Cosmic-Ray Insights from NA61/SHINE at the CERN SPS

Michael Unger (KIT)

NA35 3.2 TeV O+Pb interactions

Teilchenkolloquium TU Dortmund

NA61/SHINE

pprox 140 physicists from 14 countries and 28 institutions

Strong interactions physics

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- heavy quarks: direct measurement of open charm at SPS energies

Neutrino and cosmic ray physics

- hadron measurements for the J-PARC neutrino program
- · hadron measurements for the Fermilab neutrino program
- measurements for cosmic ray physics (Pierre-Auger and KASCADE experiments) for improving air shower simulations
- measurements of nuclear fragmentation cross sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy

cosmic ray groups: KIT (Germany), Uni. Hawaii (USA), Uni. Silesia (Poland)

The Super Proton Synchrotron (SPS) at CERN

Maximum Beam Momentum: $Z \times 450$ GeV/c, accelerates p, \bar{p} , O, S, Ar, Pb..

H2 Beam Line: Primary Beam, fragments, π^\pm , K $^\pm$...

A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer

EHN1 Building NA61

Interaction Target at NA61/SHINE (Hz, C, ...)

NA61/SHINE

Particle Production Measurement at NA61/SHINE

- large acceptance $\approx 50\%$ at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%, pid with dE/dx and ToF

Particle Production Measurement at NA61/SHINE

Particle Production Measurement at NA61/SHINE

• Particle Production in Air Showers

p+C Interactions
 (31, 60, 90 120 GeV/c)

π+C Interactions (30, 60, 158, 350 GeV/c)

- Galactic Cosmic Rays
 - d, \bar{d} and \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

• Particle Production in Air Showers

- p+C Interactions (31, 60, 90 120 GeV/c)
- π+C Interactions

 (30, 60, 158, 350 GeV/c)

 \leftarrow this talk

Galactic Cosmic Rays

• d, \bar{d} and \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

• Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c) \leftarrow this talk

• Particle Production in Air Showers

• p+C Interactions (31, 60, 90 120 GeV/c)

• π+C Interactions (30, 60, 158, 350 GeV/c)

• Galactic Cosmic Rays

- *d*, *d* and *p* Production
 (p+p at 20, 31, 40, 80, 158, 400 GeV/c)
- Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

 \leftarrow this talk

Detection of Ultrahigh-Energy Cosmic Rays

fluorescence telescope

particle detector

Detection of Ultrahigh-Energy Cosmic Rays

Telescope Array

Particle Physics at UHE

ATLAS@LHC

- $E_{beam} = 6.5 \text{ TeV}$
- $\sqrt{s} = 13 \text{ TeV}$
- 7 kt detector

Pierre Auger Observatory*

- $E_{beam} > 1 \times 10^8 \text{ TeV}$
- \sqrt{s} > 400 TeV**
- 20 kt water-Cherenkov
- 25 Gt air calorimeter

* to scale but stacked, actual area: 3000 km²
** for p+air (> 60 TeV for Fe+air)

LHC and UHECR Luminosity

The UHE "Muon Puzzle"

Working Group on Hadronic Interactions and Shower Physics (D.Soldin et al) PoS ICRC2021 349, arXiv:2108.08341

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

I.C. Maris for NA61/SHINE, Proc. 31st ICRC, (2009)

 $2/3 E_0 \approx 0.67 E_0$

simple model: π^+ , π^- , π^0

• energy fraction $f\sim 2/3$ to π^\pm

 $31^3 E_0 \approx 0.30 E_0$

- energy fraction $(1-f) \sim 1/3$ to π^0
- \rightarrow fraction of initial energy in hadronic component after n interactions: f^n

 $(2/3)^{2}E_{0}\approx 0.13E_{0}$

 $(2/3)^2 E_0 \approx 0.44 E_0$

 $2/3 E_0 \approx 0.67 E_0$

simple model: π^+ , π^- , π^0 , ...

 $1/3^{3}E_{0} \approx 0.30 E_{0}$

- $f\sim (2/3+\Delta)$ to ${\sf h}^{\pm},$ baryons
- $(1-f)\sim (1/3-\Delta)$ to π^0
- after n generations: $f = (2/3 + \Delta)^n$ $\approx (2/3)^n (1 + 3/2 n \Delta)$

 $(2/3)^{\circ}E_{0}\approx 0.13\,E_{0}$

 $(2/3)^2 E_0 \approx 0.44 E_0$

number of muons depends on energy fraction f of produced hadrons

Particle Production Measurement with NA61/SHINE

Particle Production Measurement with NA61/SHINE

Particle Production Measurement with NA61/SHINE

Pion Production in π^- -C at 158 GeV/c ("the 2/3")

NA61/SHINE Collaboration, arXiv:2209.10561

• *p*_T-integrated spectra

• area under curves:
$$rac{1}{N_{\mathsf{prod}}}\int p\,rac{dn}{dp}dp=f_{\pi}\cdot p_{\mathsf{beam}}$$

ho^0 and $ar{f p}$ Production in π^- -C at 158 GeV/c ("the Δ "*)

NA61/SHINE EPJ C77 (2017) 626

NA61/SHINE Collaboration, arXiv:2209.10561

- forward ${oldsymbol
 ho}^0$ can replace $\pi^0 o \gamma\gamma$
- p
 is proxy for baryon production (p, p
 , n, n
)

 * and Λ , $\bar{\Lambda}$, K $^{\pm}$, K $^0_{S}$...

ho^0 and $ar{f p}$ Production in π^- -C at 158 GeV/c ("the Δ "*)

energy fraction of ρ^0 and \bar{p} :

 * and Λ , $\overline{\Lambda}$, K^{\pm} , K_S^0 ...

Solution to the "Muon Puzzle"?

Riehn, Fedynitch, Engel UHECR22

√*s* (GeV)

$$P_{\pi^0 \to \rho^0} = 0.6 \times (x_{\rm F})^{0.4}$$

Riehn, Fedynitch, Engel UHECR22

• Particle Production in Air Showers

- p+C Interactions (31, 60, 90 120 GeV/c)
- π+C Interactions
 (30, 60, 158, 350 GeV/c)

Galactic Cosmic Rays

• d, \bar{d} and \bar{p} Production

(p+p at 20, 31, 40, 80, 158, 400 GeV/c)

 Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

$\leftarrow \mathsf{this} \mathsf{talk}$

Particle Production in the Galaxy

E

p,e

https://physics.aps.org/articles/v6/4

Particle Production in the Galaxy

- CR-grammage X ("target thickness") from secondary nuclei, e.g. boron/carbon flux ratio (B/C)
- halo size ("target length") from unstable secondaries e.g. ¹⁰Be/⁹Be
- thin target approximation $\rightarrow X \sim (B/C) \frac{m_p}{\sigma_{prod}}$

$$\lambda_{\rm prod} = \frac{m_p}{\sigma_{\rm prod}} = m_p \, \left(\frac{\sum \Psi_i \times \sigma(i + p \to B)}{\sum \Psi_i} \right)^{-1}, \qquad i = {\rm C, N, O, \ldots}$$

• prediction for e.g. anti-protons ($X\ll\lambda_{par{p}}$):

$$(\bar{p}/p) \sim X/\lambda_{p\bar{p}} = (\mathsf{B}/\mathsf{C}) \, \frac{\sigma_{p\bar{p}}}{\sigma_{\mathsf{prod}}}$$

• relative uncertainty $\delta_X = \delta(X)/X$

 $\delta_{\bar{p}/p}^2 \sim \delta_{(\mathsf{B/C})}^2 + \delta_{\sigma_{p\bar{p}}}^2 + \delta_{\sigma_{prod}}^2 \sim \underline{0.03^2 + 0.2^2 + 0.2^2}$

Uncertainties of Cosmic-Ray Fluxes

Uncertainties of Fragmentation Cross Sections

Example: ¹²C+p \rightarrow B (including ¹¹C)

adapted from Reinert&Winkler, arXiv:1712.00002

61.0 mb (WSKR03) (68.6 \pm 2.6) mb (RW17a), (75.8 \pm 4.2) mb (RW17b)

Uncertainty of CR grammage ("target thickness")

N. Tomassetti, PRD 2017

Heisig+2021

\rightarrow dominated by cross-section uncertainties!

Size of the Galactic Halo ("target length")

ightarrow large uncertainties due to cross-section uncertainties!

Weinrich+20, Evoli+20, Lugue+21, Maurin+22

New Cosmic-Ray Surprises: F Anomaly and Li Excess

primary source of Li? spatial dependent diffusion? fragmentation cross sections?

2209.03799,2208.01337,2006.01337,2203.00522,2102.13238,2002.11406,2006.01337

New Measurements of Nuclear Fragmentation Needed!

relevant reaction channels for Li, Be, B:

Tomassetti 2018

\rightarrow study production of light nuclei at SPS!

Genolini+18

NA61/SHINE Pilot Run on Fragmentation, Dec 2018

reaction-fragment identification

- 2.5 days data taking at 13.5 AGeV/c
- events after upstream ¹²C selection:
 - 1.7×10^5 CH₂-target
 - 1.5×10^5 C-target
 - 0.4×10^5 empty-target

Particle Id in TPC: a) Z² via dE/dx

NA61/SHINE@ICRC19, arXiv:1909.07136

Particle Id in TPC: b) A/Z via in deflection in B-field

NA61/SHINE@ICRC21, arXiv:2107.12275

Results from Pilot Run on Boron Production (preliminary)

NA61/SHINE Status Report 2022, lines from C.Evoli, R.Aloisio, P.Blasi PRD 2019

Recent Detector LS2 Upgrades

Outlook

Upcoming Cosmic-Ray Possibilities

- 2023 fragmented Pb beam? production of GCR secondaries Li, Be, B
- 2024 primary/fragmented oxygen? energy dependence, low-mass CR fragmentation
- 2025 hight statistics p-p? nucleon coalescence, anti-deuterons
- physics program after LS3 (> 2028)?

inside NA61 (Julien Ordan/CERN)

backup slides

Nuclear Fragmentation in Air Showers

Engel&Pierog ISVHECRI 2010