Niklas Nolte

15. December 2022

Lipschitz Networks and Energy Movers Distance

Overview

- 1. 15-30 seconds of ads
- 2. The LHCb trigger
- 3. Lipschitz Networks Robustness and Monotonicity
- 4. Energy Movers Distance
- 5. Differentiable EMD

Event 11177639 Run 169235 Mon, 07 Dec 2015 10:38:25

The Trigger at LHCb

LHCb Raw data 15000 PB/year

LHCb storage capacity 30 PB/year

Select only interesting events: Hybrid approach of expert systems and ML

Real time data reduction: 5 TB/s \rightarrow 10GB/s

The Trigger at LHCb

Real time expert systems + ML to process 5 TB/s

→ High performance software on GPU and CPU

500x data reduction
 → high purity selection and good event compression

Event Selection -- data reduction

Trigger: mostly an expert system

Many subsystems look for particular decays \rightarrow Strong reduction and purity \checkmark

Some look for general signatures, weaker selection → Achieve good purity with ML classifiers Need guarantees to employ these! No room for error

Guarantees needed:

- 1. Robustness w.r.t small changes
- 2. Monotonicity in certain features for OOD guarantees

(Adversarial) Robustness

"Dog"

many SOTA ML models are proven to be highly unstable

perturbed noise x127 "Toilet tissue"

Robustness := $F(x + \epsilon) = F(x) + O(\epsilon)$

I am looking for deterministic robustness, i.e. provably robust networks!

Two Decision Landscapes

Deterministic Robustness - How?

WLOG: Binary classifier: $F : \mathbb{R}^n \to \mathbb{R}$

Constrain gradient wrt inputs, i.e. make it Lipschitz-L $\|\nabla F\| \le L$

A perturbation ϵ to an input x needs certain magnitude to flip the sign:

 $\operatorname{sign} F(x + \epsilon) = -\operatorname{sign} F(x) \implies \|\epsilon\| > \frac{|F(x)|}{\tau}$

Lipschitz Networks

WLOG: $F(x) = W^{(2)} \cdot \sigma(W^{(1)} \cdot x + b)$

 $\|\nabla F\| \leq L$ can be enforced by constraining weights

In an MLP with Lipschitz-1 activations: $L \leq \| W^{(i)} \|$ (Toeplitz matrix for CNNs)

Maintain a maximum operator norm $||W^{(i)}||$ in every layer

Lipschitz-L guaranteed!

$$(^{(1)}) + b^{(2)}$$

Monotonic Networks

We care about tails!

Guarantees about OOD with monotonicity

Expressive monotonic networks are not obvious

Existing algorithms involve monotonic regularization or nonexpressive architectures

Monotonic Lipschitz Networks

Combine Lipschitz networks with monotonicity!

Lipschitz- $L: ||\nabla F|| \leq L$

Monotonic Lipschitz Networks $M(x) = F(x) + L \sum x_i$

∂М	∂F	<i>I</i>
∂x_i	∂x_i	TL

+*L* contribution in every direction x_i $\|\nabla F\| \le L$ is not good enough

We want $\|\nabla F\|_{\infty} \leq L$!

Activations

Universal Lipschitz Approximation

 $F(x) = W^{(2)} \cdot \sigma(W^{(1)} \cdot x + b^{(1)}) + b^{(2)}$ $||W^{(i)}|| \leq 1 \leftarrow \text{over-constraining}?$

Activations need $\|\nabla\sigma\| = 1$

Pointwise activations are useless!

Solution:

Summary - Monotonic Lipschitz Functions $\left\|W\right\|_{2} \leq L$ $\left\|W\right\|_{1} \leq L$ $\partial[M,F]$ This architecture is ∂x_2 1. provably robust 2. provably monotonic 3. universally approximating 2Lthe target function class $\partial[M,F]$ ∂x_1 4. working well in practice → Implemented in the LHCb

trigger for many major selections

17

HLT1 Inclusive b&c lines -- 2D subproblem

Energy Flow and Energy Movers Distance

Energy Flow

$$\mathscr{E}(x) = \sum_{i} E_{i} \delta(x - x_{i})$$

2D projection on (y, ϕ)

Infrared robust IRC Collinear robust

IRC robust information is contained in $\ensuremath{\mathscr{E}}$

IRC invariance

Infrared: Zero energy radiation

Collinear: Split one particle into two identical ones with $\angle 0$

IRC invariant observable
→ perturbative description possible

Energy Flow

Question: What shape is that?

Question: What shape is that? Answer: It is a circle!

Why do we care?

Many classic observables are defined by "similarity to some shape"

Many new ones will also be

https://doi.org/10.1007/JHEP07(2020)006

24

Optimal Transport - Earth Movers Distance

Optimal Transport - Earth Movers Distance

Optimal Transport - Earth Movers Distance

$EMD(\mathbb{P}, \mathbb{Q}) = \inf_{\substack{\gamma \in \Pi(\mathbb{P}, \mathbb{Q}) \\ \text{Joint Distribution}}} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$ $\int_{\text{Ion 1}} \int_{\text{Ion 2}} \int_{\text{Coordinates}} \frac{1}{|x - y||} = \int_{\text{Coordinates}} \frac{1}{|x - y||}$

Energy Movers Distance

Energy Movers Distance A proper metric!

$$\text{EMD}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{ij} f_{ij} \frac{\theta_{ij}}{R} + \left| \sum_{i} E_i - \sum_{j} E_i \right|$$

Energy Movers Distance

From https://energyflow.network/docs/emd/

Energy Movers Distance

Event 2

 $EMD(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \gamma} [\|x - y\|]$ Event 1 Particle Coordinates -

Kantorovich-Rubenstein Dual Formulation

$\mathrm{EMD}(\mathbb{P},\mathbb{Q}) = \sup_{\|\nabla F\| \le 1} \mathbb{E}_{x \sim \mathbb{P}} [F(x)] - \mathbb{E}_{y \sim \mathbb{Q}} [F(y)]$

Kantorovich potential -

What shape is that?

Answer via geometric fitting!

Joint EMD Optimization

Use cases:

Unify many useful LHC observables

New observables at LHC?

EMD observables

These are handcrafted observables for the LHC, maybe find new ones?

A new playing field: the EIC 1. Electron Ion vs. Proton Proton 2. Lab Frame vs. Breit Frame

Find new observables that yield high information/discrimination!

N-Circliness, N-Ellipsiness or any shape of our choosing

With geometric fitting we unify N-(sub)jettiness, Thrust, Event Isotropy etc.

Summary

- 1. 15-30 seconds of ads
- 2. The LHCb trigger
- 3. Lipschitz Networks Robustness and Monotonicity
- 4. Energy Flow and Energy Movers Distance
- 5. Fitting with the EMD