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THE SNR-CR CONNECTION



Quick view on CR spectrum

ENERGY DENSITY
IN THE GALAXY

eV/cm3

Magnetic field
(B2/8π)

~ 0.5

Gas motion
(Mv2/2)

~ 0.5

Starlight ~ 0.5

CMB (2.7 K) ~ 0.5

CRs ~ 0.5

CRs energy density compared with
 other components:

Incredible energy extension: up to 3x1020 eV !!!



Quick view on CR spectrum

 CR flux x E2.5



Quick view on CR spectrum

E−2.7

E−3.1

Knee
3x1015eV

 CR flux x E2.5



Quick view on CR spectrum

E−2.7

E−3.1

Knee
3x1015eV

Ankle
3x1018eV Cutoff ~3x1020eV

GZK or E
max

? CR flux x E2.5



Quick view on CR spectrum

E−2.7

E−3.1

Knee
3x1015eV

Ankle
3x1018eV

2nd knee
3x1017eV

Transition from Galactic 
to Extragalactic 

108 GeV-1010 GeV

Cutoff ~3x1020eV
GZK or E

max
? CR flux x E2.5



Quick view on CR spectrum

E−2.7

E−3.1

Knee
3x1015eV

Ankle
3x1018eV

2nd knee
3x1017eV

Transition from Galactic 
to Extragalactic 

108 GeV-1010 GeV

Cutoff ~3x1020eV
GZK or E

max
? CR flux x E2.5

Transition from Galactic 
to Extragalactic 

108 GeV-1010 GeV



The chemical composition of  CRs

τ interaction ≈ 1
ngas cσ spal

≈ few Myr

The relative abundances of
some elements is larger than in
the Solar composition

Those “secondary” elements are
produced by primary CRs by
spallation

→ Primary CRs should
propagate in the Galaxy for a
time comparable with the
interaction time

LiBeB

σ sp≃ 45 A0.7 mbarn



Propagation time of  CRs

Propagation time in the
vertical direction of the disk

Propagation time in the
Galactic plane

Propagation time in the
Galactic magnetic Halo

Assuming that cosmic rays propagate simply gyrating
along magnetic field lines, than:

≪τ interaction

All these time scales are extremely short compared with the residence time

→ CRs have to diffuse in the Galaxy 



Anisotropy

The second argument supporting the diffusion scenario is the anisotropy of arrival
direction of CR to the Earth

→ The location of sources is lost and cannot be identified measuring the arrival
directions

In fact the anisotropy is very small

δ ≝ diffusive flux
ballistic flux

= D∇ n
c /3 n

δ ≝
n(Ω)−n(−Ω)
n(Ω)+n(−Ω)

≃ 10−3

n(Ω)

n(−Ω)

OPERATIVE
DEFINITION

THEORETICAL
DEFINITION



Anisotropy

[Amato & Blasi, 2012]

Anisotropy produced by different
realization of randomly
distributed sources in the Galaxy

Single local sources can produce
bumps in the anisotropy but gives
higher amplitude

D (E) = 3×1028( E
GeV )

1/3

∝E1/3

Local D assumed to be equal to the
average Galactic D obtained from B/C
(see later)

δ = 3 D
c

∇ n
n



Origin of Galactic CRs

Zwicky & Baade were the first
to mention SNRs as  sources of
CRs (1934) but arguing against 
them because CRs where
thought to be extragalactic

Vitali Lazarevich Ginzburg made the
argument for SNRs as sources of
galactic CR in the 60’s in a more

quantitative form.



The SNR hypothesis 

W CR∼
U CRV CR

τres

≈1040 erg
s

W SN∼RSN E SN≈3⋅10 41erg
s

⇒
W CR

W SN

≈ 0.03÷0.3

Why supernova remnant are so popular?

1) Enough power to sustain the CR flux (~10% of kinetic energy)

2) Spatial distribution of SNRs compatible with CR distribution (inferred
from diffuse gamma-ray emission)

3) Enough sources to explain anisotropy  [SN rate ~ (1-3)/100 yr]

4) Observations show the presence of non thermal particles

5) A well developed theory for particle acceleration (DSA) predicting a
power law spectrum



Short hints on MHD



∂ρ
∂ t

+∇⋅(ρ v⃗ )=0

Basic equations of MHD

Fluid equations

∇⋅E⃗=4πρ=0 ; ∇× E⃗=−1
c
∂ B⃗
∂ t

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗=−∇ P
ρ + j⃗×B⃗

ρc

∇⋅B⃗=0 ; ∇× B⃗=−4π
c

j⃗

Mass conservation Momentum conservation

Maxwell equations

Electric field

Magnetic field

Ohm's law

j⃗=σ E⃗ '=σ (E+ 1
c

v⃗×B⃗ )
Lab frame

Fluid
frame

T
D s
D t

= j2

ρσ

Entropy variation



Limit of ideal MHD

∂ B⃗
∂ t

=−c ∇×E⃗=−c∇×[ j⃗
σ− v⃗×B⃗

c ]= c2

4πσ
∇ 2 B⃗+∇×( v⃗×B⃗ )

Timescale for magnetic dissipation

τdiss=
4πσ L2

c2 ≈1011( L
1 AU )

2

( T

104 K )
3/ 2

yr

σ≃7×107 T 3/2

ln Λ
s−1 σ→∞ E⃗=−1

c
v⃗×B⃗

∂ B⃗
∂ t

=∇×( v⃗×B⃗)



∂ρ
∂ t

+∇⋅(ρ v⃗ )=0

Fluid equations

∇⋅E⃗=0;
∂ B⃗
∂ t

=∇×( v⃗×B⃗)

∂ v⃗
∂ t

+ v⃗⋅∇ v⃗=−∇ P
ρ + 1

4πρ
(∇×B⃗)×B⃗

∇⋅B⃗=0 ; ∇× B⃗=−4π
c

j⃗

Mass conservation Momentum conservation

Maxwell equations

Electric field

Magnetic field

T
D s
D t

=0Entropy variation

Limit of ideal MHD

P ρ−γ=const

Adiabatic system



We apply the technique of small perturbations

ρ=ρ0+δρ ; v⃗=δ v⃗ ; p= p0+δ p ; B⃗=B0 ẑ+δ B⃗

Waves in ideal MHD

3) Assume a sinusoidal variation of the perturbations

2) Plug the perturbations in the ideal MHD equations and retain the first order terms

1) Assume a small perturbation of a stationary system

δρ
ρ0

= r e i(ω t−k⃗⋅x⃗ ); δ v⃗= V⃗ e i(ωt− k⃗⋅x⃗ );
δ B⃗
B0

= b⃗ ei (ωt−k⃗⋅⃗x) ;

∂
∂ t

δρ
ρ0

=∇⋅δ v⃗

∂δ v⃗
∂ t

= −c2
2∇

δρ
ρ +

(∇×δ B⃗ )× B⃗0

4πρ0

∂
∂ t

δ B⃗= B0
∂
∂ z

δv−B0 ẑ ∇⋅δ v⃗

mass conservation

momentum conservation

Faraday equation



Waves in ideal MHD

We get a linear 
homogeneous system

The solution are
found from

ω2= vA
2 k∥

2

ω2=
k∥

2

2
[va

2+cs
2±√(va

2+cs
2)2−4 va

2 cs
2 cosθ ]

vA=
B0

√4πρ0

Alfvén speed:

Sound speed: cs
2= γ

p0
ρ0

Three different
solutions

Alfvén waves

Magnetosonic
waves
(fast and slow)



Phase-velocity polar diagram for MHD waves

ω2= vA
2 k∥

2

ω2=
k∥

2

2
[va

2+cs
2±√(va

2+cs
2)2−4 va

2 cs
2 cosθ ]

Alfvén waves:  mainly propagate along B
0

Magnetosonic
waves
(fast and slow)



DIFFUSIVE MOTION



MOTION IN A REGULAR FIELD

Equation of motion

Electric field is usually 
shortcut in a plasma

Ω =
q B0

mcγ
Solution

Larmor 
frequency

Making the second derivative:

x

y

z



δ Bx = δ Bk cos(kz−ω t+ϕ) ;
δ By = ∓δ Bk sin (kz−ωt+ϕ)

Assuming a small sinusoidal perturbation
due to Alfven waves

MOTION IN PRESENCE OF
IRREGULARITIES

δ B⊥B0 ; δB≪B0

Right/left polarized waves

y

z

x



δ Bx = δ Bk cos(kz−ω t+ϕ) ;
δ By = ∓δ Bk sin (kz−ωt+ϕ)

Assuming a small sinusoidal perturbation
due to Alfven waves

MOTION IN PRESENCE OF
IRREGULARITIES

δ B⊥B0 ; δB≪B0

B
0
 changes only x and y 

components of the momentum

δB changes only z component 
of the momentum

Equation of motion

Solution for v
z

Right/left polarized waves

y

z

x



MOTION IN PRESENCE OF
IRREGULARITIES

Solution for v
z

The wave motion is
much smaller than the
particle motion



MOTION IN PRESENCE OF
IRREGULARITIES

Solution for v
z

Average displacement for a time Δt:

The wave motion is
much smaller than the
particle motion



MOTION IN PRESENCE OF
IRREGULARITIES

Solution for v
z

Average displacement for a time Δt:

The wave motion is
much smaller than the
particle motion

Computing the diffusion coefficient:

Step 1: 
time average

Step 2:
Phase average



MANY WAVES

Resonant wave-number

k res=
Ω

v0μ
≈1

rL

Final result:

Particles are scattered only by resonating waves



MANY WAVES

We introduce the power spectrum:

And the logarithmic power spectrum: P (k )=k F (k )

Step 3: averaging over a power spectrum of waves

Resonant wave-number

k res=
Ω

v0μ
≈1

rL

Final result:

Particles are scattered only by resonating waves

In general magnetic waves are distributed in a large k range



MANY WAVES

Diffusion coefficient in angle: Dθθ=
1
2
〈ΔθΔθ

Δ t
〉=

Dμμ

sin2θ
= πΩP (k res)

Time needed for a particle to change
direction by π

Δ t = π
Dθθ

= 1
Ω P (k )

∼
T gyration

P (k )
≫ T gyration

D zz=
1
3

v λmfp=
1
3

v (vΔ t)≈ v2

3Ω P(k res)
= 1

3

r L v

P(k res)

1) PARTICLES DIFFUSE IN ANGLE

2) PARTICLES DIFFUSE IN SPACE

Spatial diffusion coefficient

Bohm diffusion DBohm=
1
3

rL v The most efficient scattering
happens for P=1 ⇒ δB ~ B

0

usually P(k) << 1



PARTICLE SCATTERING

Summarizing

●  Each time a resonance occurs, the particle change pitch angle by     
  Δθ~δB/B0   with a random sign

●  The resonance occurs only with right-hand polarized waves if
positive charged particles move to the right (and vice versa)

●  The resonant condition tells us that:

-                particles surf adiabatically

-                particles do not feel the wave

Where do waves come from?

rL≪λ

rL≫λ



Kolmogorov theory of turbulence



Kolmogorov theory of turbulence

F (k )dk= dU
ρ ⇒ [F ]=L3 T−2

In the inertial range F should not depend on viscosity

F = F(k,ϵ)

From dimensional analysis:

Power spectrum:

Turbulence in isotropic uniform 3D fluids

[λ ]=L
[ ν]=L2T−1

[ϵ]=L2T−3
λdiss∝( ν3

ϵ )1 /4

F (k )∝ ϵ2/3 k−5/3

Dissipation scale:

Viscosity:

Dissipation rate:

P (k )

∝ k−5 /3



The interstellar turbulence

  Electron density fuctuation follow  
    Kolmogorov spectrum:  n ∝ k-5/3 

   Magnetic turbulence has a Kolmogorov  
     spectrum k-5/3 (density is a passive tracer so
     it has the same spectrum: n ∝ B2):

  Turbulence is stirred by SNe at a typical 
  scale L

0
=1/k

0
~ 10-100 pc

  Fluctuation of velocity and magnetic feld 
    are assumed to be Alfvénic

Electron density fluctuation in the ISM

[Armstrong et al. 1995, ApJ 443, 209]

F (k )=
〈δ B(k )〉2

B0
2

∝ ( k
k 0
)
−5/3

A simplified model for turbulence



Diffusion from interstellar turbulence

The main origin of turbulence are thought to be SN explosion.

Turbulence is injected at a scale comparable with the size of SNR (or super-bubbles)
and than cascades at smaller scales.

k 0 = 1/L0≈ (10 pc)−1

Kolmogorov cascade:

Power injected at:

D zz( p) =
v rL

3
1

k res F (k res)
= c

2ηB

r L
1/3 Lc

2 /3

∼ 3×1028 ( p c
GeV )

1 /3

( ηB

0.1 )
−1

( B0

3μG )
1/3

( Lc

10 pc )
2/3

cm2 s−1

F (k ) = 2
3

ηB

k 0
( k

k 0
)
−5/3

ηB=∫k 0

∞
F (k )dk=

δB tot
2

B0
2

∼ 0.01−0.1
Energy density of
turbulence (from
observation):



FROM DIFFUSION TO ENERGY GAIN



Basic concepts

- ALL  ACCELERATION MECHANISMS ARE ELECTROMAGNETIC IN NATURE
 
- MAGNETIC FIELDS DO NOT MAKE WORK ON CHARGED PARTICLES!

- WE NEED ELECTRIC FIELDS 

- BUT FOR THE MAJORITY OF ASTROPHYSICAL THE CONDUCTIVITY → ∞,
HENCE  <E> = 0

- THE MAJORITY OF ACCELERATION PROCESS ARE STOCHASTIC

STOCHASTIC ACCELERATION



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

β=v /c

Ei
E f

E '

Magnetic turbulence

E ' = γ Ei (1−βμ)
E f ' = Ei ' = E '
E f = γE ' (1+βμ ' )
→E f = γ2 E i(1−βμ)(1+βμ ' )

θ

θ '



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

Ei
E f

E '

Magnetic turbulence

E ' = γ Ei (1−βμ)
E f ' = Ei ' = E '
E f = γE ' (1+βμ ' )
→E f = γ2 E i(1−βμ)(1+βμ ' )

〈ΔE
E 〉

μ '

= ∫−1

1 E f −E i

E i

dμ ' = 2 [γ2(1−βμ)−1 ]

β=v /c
θ

θ '

Assuming isotropy in the 
cloud's reference frame



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

Ei
E f

E '

Magnetic turbulence

E ' = γ Ei (1−βμ)
E f ' = Ei ' = E '
E f = γE ' (1+βμ ' )
→E f = γ2 E i(1−βμ)(1+βμ ' )

〈ΔE
E 〉

μ '

= ∫−1

1 E f −E i

E i

dμ ' = 2 [γ2(1−βμ)−1 ]

〈ΔE
E 〉

μ ' μ
= ∫−1

1
dμ1

2
(1−βμ) 2 [γ2(1−βμ)−1 ] = 4

3
β2

β=v /c
θ

θ '

Assuming isotropy in the 
cloud's reference frame

Particle flux incident of the cloud βrel=(c−vμ)/c

Losses and gains are
present but do not
compensate exactly



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

• IF MAGNETIC FIELD DOES NOT MAKE WORK, WHO
ENERGIZE PARTICLES?



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

• IF MAGNETIC FIELD DOES NOT MAKE WORK, WHO
ENERGIZE PARTICLES?

TIME VARING MAGNETIC FIELD →  ELECTRIC FIELD

• THE INDUCED ELECTRIC FIELD ENERGIEZES THE
PARTICLES

• THE SCATTERING PRODUCES A MOMENTUM
TRANSFER, BUT TO WHAT?

∂δ B⃗
∂t

= −∇×δ E⃗



A quick look to 2nd order Fermi acceleration
(Fermi, 1949)

〈Δ E
E 〉 ∝ (vc )

2

• THE ENERGY GAIN IS ONLY PROPORTIONAL TO (v/c)2

AND TYPICALLY v ~ v
A
 ~ 10-4 c

• THE PREDICTED SPECTRUM STRONGLY DEPENDS ON
DETAILS LIKE THE CLOUDS DISTRIBUTION IN THE
GALAXY AND THEIR VOLUME FILLING FACTOR

– IT IS DIFFICULT TO EXPLAIN THE OBSERVED
SPECTRUM E-2.7

– THE MAXIMUM ENERGY IS AT MOST ~10 GeV



Exercise on the 2nd order Fermi acceleration

EXERCISE.

Estimate the II order Fermi acceleration of 1 GeV particles in the
Galaxy, assuming that the magnetic turbulence power spectrum
follows a Kolmogorov distribution:

with  Lc ~10 pc (coherence scale) and the average magnetic field in
the Galaxy is  B0= 3 μG.
Assume the residence time in the Galaxy to be ~ 100 Myr and the
average Galactic density is 1 proton/cm3. 

k F (k )≃(k Lc)
−2/3=(Lc

rL
)
−2 /3



EXERCISE: estimate the II order Fermi acceleration of 1 GeV
          particle in the Galaxy

k F (k )≃( k Lc )
−2 /3=(Lc

r L
)
−2 /3

Total energy gain

Number of
interactions

Kolmogorov power
spectrum of
turbulence in the
Galaxy

Time of a single
interaction

n=
τ res

Δ t

Δ t≈ 1
Dθθ

= 1
Ω k res F (kres)

E f

E 0

= (1+ΔE
E )

n

= (1+ 4
3 ( v A

c )
2

)
n

Exercise on the 2nd order Fermi acceleration



EXERCISE: estimate the II order Fermi acceleration of 1 GeV
          particle in the Galaxy

n=
τ res

Δ t

Δ t≈ 1
Dθθ

= 1
Ω k res F (kres)

=
rL

c ( Lc

rL
)
2 /3

≈0.1 yr E GeV
1/3 BμG

−1 /3 L10pc
2/3

k F (k )≃(k Lc)
−2/3=(Lc

rL
)
−2 /3

Total energy gain

Number of
interactions

Kolmogorov power
spectrum of
turbulence in the
Galaxy

Time of a single
interaction

Lc∼10÷100 pc

rL=
pc
eB

=10−6 E GeV BμG
−1 pc

E f

E 0

= (1+ΔE
E )

n

= (1+ 4
3 ( v A

c )
2

)
n

Exercise on the 2nd order Fermi acceleration



EXERCISE: estimate the II order Fermi acceleration of 1 GeV
          particle in the Galaxy

n=
τ res

Δ t
≈ 100 Myr

0.1 yr
≈ 109

Δ t≈ 1
Dθθ

= 1
Ω k res F (kres)

=
rL

c ( Lc

rL
)
2 /3

≈0.1 yr E GeV
1/3 BμG

−1 /3 L10pc
2/3

k F (k )≃(k Lc)
−2/3=(Lc

rL
)
−2 /3

Total energy gain

Number of
interactions

Kolmogorov power
spectrum of
turbulence in the
Galaxy

Time of a single
interaction

Lc∼10÷100 pc

rL=
pc
eB

=10−6 E GeV BμG
−1 pc

vA=
B

√4πρ
= 6.5 B

3μG ( ρ
1 cm−3 )

−1 /2
km
s

E f

E 0

= (1+Δ E
E )

n

= (1+ 4
3 ( vA

c )
2

)
n

≈ 2

Exercise on the 2nd order Fermi acceleration
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