PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

Giovanni Morlino

INAF/Osservatorio Astrofisico di Arcetri Firenze, ITALY

LECTURE II

4th graduate school on Plasma-Astroparticle Physics

Jan.29 - Feb. 3, 2023 Bad Honnef

G. Morlino, Bad Honnef - Feb 2023

OUTLINE

- From diffusion to energy gain
 - The nature of collision-less shocks
 - First order Fermi acceleration
- Maximum energy in Diffusive Shock Acceleration (DSA)
- Self-generation of magnetic waves
 - Resonant (streaming) instability
 - Non-resonant (Bell) instability
- The injection problem
- Application to SNR shocks
 - Radiative processes
 - The role of scattering centres
 - * SNR in non homogeneous medium

We look for a transport equation for the CR distribution function $f(t, \vec{x}, \vec{p}) \stackrel{\text{def}}{=} \frac{dN}{d^3 x d^3 p}$

Because we can neglect collisions, we can use the Liouville theorem:

$$\begin{cases} \frac{Df}{Dt} = \frac{\partial f}{\partial t} + \vec{u} \cdot \nabla_x f + \dot{\vec{p}} \cdot \nabla_p f = 0 & \text{Vlasov equation} \\ \dot{\vec{p}} = q \frac{\vec{u}}{c} \wedge \vec{B} & \text{Lorentz force} \end{cases}$$

[See sec. 4.3 in Vietri, "Foundation of High energy Astrophysics"]

$$\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = \nabla \left[D_{xx} \nabla f \right] + \frac{p}{3} (\nabla \cdot \vec{u}) \frac{\partial f}{\partial p} + Q(z, p)$$

$$D_{xx} = \frac{1}{3} \frac{r_L c}{k_{res} F(k_{res})}$$

$$\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = \nabla [D\nabla f] + \frac{p}{3} (\nabla \cdot \vec{u}) \frac{\partial f}{\partial p} + Q(z, p)$$

Stationary 1D system \hat{Q} ∂t $\nabla_x \rightarrow \partial_z$ $u(z) = u_2 + (u_1 - u_2)\theta(z)$

$$/\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = \nabla [D\nabla f] + \frac{p}{3} (\nabla \cdot \vec{u}) \frac{\partial f}{\partial p} + Q(z, p)$$

$$\int \frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = \nabla [D\nabla f] + \frac{p}{3} (\nabla \cdot \vec{u}) \frac{\partial f}{\partial p} + Q(z, p)$$

Integration across the shock discontinuity

$$0 = -\left[D\frac{\partial f}{\partial z}\right]_{0^{+}} + \frac{u_1 - u_2}{3}p\frac{\partial f_0}{\partial p} + Q_0(p)$$

Integration from 0^+ to ∞

$$u_1(f_{\infty} - f_0) = -\left[D\frac{\partial f}{\partial z}\right]_{0^+}$$

Full transport equation for CR distribution at the shock position

$$p\frac{\partial f_0}{\partial p} = \frac{3u_1}{u_1 - u_2} \left[(f_0 - f_\infty) - \frac{Q_0(p)}{u_1} \right]$$

Full transport equation for CR distribution at the shock position

 $\rightarrow_{u_1 \rightarrow 4 u_2} 4$

$$p\frac{\partial f_0}{\partial p} = \frac{3u_1}{u_1 - u_2} \left[(f_0 - f_\infty) - \frac{Q_0(p)}{u_1} \right]$$

Spectral slope
$$s = \frac{3 u_1}{u_1 - u_2}$$

Solution at the shock

Solution upstream and downstream of the shock

$$u\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[D\frac{\partial f}{\partial z} \right] + \frac{p}{3} \frac{du}{dz} \frac{\partial f}{\partial p} + Q_0(p) \delta(z)$$

Shock $z = 0$
$$\int f(z, p) = f_0(p)$$

Upstream

$$f_{up}(z, p) = f_0(p)e^{-uz/D}$$

The typical diffusion length upstream is D/u

In the '70s many people realized that the Fermi mechanism give a totally different result if applied to shocks (Skilling, 1975; Axford et al., 1977; Krymskii, 1977; Bell, 1978; Blandford and Ostriker, 1978)

WHAT IS A SHOCK?

THE NATURE OF COLLISIONLESS SHOCKS

What is a shock?

A shock is a discontinuity solution of the fluid equations where a supersonic fluid becomes subsonic (i.e. the entropy increases)

What is a shock?

A shock is a discontinuity solution of the fluid equations where a supersonic fluid becomes subsonic (i.e. the entropy increases)

2) Does the fluid equations describe correctly astrophysical plasmas?

What produce the shock transition?

But observationally (from Balmer emission):

 $\lambda_{sh} \ll 10^{15} cm = 3 \times 10^{-4} pc$

Thickness ~ $10'' \rightarrow 3x10^{17}$ cm H α resolution ~ $0.7'' \rightarrow 2x10^{16}$ cm

What produce the shock transition?

Length-scale for EM processes:

Electron skin depth
$$\frac{c}{\omega_{pe}} = \left(\frac{m_e c^2}{4\pi n_e e^2}\right)^{1/2} = 5.3 \times 10^5 n_e^{-1/2} cm$$
$$\omega_{pe} = electron plasma frequency$$
$$\omega_{pi} = ion plasma frequency$$

The shock transition is mediated by electromagnetic interactions. Collisions have no role → the Mach number does not properly describe the shock properties

Alvénic Mach number is more appropriate:

$$M_{A} = \frac{v_{sh}}{v_{A}}; \quad v_{A} = \frac{B}{\sqrt{4\pi\rho}} \approx 2 B_{\mu G} \left(\frac{n}{cm^{-3}}\right)^{-1/2} km/s$$

Alfvén waves are a combination of electromagnetic-hydromagnetic waves

Analogy with waves on a string: $v = \sqrt{T/\mu}$; $T \rightarrow B^2/4\pi$, $\mu \rightarrow \rho$

The shock transition is mediated by electromagnetic interactions. Collisions have no role → the Mach number does not properly describe the shock properties

Alvénic Mach number is more appropriate:

$$M_{A} = \frac{v_{sh}}{v_{A}}; \quad v_{A} = \frac{B}{\sqrt{4\pi\rho}} \approx 2 B_{\mu G} \left(\frac{n}{cm^{-3}}\right)^{-1/2} km/s$$

Alfvén waves are a combination of electromagnetic-hydromagnetic waves

Analogy with waves on a string: $v = \sqrt{T/\mu}$; $T \rightarrow B^2/4\pi$, $\mu \rightarrow \rho$

Collisionless shocks require $M_A > 1$

Which instability is responsible for the shock transition?

Two stream instability
Weibel instability
Oblique instability
Filamentation
....

SHOCKS ARE EVERYWHERE...

HOW DO SHOCKS ACCELERATE PARTICLES?

ACCELERATION AT SHOCK WAVES: THE TEST-PARTICLE APPROACH

ENERGY GAIN

$$E_{2} = \frac{(1 - \beta_{rel} \mu_{in})(1 + \beta_{rel} \mu'_{out})}{1 - \beta_{rel}^{2}} E_{1}$$

ACCELERATION AT SHOCK WAVES: THE TEST-PARTICLE APPROACH

<u>ENERGY GAIN</u>

$$E_{2} = \frac{(1 - \beta_{rel} \mu_{in})(1 + \beta_{rel} \mu'_{out})}{1 - \beta_{rel}^{2}} E_{1}$$

Averaging over $0 \le \mu_{in} \le 1$ and $-1 \le \mu_{out} \le 0$:

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{1 + \frac{4}{3}\beta_{rel} + \frac{4}{9}\beta_{rel}^2}{1 - \beta_{rel}^2} - 1 \simeq \frac{4}{3}\beta_{rel}$$

The energy gain is now 1st order in V_{sh} because in each cycle $upstream \rightarrow downstream \rightarrow upstream$ the particle can only gain energy

$$J_{\infty} = n u_{2}$$

$$J_{-} = \int \frac{d\Omega}{4\pi} n c \cos(\theta) = \frac{nc}{4}$$

$$P_{esc} = \frac{J_{\infty}}{J_{+}} = \frac{J_{\infty}}{J_{\infty} + J_{-}} \approx 4\frac{u_{2}}{c}$$

Escaping probability

$$J_{\infty} = n u_{2}$$

$$J_{-} = \int \frac{d\Omega}{4\pi} n c \cos(\theta) = \frac{nc}{4}$$

$$P_{esc} = \frac{J_{\infty}}{J_{+}} = \frac{J_{\infty}}{J_{\infty} + J_{-}} \approx 4\frac{u_{2}}{c}$$

Escaping probability

Energy after k interactions:

$$E_k = E_0 (1+\xi)^k \rightarrow k = \frac{\ln(E/E_0)}{\ln(1+\xi)}$$

$$J_{\infty} = n u_{2}$$

$$J_{-} = \int \frac{d\Omega}{4\pi} n c \cos(\theta) = \frac{nc}{4}$$

$$P_{esc} = \frac{J_{\infty}}{J_{+}} = \frac{J_{\infty}}{J_{\infty} + J_{-}} \approx 4\frac{u_{2}}{c}$$

Escaping probability

Energy after k interactions:

$$E_k = E_0 (1+\xi)^k \rightarrow k = \frac{\ln(E/E_0)}{\ln(1+\xi)}$$

The number of particles with energy > E is:

$$N(>E) \propto \sum_{i=k}^{\infty} (1-P_{\rm esc})^i = \frac{(1-P_{\rm esc})^k}{P_{\rm esc}} = \frac{1}{P_{\rm esc}} \left(\frac{E}{E_0}\right)^{-\delta}$$

$$\delta = -\frac{\ln(1 - P_{esc})}{\ln(1 + \xi)} \simeq \frac{P_{esc}}{\xi} \qquad \begin{array}{c} \text{Both} \\ \text{independent} \\ \text{on energy} \end{array}$$

Differential energy spectrum:

$$f(E) \equiv \frac{dN}{dE} \propto E^{-\alpha}$$

Slope:

$$\alpha = 1 + \delta \simeq 1 + \frac{P_{esc}}{\xi}$$

$$= 1 + \frac{4u_2/c}{4(u_1 - u_2)/3c}$$

$$= \frac{r+2}{r-1} \rightarrow 2$$

For strong shocks and monoatomic gas: $r \equiv \frac{u_1}{u_2} \rightarrow 4$

Spectrum in momentum *p*:

$$4\pi p^2 dp f(p) = f(E) dE$$

$$f(E) \propto E^{-2} \rightarrow f(p) \propto p^{-4}$$

Important points:

1) The particle spectrum obtained from the 1st order Fermi acceleration is independent from the scattering properties

2) A power law spectrum is the consequence of P_{esc} and $\Delta E/E$ being independent on the initial energy

3) The spectrum $f(E) \sim E^{-2}$ is valid for strong shocks $(r \rightarrow 4)$

What depends on the scattering properties is the maximum achievable energy

Is it possible to accelerate protons up to the knee?

The maximum energy is obtained comparing the acceleration time with the age of the accelerator and the energy losses

Acceleration time:
$$t_{acc} = \frac{t_{cycle}}{\Delta E/E}$$

Energy losses are usually negligible for protons but are important for electrons

Time for one cycle upstream \rightarrow downstream \rightarrow upstream: $t_{cycle} = \tau_{diff,1} + \tau_{diff,2}$

Equating the particle injected from
downstream with the particles upstream:
$$\frac{nc}{4}\Sigma\tau_{\text{diff},1} = n\Sigma\frac{D_1}{u_1} \implies \tau_{\text{diff},1} = \frac{4D_1}{c\,u_1} \wedge \tau_{\text{diff},2} = \frac{4D_2}{c\,u_2}$$

Maximum energy can increase only during the ejecta dominated phase of the SNRs because $u_{sh} \sim const$

Shock radius: $\begin{cases} R_{sh}(t) \propto t^{4/7} & \text{Ejecta-dominated} \\ R_{sh}(t) \propto t^{2/5} & \text{Sedov-Taylor} \end{cases}$

But particles diffuse ahead of the shock: $d \propto \sqrt{Dt}$

 \rightarrow during the ST phase the highest energy particles cannot be caught by the shock and escape towards upstream

Estimate of the beginning of the Sedov-Taylor phase:

 $\begin{cases} t_{ST} = R_{ST} / u_{sh} \\ E_{SN} = \frac{1}{2} M_{ej} u_{sh}^2 \\ M_{ej} = \frac{4\pi}{3} \rho_{ISM} R_{ST}^3 \end{cases}$ $t_{\rm ST} \approx 50 \left(\frac{M_{\rm ej}}{M_{\odot}}\right)^{\frac{3}{6}} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right)^{-\frac{1}{2}} \left(\frac{n_{\rm ISM}}{{\rm cm}^{-3}}\right)^{-\frac{1}{3}} {\rm yr},$

Maximum energy can be obtained by equating the acceleration time with the end of the ejecta dominated phase:

High energies, up to PeV, can be achieved only if $\mathcal{F}(k) >> 1$.

Turbulence is injected at a scale comparable with the size of SNR (or super-bubbles) and than cascades at smaller scales.

Injection scale:

$$k_{0} = 1/L_{0} \approx (10 \ pc)^{-1}$$
Kolmogorov turbulence:

$$k F(k) = \frac{2}{3} \eta_{B} \left(\frac{k}{k_{0}}\right)^{-2/3}$$
Resonant scale:

$$k_{res}(E) = \frac{1}{r_{L}(E)} = 1 \times \left(\frac{E}{10^{15} eV}\right)^{-1} \left(\frac{B_{0}}{1 \mu G}\right) pc^{-1}$$

$$\implies k_{res} F(k_{res}) = \frac{2}{3} \eta_{B} \left(\frac{k_{res}}{k_{0}}\right)^{-2/3} \approx 10^{-2} \left(\frac{\eta_{B}}{0.1}\right)^{2/3} \left(\frac{E}{10^{15} eV}\right)^{2/3} B_{\mu G}^{-2/3}$$
We are missing 12 orders of magnitude!
Interstellar turbulence is not enough

Magnetic field needs to be amplified

SELF-GENERATION OF WAVES

WHO GENERATES WAVES?

WAVES MAY BE GENERATED BY DIFFERENT SOURCES (e.g. SN EXPLOSION) BUT THERE IS A MORE INTERESTING AND PHYSICALLY IMPORTANT PHENOMENON: SELF - GENERATION VIA RESONAT INSTABILITY

Charged particles moving transverse to the magnetic field line produce a variable magnetic field δB which perturbs B_0 producing an Alfvén wave.

 \rightarrow Alfvén waves, in turn, scatter particles

The effect of scatter is to isotropize CRs.

Generated Alfvén waves are circularly polarized

SELF GENERATION OF WAVES: RESONANT INSTABILITY

WAVES MAY BE GENERATED BY DIFFERENT SOURCES (e.g. SN EXPLOSION) BUT THERE IS A MORE INTERESTING AND PHYSICALLY IMPORTANT PHENOMENON: SELF - GENERATION VIA RESONAT INSTABILITY

[e.g. Skilling (1975), Bell & Lucek (2001), Amato & Blasi (2006)]

Assume particles are drifting with $v_{d} > v_{A}$ and are isotropyzed on a time-scale τ_{sc} :

$$\tau_{sc} \simeq \frac{1}{k F(k) \Omega}$$

final momentum

$$n_{CR} m \gamma_{CR} v_d \longrightarrow n_{CR} m \gamma_{CR} v_A$$

The momentum lost by particles is:

Initial momentum

$$\frac{dP_{CR}}{dt} = \frac{P_2 - P_1}{\tau_{sc}} = \frac{n_{CR} m \gamma_{CR} (v_d - v_A)}{\tau_{sc}}$$

SELF GENERATION OF WAVES: RESONANT INSTABILITY

The momentum lost is transferred to waves

Transport equation for waves:

$$\frac{dP_{CR}}{dt} = \frac{n_{CR}m\gamma_{CR}(v_d - v_A)}{\tau_{sc}}$$
$$\frac{dP_W}{dt} \approx \frac{\Gamma_W}{v_A} \frac{\delta B^2}{8\pi};$$

Equating momentum lost by CR and momentum gain by waves

$$\frac{dP_{W}}{dt} = \frac{dP_{CR}}{dt} \longrightarrow \Gamma_{W} = \frac{n_{CR}}{n_{gas}} \Omega_{cyc} \left(\frac{v_{D} - v_{A}}{v_{A}} \right)$$
$$\Omega_{cyc} = \gamma \Omega$$

Growth rate

For $n_{\rm CR}=10^{-10}$ cm⁻³, $n_{\rm gas}=0.1$ cm⁻³ and $B_0=1\mu$ G, and assuming $v_{\rm d}=2$ $v_{\rm A}$, one finds:

HOW MUCH THE SELF-GENERATED TURBULENCE CAN GROW?

Turbulence can grow for at most one advection time

Equating the grow time with the advection time we get the maximum level of turbulence at the shock:

$$F_0(k) = \frac{\pi}{2} \frac{\xi_{CR}}{\ln(p_{max}/m_p c)} \frac{u_{sh}}{v_A} \approx 10$$

The condition F(k) >> 1 violates the quasi-linear theory used to derive the growth time.

A more realistic estimate including the modification to the <u>dispersion relation</u> induced by CRs gives:

$$F_{0}(k) = \left(\frac{\pi}{6} \frac{\xi_{CR}}{\ln(p_{max}/m_{p}c)} \frac{c}{u_{sh}}\right)^{1/2} \leq 1$$

Resonant-amplification can produce $\delta B \sim B_0$

$$t_{adv} = D_1 / u_{sh}^2$$

$$t_{adv} = t_{grow} = 1/\Gamma_W$$

$$\begin{cases} \xi_{CR} = P_{CR} / (\rho u_{sh}^2) \sim 0.1 \\ u_{sh} \sim 5000 \, km/s \\ v_A \sim 10 \, km/s \\ p_{max} \sim 10^5 \, GeV \end{cases}$$

NON-RESONANT AMPLIFICATION

There are other possibility to amplify the magnetic field.

The most invoked one is the non-resonant Bell instability [Bell, A.R. (2004)]

This instability is excited by the force

$$\vec{j}_{CR} \times \delta \vec{B}$$

where the current is due to escaping particles upstream. It amplifies almost purely growing waves with wave-numbers much greater than the inverse particle gyroradius.

➔ works for very high shock velocity (initial phase of SNR expansion)

We can have
$$\frac{\delta B}{B_0} > 10$$
 if $\xi_{CR} = \frac{P_{CR}}{\rho u_{sh}^2} > 0.1$

DO WE SEE MAGNETIC FIELD AMPLIFICATION?

Galactic SNRs in X-rays

RX J1713.7-3946

Evidences for magnetic field amplification

Chandra X-ray map. Data for the green sector are from Cassam-Chenaï et al (2007)

Thin non-thermal X-ray filaments provide evidence for magnetic field amplification

[Hwang el al(2002); Bamba et al (2005)]

Assuming Bohm diffusion:

$$\begin{cases} D = r_L c/3 \propto E B^{-1} \\ \tau_{syn} = \frac{E}{dE/dt} = \frac{3 m_e c^2}{4 \sigma_T c \gamma \beta^2 U_B} \propto E^{-1} B^{-2} \end{cases}$$

X-ray thickness = Synchrotron loss-length

$$\Delta \simeq \sqrt{D \tau_{syn}} \propto B^{-3/2}$$

Evidences for magnetic field amplification

Thin X-ray rims (~0.1 pc) are observed in almost all young SNRs

Magnetic pressure downstream can reach ~few% of total pressure

SNR	B _{down} (μG)	$B^{2}_{down}/(8\pi p)$ [%]
Cas A	250-390	3.2-3.6
Kepler	210-340	2.3-2.5
Tycho	240-530	1.8-3.1
SN1006	90-110	4.0-4.2
RCW 86	75-145	1.5-3.8

Where is the magnetic field amplified?

DOWNSTREAM: MHD instabilities (shear-like)

UPSTREAM: only through instabilities driven by CRs (Streaming, Bell)

PARTICLE INJECTION

SIMULATIONS: results for the spectrum

Giovanni Morlino, Gaeta – 20 Sep 2013

Shock reformation

From Caprioli, Pop & Spitkovsky (2015)

Time

Shock reformation

From Caprioli, Pop & Spitkovsky (2015)

Supra-thermal ions Non-thermal ions time [ω_c^{-1}] time [ω_c^{-1}] 6г [⁴⁸] 15 10 5 Energy [Esh] time [ω_c^{-1}] time [ω_c^{-1}] 100_L Supra-thermal ions Non-thermal ions p_x [m_p v_A] p_x[m_pv_A] -20 -50 -60L -100L -30 -20 -10 -20 -10 x[c/w_] x[c/w_]

Ion injection

From Caprioli, Pop & Spitkovsky (2015)

Trajectories of test-particles impinging at random times on a periodically reforming shock with M = 10 and $\theta = 45^{\circ}$

Post-shock ion spectrum for a parallel shock with M = 20. The minimal model perfectly matches the spectrum obtained in simulations

Evidence for efficient shock acceleration in Earth bow shock

Earth Bow Shock (direct evidence)

>25% of energy flux in superthermal ions

Solar wind termination shock

The CR spectrum seen by Voyager

The CR spectrum seen by Voyager

Comparison between CR proton and He spectra observed locally (PAMELA and AMS) and the spectrum observed by Voyager in the Heliopause (shocked ISM).

The difference below ~ 20 GeV/n is due to the solar modulation.

NON-THERMAL EMISSION

EM radiation from accelerated particles

Radiative processes relevant for Galactic CR physics:

- > Leptons
 - Synchrotron emission $e^{\pm} + B \rightarrow e^{\pm} + \gamma$
 - Bremsstrahlung

$$e^{\pm} + Nucl. \rightarrow e^{\pm} + \gamma$$

$$e^{\pm} + \gamma_{bg} \rightarrow e^{\pm} + \gamma$$

 \triangleright

Hadrons • Pion production: $p_{CR} + p_{gas} \rightarrow p_{CR} + p_{gas} + \begin{cases} \pi^0 \rightarrow \gamma \gamma \\ \pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}(\bar{\nu}_{\mu}) \\ \mu \end{pmatrix}$

- G. Ghisellini "Radiative process in Astrophysics" (2012)

EM radiation from accelerated particles

Electron and Proton distributions from efficient (nonlinear) diffusive shock acceleration

EM radiation from accelerated particles

APPLICATION TO ISOLATED SNRs

SNR structure

SNR structure

- ✤ ISM
- Forward shock
- Shocked ISM
- Contact discontinuity
- Shocked ejecta
- Reverse shock
- Unshocked ejecta

For core-collapse SNR

- PWN
- Termination shock
- Pulsar wind
- Pulsar

WHERE NON-THERMAL PARTICLE ARE PRODUCED?

Tycho's SNR (Type Ia SNR)

0.04 0.06 0.0B 0.1 0.12 0.02

Gamma-rays from SNRs

NOTE: this general trend could be an artifact of the environmental conditions

Middle-aged SNRs

(~20.000 yrs)

G. Morlino, Vulcano Workshop — May 22, 2018

In many observed SNRs the slope is steeper than E^{-2} \rightarrow difficult to explain theoretically

If the γ -ray spectrum is hadronic ($\pi^0 \rightarrow \gamma \gamma$) the slope is the same as the proton spectrum

If the γ -ray spectrum is leptonic (IC) the spectrum is harder

$$f_e(E) \propto E^{-s} \rightarrow \phi_{\gamma} \propto E^{-(s-1)/2}$$

The role of scattering centers in presence of strong magnetic amplification

When the magnetic field is strongly amplified the Alfvén speed can become a non negligible fraction of the shock speed. In this case the effective compression ratio is:

$$r = \frac{u_1 - v_{A,1}}{u_2 \pm v_{A,2}} \simeq \begin{cases} \frac{u_1 - v_{A,1}}{u_2} \\ \frac{u_1}{u_2 + v_{A,2}} \end{cases}$$

-1.0If we consider only the modification -1.5 upstream, $v_{A,2} \approx 0$, in the case of Tycho: $\log[p^4 N_p(p)]$ -2.0-2.5 $v_{A,1} = \frac{B_1}{\sqrt{4\pi \alpha}} \approx 0.15 V_{sh} \rightarrow s = \frac{r+2}{r-1} \simeq 2.2$ -3.5 (4.2 in momentum) $-4.0 \stackrel{\text{L}}{=} 1$ 0 1 2 3 5 4 $\log[p/m_pc]$

Modelling the multi-wavelength spectrum of Tycho [G.M. & D. Caprioli, 2012]

Simultaneous fit of multi-wavelength spectrum with non-linear DSA model

- 1) Maximum energy of ions
- 2) Non-thermal spectrum3) Amplified magnetic field

 $E_{max} = 470 \, TeV$ $N(E) \propto E^{-2.3}$ $\delta B_2 \approx 300 \, \mu G$

4) TOTAL CRs ENERGY

$$\epsilon_{\rm CR} = 12\% E_{\rm SN}$$

Modelling the multi-wavelength spectrum of Tycho [G.M. & D. Caprioli, 2012]

Simultaneous fit of multi-wavelength spectrum with non-linear DSA model

Maximum energy of ions
 Non-thermal spectrum

4) TOTAL CRs ENERGY

3) Amplified magnetic field

 $E_{max} = 470 \, TeV$ $N(E) \propto E^{-2.3}$ $\delta B_2 \approx 300 \, \mu \, G$

$\epsilon_{_{ m CR}} = 12\% E_{_{ m SN}}$

