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1. 15-30 seconds of ads


2. The LHCb trigger


3. Lipschitz Networks - Robustness and Monotonicity


4. Energy Movers Distance


5. Differentiable EMD
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3 IAIFI.org

http://iaifi.org


4



5



The Trigger at LHCb
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Select only interesting events: 
Hybrid approach of expert systems and ML


Real time data reduction: 5 TB/s  10GB/s→



The Trigger at LHCb
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Real time expert systems + ML 
to process 5 TB/s 

 High performance software 
     on GPU and CPU  
 

500x data reduction 
 high purity selection and 

     good event compression


→

→



Event Selection -- data reduction

Trigger: mostly an expert system


Many subsystems look for particular decays 
   Strong reduction and purity ✅


Some look for general signatures, weaker selection 
   Achieve good purity with ML classifiers 
       Need guarantees to employ these! No room for error 

Guarantees needed: 
1. Robustness w.r.t small changes 
2. Monotonicity in certain features for OOD guarantees

→

→
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(Adversarial) Robustness
many SOTA ML models are proven to be highly unstable 
 
 
 
 
 

 
Robustness   

I am looking for deterministic robustness, i.e. provably robust networks!

:= F(x + ϵ) = F(x) + O(ϵ)
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Two Decision Landscapes
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Deterministic Robustness - How?
WLOG: Binary classifier:  


Constrain gradient wrt inputs, i.e. make it Lipschitz-  
   


A perturbation  to an input  needs 
certain magnitude to flip the sign:


    

F : ℝn → ℝ

L
∥∇F∥ ≤ L

ϵ x

sign F(x + ϵ) = − sign F(x) ⇒ ∥ϵ∥ >
|F(x) |

L
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Lipschitz Networks

WLOG: 


  can be enforced by constraining weights


In an MLP with Lipschitz-1 activations:  
(Toeplitz matrix for CNNs)


Maintain a maximum operator norm  in every layer


Lipschitz-  guaranteed!

F(x) = W(2) ⋅ σ(W(1) ⋅ x + b(1)) + b(2)

∥∇F∥ ≤ L

L ≤ ∏ ∥W(i)∥

∥W(i)∥

L
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Monotonic Networks
We care about tails!


Guarantees about OOD 
with monotonicity


Expressive monotonic networks 
are not obvious


Existing algorithms involve 
monotonic regularization or non-
expressive architectures
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Monotonic Lipschitz Networks
Combine Lipschitz networks 
with monotonicity!


  


 

 

    Lipschitz-  : 

M(x) = F(x) + L∑
i

xi

∂M
∂xi

=
∂F
∂xi

+ L ≥ 0

L ∥∇F∥ ≤ L
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Monotonic Lipschitz Networks
∂[M, F]

∂x2

∂[M, F]
∂x1

2L

2L

+L∑
i

xi
 

 contribution in every direction  
  is not good enough

M(x) = F(x) + L∑
i

xi

∂M
∂xi

=
∂F
∂xi

+ L

+L xi
∥∇F∥ ≤ L
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∏ |W |2 ≤ L

∏ |W |1 ≤ L

We want  !∥∇F∥∞ ≤ L



Universal Lipschitz Approximation





      over-constraining?


Activations need 


Pointwise activations are useless!


Solution:

F(x) = W(2) ⋅ σ(W(1) ⋅ x + b(1)) + b(2)

∥W(i)∥ ≤ 1 ←

∥∇σ∥ = 1

Activations

16

∂[M, F]
∂x2

∂[M, F]
∂x1

2L

2L

∏ |W |2 ≤ L

∏ |W |1 ≤ L



Summary - Monotonic Lipschitz Functions
This architecture is


1. provably robust


2. provably monotonic


3. universally approximating 
    the target function class


4. working well in practice


 Implemented in the LHCb 
trigger for many major selections
→
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∂[M, F]
∂x2

∂[M, F]
∂x1

2L

2L

∏ |W |2 ≤ L

∏ |W |1 ≤ L



HLT1 Inclusive b&c lines -- 2D subproblem
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Energy Flow and 
Energy Movers Distance



Energy Flow




2D projection on 


Infrared robust


Collinear robust 

IRC robust information is contained in  

ℰ(x) = ∑
i

Ei δ(x − xi)

(y, ϕ)

ℰ
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IRC invariance

Infrared: 
Zero energy radiation


Collinear: 
Split one particle into two identical 
ones with 


IRC invariant observable 
 perturbative description possible

∠ 0

→
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Energy Flow

Question: What shape is that?


22



A circle!
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Question: What shape is that?


Answer: It is a circle!



A circle!

24

Why do we care? 
 
Many classic observables are defined 
by "similarity to some shape"


Many new ones will also be

https://doi.org/10.1007/JHEP07(2020)006



Optimal Transport - Earth Movers Distance

25



Optimal Transport - Earth Movers Distance
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EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[∥x − y∥]
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Distribution 1
Distribution 2 Coordinates

Joint Distribution

Optimal Transport - Earth Movers Distance



Energy Movers Distance
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Energy Movers Distance


A proper metric!
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From https://energyflow.network/docs/emd/

Energy Movers Distance



EMD(ℙ, ℚ) = inf
γ∈Π(ℙ,ℚ)

𝔼(x,y)∼γ[∥x − y∥]
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Event 1
Event 2 Particle Coordinates

Energies

Energy Movers Distance



Kantorovich-Rubenstein Dual Formulation
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EMD(ℙ, ℚ) = sup
∥∇F∥≤1

𝔼x∼ℙ[F(x)] − 𝔼y∼ℚ[F(y)]

Kantorovich potential
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What shape is that? 

Answer via 
geometric fitting!



Joint EMD Optimization
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Parametrized Distribution
ℙ = {wi

θ, yi
θ}

m
i=1

Target Distribution
ℚ = {ei, xi}n

i=1

Lipschitz Network

fϕ(x)

EMD estimation

EMDϕ(ℙθ, ℚ)

Minimize

θ → θ − ∇θEMDϕ

M
axim

ize      
ϕ

→
ϕ

+
∇

ϕ EM
D

ϕ

Parametrized shape: 
θ

Forward pass
Backward pass

EMD(ℙ, ℚ) = sup
∥∇F∥≤1

𝔼x∼ℙ[F(x)] − 𝔼y∼ℚ[F(y)]



Joint EMD 
Optimization
Use cases:


Unify many useful LHC 
observables


New observables at LHC?
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EMD observables
With geometric fitting we unify N-(sub)jettiness, Thrust, Event Isotropy etc. 
 
These are handcrafted observables for the LHC, maybe find new ones? 
 
A new playing field: the EIC 
  1. Electron Ion vs. Proton Proton 
  2. Lab Frame vs. Breit Frame 

Find new observables that yield high information/discrimination! 
 
N-Circliness, N-Ellipsiness or any shape of our choosing
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Summary

1. 15-30 seconds of ads


2. The LHCb trigger


3. Lipschitz Networks - Robustness and Monotonicity


4. Energy Flow and Energy Movers Distance


5. Fitting with the EMD
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