with partial data driven approach using $e^{\pm}\mu^{\pm}$ same (charge) sign control region

$$N^{\text{fake}} = R \cdot \left(N^{\text{data},SS} - N^{\text{prompt},SS} \right)$$

Ratio of OS-to-SS events Observed same-sign Predicted same-sign events
with fake leptons events with prompt leptons

Colour reconnection in $t\bar{t}$ events

Data-MC comparison plots

- Uncertainty band includes MC statistical, theoretical and systematics uncertainties
- MC describes the data well and deviations are covered by uncertainties
- \succ Backgrounds to $t\bar{t}$ events (

Sensitive observables

The observables use tracks outside jets because tracks inside jets does not contribute significantly to the discrimination power between CR models.

Colour reconnection in $t\bar{t}$ events

Shayma Wahdan

Backgrounds to primary hard-scatter tracks

Colour reconnection in tt events

Shayma Wahdan

Mean Number of Interactions per Crossing

Backgrounds to primary hard-scatter tracks

- Pile-up tracks, originating from additional nearby proton-proton collisions at the same bunch crossing
 Pileup vertices
 - 2. Secondary tracks, decay of long-lived particles

Colour reconnection in $t\bar{t}$ events

therefore, we have devised a method which gives a closure in MC

not perfectly model collision data

 then, we subtract this contribution from data in a stochastic way after correcting for Data-MC mismodelling

we can not subtract the MC prediction directly from data, as MC does

Pile-up background estimation

Even after these requirements tracks are still diluted with pileup and secondary tracks

Scale factor (pile-up) $n_{\text{trk,prim}} = n_{\text{trk,out}} - c_{\text{PU}}^{\dagger}(\mu, n_{\text{trk,out}}) \cdot n_{\text{PU}} - c_{\text{sec}} \cdot n_{\text{sec}},$ # of primary tracks # of selected tracks # of pile-up tracks (stochastically) # of secondary tracks (stochastically)

27

Secondaries <1%

Hard scatter 87%

Pile-up 12%

Estimate $n_{\rm PU}$

• From simulation, create templates of n_{PU}^{truth} in bins of track multiplicity

For data event, with a known track multiplicity \Rightarrow draw a random number from the template of n_{PU}^{truth} correspond to the given multiplicity

Closure test

Compare the estimated hard-scatter track multiplicity with the true one

Non-closure is < 2%, which is taken as an uncertainty</p>

Scale factors estimation

- Perform a binned maximum-likelihood fit to data
 - C_{sec} : Secondary tracks scale factor $\rightarrow d_0/\sigma_{d_0}$
 - $C_{\text{PU}}(n_{\text{trk,out}}, \mu)$: Pile-up scale factor $\rightarrow z_0$

 $C_{\rm sec} = 2.34 \pm 0.02$

μ: number of interactionsper bunch crossing

BERGISCHE UNIVERSITÄT WUPPERTAL

Colour reconnection in $t\bar{t}$ events

Shayma Wahdan

 $C_{\rm PU}(n_{\rm trk,out},\mu)$

Table 3: Summary of the estimated pile-up scale factors c_{PU} , parametrised in μ and $n_{trk,out}$. All values have a statistical precision of 0.01.

Region	$n_{\rm trk,out} < 20$	$20 \le n_{\rm trk,out} < 40$	$40 \le n_{\rm trk,out} < 60$	$60 \le n_{\rm trk,out} < 80$	$80 \le n_{\mathrm{trk,out}} \le 100$
$\mu < 20$	0.91	1.04	0.97	1.05	1.08
$20 \le \mu < 40$	0.91	1.08	1.08	1.07	1.11
$\mu \geq 40$	0.95	1.15	1.23	1.27	1.36

Backgrounds to primary-hard scatter tracks also COMPLETED

Reconstruction-level observables

All background contributions are estimated

But, Data distributions are distorted by detector effects and they differ from their true value

32

BERGISCHE UNIVERSITÄT WUPPERTAL

Colour reconnection in $t\bar{t}$ events

How to correct for detector effects?

33

Colour reconnection in $t\bar{t}$ events

Unfolding

 Procedure to correct for detector effects (finite resolution, and limited efficiency and acceptance)

The master-formula:

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{\mathrm{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{obs}}^{j} - N_{\mathrm{bkg}}^{j}\right)$$

Truth

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{\mathrm{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot \left(\frac{N_{\mathrm{obs}}^{j} - N_{\mathrm{bkg}}^{j}}{N_{\mathrm{obs}}^{\mathrm{obs}} - N_{\mathrm{bkg}}^{j}} \right)$$
TRUTH

1. Subtract background events from data

Colour reconnection in $t\bar{t}$ events

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L}\cdot\Delta X^{i}\cdot\epsilon_{\mathrm{eff}}^{i}}\cdot\sum_{j}R_{ij}^{-1}\cdot f_{\mathrm{acc}}^{j}\cdot\left(N_{\mathrm{obs}}^{j}-N_{\mathrm{bkg}}^{j}\right)$$

Obtained from signal MC

- 1. Subtract background events
- 2. f_{acc}^{J} : correct for $t\bar{t}$ events that fall outside the fiducial acceptance

Colour reconnection in $t\bar{t}$ events

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{\mathrm{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{obs}}^{j} - N_{\mathrm{bkg}}^{j}\right)$$

- 1. Subtract background events
- 2. Correct for events that are in the reco-level but aren't in truth
- Remove the detector effects
 ⇒ using the Iterative Bayesian Unfolding method

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L}\cdot\Delta X^{i}\cdot\epsilon_{\mathrm{eff}}^{i}}\cdot\sum_{j}R_{ij}^{-1}\cdot f_{\mathrm{acc}}^{j}\cdot\left(N_{\mathrm{obs}}^{j}-N_{\mathrm{bkg}}^{j}\right)$$

- 1. Subtract background events
- 2. Correct for events that are in the reco-level but aren't in truth
- 3. Remove the detector effects
- 4. Extrapolate to the truth phase-space

Colour reconnection in $t\bar{t}$ events

- 1. Subtract background events
- 2. Correct for events that are in the reco-level but aren't in truth
- 3. Remove the detector effects
- 4. Extrapolate to the truth phase-space
- 5. Convert event count to cross-section

Unfolding validation test – Stress test

Aims to verify that the IBU able to recover a truth distribution different from the predicted
 ↔ ability to maintain unexpected features in the data

Procedure:

- re-weight the truth distribution
- unfold the corresponding reweighted reco. using nominal migration matrix

Reweighting function:

• Data-driven reweighting $\left(\frac{\text{Data}-\text{bkg}}{\text{signal}}\right)$

Any (non-closure) deviation between the unfolded and the truth is taken as uncertainty

Colour reconnection in $t\bar{t}$ events

Systematic uncertainties

- Experimental uncertainties, related to objects reconstruction (tracks, jets, ..)
 - > The varied prediction is unfolded
 - Uncertainty is the relative difference of the unfolded systematic variation w.r.t nominal unfolded distribution
- Signal modelling uncertainties:
 - Parton shower (Powheg+Herwig713 vs. Powheg+Pythia 8)
 - Colour reconnection
 - Uncertainty is the difference between the unfolded and the particle-level distribution of the systematic variation
- Background modelling uncertainties
 - Event-based backgrounds
 - Track-based backgrounds
- Unfolding techniques

Systematic uncertainties

- Dominant uncertainties:
 - pile-up tracks background estimation
 - Signal Modelling uncertainties

43

Results and Summary

Results (1)

Measured distributions are compared to the prediction from different generators

- Measured data disagree with the predictions from Sherpa 2, which does not include CR effects
- The n_{ch} is approximately equally well described by Pythia 8 and Herwig 7
- The $\sum_{n_{ch}} p_T$ has a better agreement with Herwig 7, especially in $\sum_{n_{ch}} p_T < 20 \text{ GeV}$

Results (2)

Measured distributions are compared to the prediction from different CR models in PYTHIA 8

- The n_{ch} is best described by the CRO (MPI-based) model
- Similar to the nominal PP8 A14 tune, none of the models can describe $\sum_{n_{\rm ch}} p_T < 20 \ {\rm GeV}$ well

Colour reconnection in $t\bar{t}$ events

Results (3)

Comparison with CR and UE parameters variation in Pythia 8

		티등	F				
variation	Varied parameter	0.03 ما رم	ATLAS OS $e\mu$, 2 or 3 jets	√s=13 TeV, 139 fb ⁻¹ _ Data	[1/Ge/	 ATLAS OS eμ, 2 or 3 jets Normalized 	√s=13 TeV, 139 fb ⁻¹ - — Data
noCR	$R_{\rm range}$ = 0 (default 1.71)	0.02		 ♦ PP8 noCR ♦ PP8 maxCR ♥ PP8 pt0ref=2.0 	ط ⁻¹ 0.02		 PP8 noCR PP8 maxCR PP8 pt0ref=2.0
maxCR	R _{range} =10	0.02		PP8 pt0ref=2.2 PP8 VAR1 down	. dσ/d Σ		PP8 pt0ret=2.2 PP8 VAR1 down PP8 VAR1 up
Var1 down	MPI α_s = 0.121 and $R_{\rm range}$ = 1.69 (default MPI α_s = 0.126)	0.01			() ()		
Var1 up	MPI α_s = 0.131 and R_{range} = 1.73	2 5.1 <u>Data</u> 5.0 20 2.0 2.0			Pred. Data 5.0		
			0 20 40	60 80 100 n _{ch}			$\Sigma_{n_{\rm ch}} p_{\rm T}$ [GeV]

- noCR does not describe the data
- > Maximal probability still compatible with the measurement
- \succ Clear sensitivity to pt0ref and Var1 \rightarrow future tuning both parameter should be included

Summary

Three observables sensitive to colour reconnection are measured in $t\bar{t}$ events

- charged particle multiplicity (n_{ch})
- scalar sum of charged-particles transverse momenta ($\sum_{n_{ch}} p_T$)
- $-\sum_{n_{ch}}p_{T}$ in bins of n_{ch}
- Dominant uncertainties are signal modelling:
 - Track-background subtraction (low n_{ch})
 - Parton shower (mainly tail)
- Paper is accepted by EPJC journal and available as preprint on arXiv arXiv:2209.07874
- The result can be used as input for future tuning of MC (CR and MPI parameters)

Backup

Colour reconnection in tt events

Backup: tracks selection

- $p_T > 500 \text{ MeV}$
- |η| < 2.5
- 9 (11) silicon hits for $|\eta| < 1.65$ ($|\eta| > 1.65$)
- 1 IBL or B-layer hit
 - IBL: is the innermost layer of ATLAS pixel detectors

Backup: p_T (jet₁) miss-modelling

- In agreement with previous cross-section measurements by ATLAS and CMS
- Consistently observed a softer top-quark p_T spectrum (and related distributions)
- This discrepancy is at least partially due to missing **NNLO** corrections

51

Backup - Overview of CR models in Pythia8

Parameters summary

Table 9.1: Definition, parameter range and tuned value for the A14, CR0, CR1, and CR2 models in PYTHIA 8 [79]. The parameters that are not defined for a particular model are left blank.

Parameter	description	A14 / Default (range)	CR0	CR1	CR2
MPI:pT0Ref MPI:expPow	MPI p_{T} dampening Exponent of matter overlap function	2.09 (0.5-10) 1.85 (0.4-10)	2.15 1.81	1.89 2.10	2.21 1.63
CR:range	CR strength	1.71 (1.0-10)	2.92	_	_
CR:m0 CR:junctionCorrection	Mass parameter used in the λ measure Correction to m0 for junctions	0.3 (0.1-5) 1.2 (0.01-10)	_	2.17 9.33	-
CR:m2Lambda CR:fracGluon	m_{λ}^2 used in the λ measure Fraction of gluons that undergo a CR	1.0 (0.25-16) 1.0 (0-1)		_	6.73 0.93

Backup - Overview of CR models in Pythia8

MPI-based model (CR0) reconnection probability

 $rac{d\sigma}{dp_T^2}\sim rac{lpha_S^2(p_T^2)}{p_T^4}
ightarrow rac{lpha_S^2(p_{T,0}^2+p_T^2)}{(n_T^2+n_T^2)^2}$

 p_{T0} regularises the partonic cross-section to avoid divergence at low p_{T}

$$p_{\rm T0} = p_{\rm T0}^{\rm ref} \left(\frac{E_{\rm CM}}{E_{\rm CM}^{\rm ref}}\right)^{E_{\rm CM}^{\rm pow}}$$

- p_{T0}^{ref} is the value of p_{T0} at a reference energy E_{CM}^{ref}
- E_{CM}^{pow} us a tunable parameter

use Bayes theorem recursively and use our truth distribution as a prior

Iterations optimisation

- With higher iterations, the negative correlations increases
 - correlations are expected to go from positive to negative it is expected to have a minimum

$$\rho_{i} = \sqrt{1 - \left(\operatorname{Cov}_{ii} \cdot \operatorname{Cov}_{ii}^{-1}\right)^{-1}}, \qquad \rho_{\text{avg}} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} \rho_{i}$$