COSMIC RAY PHYSICS: DIFFUSION AND ACCELERATION

Giovanni Morlino

INAF/Osservatorio Astrofisico di Arcetri Firenze, ITALY

LECTURE I

4th graduate school on Plasma-Astroparticle Physics

Jan.29 - Feb. 3, 2023 Bad Honnef

G. Morlino, Bad Honnef - Feb 2023

OUTLINE

- The SNR-CR connection
 - Why SNRs?
 - Propagation in the Galaxy
- Diffusive motion

Motion of particles in a perturbed magnetic field

- From diffusion to energy gain
 - Second order Fermi acceleration

THE SNR-CR CONNECTION

The chemical composition of CRs

Propagation time of CRs

Assuming that cosmic rays propagate simply gyrating along magnetic field lines, than:

All these time scales are extremely short compared with the residence time

\rightarrow CRs have to diffuse in the Galaxy

The second argument supporting the diffusion scenario is the anisotropy of arrival direction of CR to the Earth

 \rightarrow The location of sources is lost and cannot be identified measuring the arrival directions

In fact the anisotropy is very small

DEF

DEFINITION
$$\delta \stackrel{\text{def}}{=} \frac{n(\Omega) - n(-\Omega)}{n(\Omega) + n(-\Omega)} \simeq 10^{-3}$$

THEORETICAL
DEFINITION
$$\delta \stackrel{\text{def}}{=} \frac{diffusive flux}{ballistic flux} = \frac{D\nabla n}{c/3n}$$

Anisotropy

Local *D* assumed to be equal to the average Galactic D obtained from B/C (see later)

Origin of Galactic CRs

Zwicky & Baade were the first to mention SNRs as sources of CRs (1934) but arguing <u>against</u> them because CRs where thought to be extragalactic

Vitali Lazarevich Ginzburg made the argument for SNRs as sources of galactic CR in the 60's in a more quantitative form.

The SNR hypothesis

Why supernova remnant are so popular?

1) Enough power to sustain the CR flux (~10% of kinetic energy)

$$W_{CR} \sim \frac{U_{CR}V_{CR}}{\tau_{res}} \approx 10^{40} \frac{erg}{s} \Rightarrow \frac{W_{CR}}{W_{SN}} \approx 0.03 \div 0.3$$
$$W_{SN} \sim R_{SN} E_{SN} \approx 3 \cdot 10^{41} \frac{erg}{s}$$

2) Spatial distribution of SNRs compatible with CR distribution (inferred from diffuse gamma-ray emission)

- 3) Enough sources to explain anisotropy [SN rate ~ (1-3)/100 yr]
- 4) Observations show the presence of non thermal particles

5) A well developed theory for particle acceleration (DSA) predicting a power law spectrum

Short hints on MHD

Basic equations of MHD

Fluid equations

Mass conservation Momentum conservation Entropy variation $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \qquad \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla P}{\rho} + \frac{\vec{j} \times \vec{B}}{\rho c} \qquad T \frac{D s}{D t} = \frac{j^2}{\rho \sigma}$

Maxwell equations

Electric field

$$\nabla \cdot \vec{E} = 4\pi\rho = 0; \quad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial B}{\partial t}$$

Magnetic field

$$\nabla \cdot \vec{B} = 0; \qquad \nabla \times \vec{B} = -\frac{4\pi}{c}\vec{j}$$

Limit of ideal MHD

$$\frac{\partial \vec{B}}{\partial t} = -c \nabla \times \vec{E} = -c \nabla \times \left[\frac{\vec{j}}{\sigma} - \frac{\vec{v} \times \vec{B}}{c}\right] = \frac{c^2}{4\pi\sigma} \nabla^2 \vec{B} + \nabla \times (\vec{v} \times \vec{B})$$

Timescale for magnetic dissipation

Limit of ideal MHD

Fluid equations

Maxwell equations

Electric field

$$\nabla \cdot \vec{E} = 0; \qquad \frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})$$

Magnetic field

$$\nabla \cdot \vec{B} = 0; \qquad \nabla \times \vec{B} = -\frac{4\pi}{c}\vec{j}$$

Waves in ideal MHD

We apply the technique of small perturbations

1) Assume a small perturbation of a stationary system

$$\rho = \rho_0 + \delta \rho; \quad \vec{v} = \delta \vec{v}; \quad p = p_0 + \delta p; \quad \vec{B} = B_0 \hat{z} + \delta \vec{B}$$

2) Plug the perturbations in the ideal MHD equations and retain the first order terms

$$\begin{cases} \frac{\partial}{\partial t} \frac{\delta \rho}{\rho_0} = \nabla \cdot \delta \vec{v} & \text{mass conservation} \\ \frac{\partial}{\partial t} \frac{\delta \vec{v}}{\partial t} = -c_2^2 \nabla \frac{\delta \rho}{\rho} + \frac{(\nabla \times \delta \vec{B}) \times \vec{B}_0}{4\pi\rho_0} & \text{momentum conservation} \\ \frac{\partial}{\partial t} \delta \vec{B} = B_0 \frac{\partial}{\partial z} \delta v - B_0 \hat{z} \nabla \cdot \delta \vec{v} & \text{Faraday equation} \end{cases}$$

3) Assume a sinusoidal variation of the perturbations

$$\frac{\delta\rho}{\rho_0} = r e^{i(\omega t - \vec{k} \cdot \vec{x})}; \quad \delta \vec{v} = \vec{V} e^{i(\omega t - \vec{k} \cdot \vec{x})}; \quad \frac{\delta \vec{B}}{B_0} = \vec{b} e^{i(\omega t - \vec{k} \cdot \vec{x})};$$

Waves in ideal MHD

Phase-velocity polar diagram for MHD waves

DIFFUSIVE MOTION

MOTION IN A REGULAR FIELD

Electric field is usually shortcut in a plasma

$$m\gamma \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{q}{c}(\mathbf{v} \times \mathbf{B}_0) \implies \begin{cases} m\gamma \frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{q}{c}v_y B_0\\ m\gamma \frac{\mathrm{d}v_y}{\mathrm{d}t} = -\frac{q}{c}v_x B_0\\ m\gamma \frac{\mathrm{d}v_z}{\mathrm{d}t} = 0 \end{cases}$$

Solution

$$\begin{cases} v_x(t) = v_{0x} \cos(\Omega t) \\ v_y(t) = -v_{0y} \sin(\Omega t) \\ v_z(t) = v_{0z} \end{cases}$$

Making the second derivative:

$$\frac{\mathrm{d}^2 v_x}{\mathrm{d}t^2} = -\left(\frac{qB_0}{m\gamma c}\right)^2 v_x = -\Omega^2 v_x$$

$$\begin{array}{ll} \text{Larmor} \\ \text{frequency} \end{array} \quad \Omega = \frac{q B_0}{mc \gamma} \end{array}$$

<u>Assuming a small sinusoidal perturbation</u> <u>due to Alfven waves</u>

$$\delta B \perp B_0 \quad ; \quad \delta B \ll B_0$$

$$\delta B_x = \delta B_k \cos(kz - \omega t + \phi);$$

$$\delta B_y = \mp \delta B_k \sin(kz - \omega t + \phi)$$

Right/left polarized waves

Assuming a small sinusoidal perturbation due to Alfven waves $\delta B \perp B_0$; $\delta B \ll B_0$ $\delta B_x = \delta B_k \cos(kz - \omega t + \phi);$ $\delta B_y = \mp \delta B_k \sin(kz - \omega t + \phi)$ Right/left polarized waves

Equation of motion

$$m\gamma \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{q}{c}\mathbf{v} \times (\mathbf{B}_0 + \delta\mathbf{B}) \implies \begin{cases} m\gamma \frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{q}{c}(v_y B_0 - v_z \delta B_y) \\ m\gamma \frac{\mathrm{d}v_y}{\mathrm{d}t} = -\frac{q}{c}(v_x B_0 - v_z \delta B_x) \\ m\gamma \frac{\mathrm{d}v_z}{\mathrm{d}t} = \frac{q}{c}(v_x \delta B_y - v_y \delta B_x) \end{cases}$$

 B_0 changes only *x* and *y* components of the momentum

 δB changes only z component of the momentum

Solution for v_{z}

$$v_0 \frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{q\delta B}{m\gamma c} v_0 (1-\mu^2)^{1/2} \left[\cos(kz-\omega t+\varphi)\cos(\Omega t)\mp\sin(kz-\omega t+\varphi)\sin(\Omega t)\right]$$

Solution for $v_z = v_0 \frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{q\delta B}{m\gamma c} v_0 (1-\mu^2)^{1/2} \left[\cos(kz-\omega t+\varphi)\cos(\Omega t)\mp\sin(kz-\omega t+\varphi)\sin(\Omega t)\right]$

The wave motion is much smaller than the particle motion

$$\frac{kz}{\omega t} = \frac{kv_0\mu t}{kv_A t} = \mu \frac{v_0}{v_A} \gg 1 \quad \Longrightarrow \quad \frac{d\mu}{dt} = \frac{q\delta B}{m\gamma c} (1-\mu^2)^{1/2} \cos\left(\Omega t \mp kz \mp \varphi\right)$$

Solution for $v_z = v_0 \frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{q\delta B}{m\gamma c} v_0 (1-\mu^2)^{1/2} \left[\cos(kz-\omega t+\varphi)\cos(\Omega t)\mp\sin(kz-\omega t+\varphi)\sin(\Omega t)\right]$

The wave motion is much smaller than the particle motion $\frac{kz}{\omega t} = \frac{kv_0\mu t}{kv_A t} = \mu \frac{v_0}{v_A} \gg 1 \quad \Longrightarrow \quad \frac{d\mu}{dt} = \frac{q\delta B}{m\gamma c} (1-\mu^2)^{1/2} \cos\left(\Omega t \mp kz \mp \varphi\right)$

Average displacement for a time Δt :

$$\langle \Delta \mu \rangle = \frac{1}{\Delta t} \int_{0}^{\Delta t} \mathrm{d}t \left(\frac{\mathrm{d}\mu}{\mathrm{d}t} \right) = 0$$

Solution for $v_z = v_0 \frac{\mathrm{d}\mu}{\mathrm{d}t} = \frac{q\delta B}{m\gamma c} v_0 (1-\mu^2)^{1/2} \left[\cos(kz-\omega t+\varphi)\cos(\Omega t)\mp\sin(kz-\omega t+\varphi)\sin(\Omega t)\right]$

The wave motion is much smaller than the particle motion $\frac{kz}{\omega t} = \frac{kv_0\mu t}{kv_A t} = \mu \frac{v_0}{v_A} \gg 1 \quad \Longrightarrow \quad \frac{d\mu}{dt} = \frac{q\delta B}{m\gamma c} (1-\mu^2)^{1/2} \cos\left(\Omega t \mp kz \mp \varphi\right)$

Average displacement for a time Δt :

Computing the diffusion coefficient:

$$\langle \Delta \mu \rangle = \frac{1}{\Delta t} \int_{0}^{\Delta t} dt \left(\frac{d\mu}{dt} \right) = 0$$
$$D_{\mu\mu} := \frac{1}{2} \left\langle \frac{\Delta \mu \Delta \mu}{\Delta t} \right\rangle$$

Step 1:
time average
$$\langle \Delta \mu \Delta \mu \rangle = \left(\frac{q\delta B}{m\gamma c}\right)^2 (1-\mu^2) \int_0^{\Delta t} dt \int_0^{\Delta t} dt' \cos\left(\Omega t \mp kv_0\mu t \mp \varphi\right) \cos\left(\Omega t' \mp kv_0\mu t' \mp \varphi\right)$$

Step 2: Phase average $\langle \Delta \mu \Delta \mu \rangle_{\varphi} = \frac{1}{2\pi} \int_{0}^{2\pi} \mathrm{d}\varphi \, \langle \Delta \mu \Delta \mu \rangle = \left(\frac{q\delta B}{m\gamma c}\right)^{2} (1-\mu^{2}) 2\pi \Delta t \delta(\Omega \mp v_{0}k\mu)$

MANY WAVES

Particles are scattered only by resonating waves

Final result:
$$\langle \Delta \mu \Delta \mu \rangle_{\varphi} = \left(\frac{q\delta B}{m\gamma c}\right)^2 (1-\mu^2) \frac{2\pi\Delta t}{v_0\mu} \delta\left(k \mp \frac{\Omega}{v_0\mu}\right)$$

Resonant wave-number
 $k_{res} = \frac{\Omega}{v_0\mu} \approx \frac{1}{r_L}$

MANY WAVES

 $\left\langle \Delta\mu\Delta\mu\right\rangle_{\varphi} = \left(\frac{q\delta B}{m\gamma c}\right)^2 (1-\mu^2) \frac{2\pi\Delta t}{v_0\mu} \delta\left(k \mp \left(\frac{\Omega}{v_0\mu}\right)\right)$

Particles are scattered only by resonating waves

Final result:

We introduce the power spectrum:

$$rac{\delta B^2(k)}{B_0^2}=:\mathcal{F}(k)\mathrm{d}k$$

And the logarithmic power spectrum: P(k) = k F(k)

Step 3: averaging over a power spectrum of waves

$$D_{\mu\mu} := \frac{1}{2} \left\langle \frac{\Delta \mu \Delta \mu}{\Delta t} \right\rangle$$

$$D_{\mu\mu} = \Omega(1-\mu^2) \int dk \,\mathcal{F}(k)\pi k_{\rm res}\delta(k\mp k_{\rm res}) = \pi\mathcal{F}(k_{\rm res})k_{\rm res}\Omega(1-\mu^2)$$

MANY WAVES

1) PARTICLES DIFFUSE IN ANGLE

Diffusion coefficient in angle:
$$D_{\theta\theta} = \frac{1}{2} \langle \frac{\Delta \theta \Delta \theta}{\Delta t} \rangle = \frac{D_{\mu\mu}}{\sin^2 \theta} = \pi \Omega P(k_{res})$$

Λ

Time needed for a particle to change direction by π

$$t = \frac{\pi}{D_{\theta\theta}} = \frac{1}{\Omega P(k)} \sim \frac{T_{gyration}}{P(k)} \gg T_{gyration}$$
$$\uparrow$$
usually $P(k) \ll 1$

2) PARTICLES DIFFUSE IN SPACE

Spatial diffusion coefficient

$$D_{zz} = \frac{1}{3} v \lambda_{mfp} = \frac{1}{3} v (v \Delta t) \approx \frac{v^2}{3\Omega P(k_{res})} = \frac{1}{3} \frac{r_L v}{P(k_{res})}$$

Bohm diffusion $D_{Bohm} = \frac{1}{3} r_L v$

The most efficient scattering happens for $P=1 \Rightarrow \delta B \sim B_0$

- Each time a resonance occurs, the particle change pitch angle by $\Delta\theta \sim \delta B/B_0$ with a random sign
- The resonance occurs only with <u>right-hand polarized</u> waves if <u>positive charged</u> particles move to the right (and *vice versa*)
- The resonant condition tells us that:
 - $r_L \ll \lambda$ particles surf adiabatically
 - $r_L \gg \lambda$ particles do not feel the wave

Where do waves come from?

Kolmogorov theory of turbulence

Kolmogorov theory of turbulence

Turbulence in isotropic uniform 3D fluids

Dissipation scale: $[\lambda] = L$ Viscosity: $[\nu] = L^2 T^{-1}$ $\longrightarrow \lambda_{diss} \propto \left(\frac{\nu^3}{\epsilon}\right)^{1/4}$ Dissipation rate: $[\epsilon] = L^2 T^{-3}$

Power spectrum:
$$F(k)dk = \frac{dU}{\rho} \Rightarrow [F] = L^3 T^{-2}$$

In the inertial range F should not depend on viscosity

$$F = F(k, \epsilon)$$

From dimensional analysis:

$$F(k) \propto \epsilon^{2/3} k^{-5/3}$$

The interstellar turbulence

A simplified model for turbulence

Electron density fluctuation in the ISM [Armstrong et al. 1995, ApJ 443, 209]

- Electron density fluctuation follow Kolmogorov spectrum: $\delta n \propto k^{-5/3}$
- Magnetic turbulence has a Kolmogorov spectrum $k^{-5/3}$ (density is a passive tracer so it has the same spectrum: $\delta n \propto \delta B^2$):

$$F(k) = \frac{\langle \delta B(k) \rangle^2}{B_0^2} \propto \left(\frac{k}{k_0}\right)^{-5/3}$$

- Turbulence is stirred by SNe at a typical scale $L_0 = 1/k_0 \sim 10-100 \text{ pc}$
- Fluctuation of velocity and magnetic field are assumed to be Alfvénic

Diffusion from interstellar turbulence

The main origin of turbulence are thought to be SN explosion.

Turbulence is injected at a scale comparable with the size of SNR (or super-bubbles) and than cascades at smaller scales.

Power injected at:

$$_{0} = 1/L_{0} \approx (10 \ pc)^{-1}$$

Kolmogorov cascade: $F(k) = \frac{2}{3} \frac{\eta_B}{k_0} \left(\frac{k}{k_0}\right)^{-5/3}$

k

Energy density of turbulence (from observation):

$$\eta_{B} = \int_{k_{0}}^{\infty} F(k) dk = \frac{\delta B_{tot}^{2}}{B_{0}^{2}} \sim 0.01 - 0.1$$

$$D_{zz}(p) = \frac{v r_L}{3} \frac{1}{k_{res} F(k_{res})} = \frac{c}{2 \eta_B} r_L^{1/3} L_c^{2/3}$$

~ $3 \times 10^{28} \left(\frac{p c}{GeV}\right)^{1/3} \left(\frac{\eta_B}{0.1}\right)^{-1} \left(\frac{B_0}{3 \mu G}\right)^{1/3} \left(\frac{L_c}{10 pc}\right)^{2/3} cm^2 s^{-1}$

FROM DIFFUSION TO ENERGY GAIN

- ALL ACCELERATION MECHANISMS ARE ELECTROMAGNETIC IN NATURE
- MAGNETIC FIELDS DO NOT MAKE WORK ON CHARGED PARTICLES!
- WE NEED ELECTRIC FIELDS
- BUT FOR THE MAJORITY OF ASTROPHYSICAL THE CONDUCTIVITY $\square ~\infty,$ Hence ${<}E{>}=0$
- THE MAJORITY OF ACCELERATION PROCESS ARE STOCHASTIC

STOCHASTIC ACCELERATION

$$\langle \vec{E} \rangle = 0 \quad \langle \vec{E}^2 \rangle \neq 0$$

$$E' = \gamma E_i (1 - \beta \mu)$$

$$E_f' = E_i' = E'$$

$$E_f = \gamma E' (1 + \beta \mu')$$

$$\rightarrow E_f = \gamma^2 E_i (1 - \beta \mu) (1 + \beta \mu')$$

$$\left\langle \frac{\Delta E}{E} \right\rangle_{\mu'} = \int_{-1}^{1} \frac{E_f - E_i}{E_i} d\mu' = 2 \left[\gamma^2 (1 - \beta \mu) - 1 \right]$$
 Assuming isotropy in the cloud's reference frame

present but do not compensate exactly

Particle flux incident of the cloud $\beta_{vol} = (c - v \mu)/c$

• IF MAGNETIC FIELD DOES NOT MAKE WORK, WHO ENERGIZE PARTICLES?

• IF MAGNETIC FIELD DOES NOT MAKE WORK, WHO ENERGIZE PARTICLES?

TIME VARING MAGNETIC FIELD
ELECTRIC FIELD

$$\frac{\partial \,\delta \,\vec{B}}{\partial t} = -\nabla \times \delta \,\vec{E}$$

- THE INDUCED ELECTRIC FIELD ENERGIEZES THE PARTICLES
- THE SCATTERING PRODUCES A MOMENTUM TRANSFER, BUT TO WHAT?

$$\left\langle \frac{\Delta E}{E} \right\rangle \propto \left(\frac{v}{c} \right)^2$$

- THE ENERGY GAIN IS ONLY PROPORTIONAL TO $(v/c)^2$ AND TYPICALLY $v \sim v_A \sim 10^{-4} c$
- THE PREDICTED SPECTRUM STRONGLY DEPENDS ON DETAILS LIKE THE CLOUDS DISTRIBUTION IN THE GALAXY AND THEIR VOLUME FILLING FACTOR
 - IT IS DIFFICULT TO EXPLAIN THE OBSERVED SPECTRUM E^{-2.7}
 - THE MAXIMUM ENERGY IS AT MOST ~10 GeV

EXERCISE.

Estimate the II order Fermi acceleration of 1 GeV particles in the Galaxy, assuming that the magnetic turbulence power spectrum follows a Kolmogorov distribution:

$$k F(k) \simeq (k L_c)^{-2/3} = \left(\frac{L_c}{r_L}\right)^{-2/3}$$

with $L_c \sim 10$ pc (coherence scale) and the average magnetic field in the Galaxy is $B_0 = 3 \mu G$.

Assume the residence time in the Galaxy to be ~ 100 Myr and the average Galactic density is 1 proton/cm³.

EXERCISE: estimate the II order Fermi acceleration of 1 GeV particle in the Galaxy

Total e

Total energy gain
$$\frac{E_f}{E_0} = \left(1 + \frac{\Delta E}{E}\right)^n = \left(1 + \frac{4}{3}\left(\frac{v_A}{c}\right)^2\right)^n$$
Number of interactions
$$n = \frac{\tau_{res}}{\Delta t}$$
Time of a single interaction
$$\Delta t \approx \frac{1}{D_{\theta\theta}} = \frac{1}{\Omega k_{res} F(k_{res})}$$
Kolmogorov power spectrum of turbulence in the Galaxy
$$k F(k) \simeq \left(k L_c\right)^{-2/3} = \left(\frac{L_c}{r_L}\right)^{-2/3}$$

EXERCISE: estimate the II order Fermi acceleration of 1 GeV particle in the Galaxy

Total

Total energy gain
$$\frac{E_f}{E_0} = \left(1 + \frac{\Delta E}{E}\right)^n = \left(1 + \frac{4}{3}\left(\frac{v_A}{c}\right)^2\right)^n$$
Number of interactions
$$n = \frac{\tau_{res}}{\Delta t}$$
Time of a single interaction
$$\Delta t \approx \frac{1}{D_{\theta\theta}} = \frac{1}{\Omega k_{res}F(k_{res})} = \frac{r_L}{c} \left(\frac{L_c}{r_L}\right)^{2/3} \approx 0.1 \text{ yr } E_{GeV}^{1/3} B_{\mu G}^{-1/3} L_{10pc}^{2/3}$$
Kolmogorov power spectrum of turbulence in the Galaxy
$$k F(k) \approx (k L_c)^{-2/3} = \left(\frac{L_c}{r_L}\right)^{-2/3} \qquad L_c \sim 10 \div 100 \text{ } pc$$

$$r_L = \frac{pc}{eB} = 10^{-6} E_{GeV} B_{\mu G}^{-1} \text{ } pc$$

EXERCISE: estimate the II order Fermi acceleration of 1 GeV particle in the Galaxy

$$\begin{array}{lll} \text{Total energy gain} & \frac{E_f}{E_0} = \left(1 + \frac{\Delta E}{E}\right)^n = \left(1 + \frac{4}{3} \left(\frac{v_A}{c}\right)^2\right)^n \approx 2 \\ \text{Number of} & n = \frac{\tau_{res}}{\Delta t} \approx \frac{100 \, Myr}{0.1 \, yr} \approx 10^9 & v_A = \frac{B}{\sqrt{4\pi\rho}} = 6.5 \frac{B}{3\mu G} \left(\frac{\rho}{1 \, cm^{-3}}\right)^{-1/2} \frac{km}{s} \\ \text{Time of a single} & \text{interaction} & \Delta t \approx \frac{1}{D_{\theta\theta}} = \frac{1}{\Omega k_{res} F(k_{res})} = \frac{r_L}{c} \left(\frac{L_c}{r_L}\right)^{2/3} \approx 0.1 \, yr \, E_{GeV}^{1/3} \, B_{\mu G}^{-1/3} \, L_{10pc}^{2/3} \\ \text{Kolmogorov power} & k \, F(k) \approx \left(k \, L_c\right)^{-2/3} = \left(\frac{L_c}{r_L}\right)^{-2/3} & L_c \sim 10 \div 100 \, pc \\ r_L = \frac{pc}{eB} = 10^{-6} E_{GeV} \, B_{\mu G}^{-1} \, pc \end{array}$$