

Galactic magnetic fields I. Observations

### Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

4th Graduate School on Plasma-Astroparticle Physics Bad Honnef – 29 January - 3 February, 2023

## Outline



### Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting



・ 同 ト ・ ヨ ト ・ ヨ ト

## Outline



### 2) Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

### 3 External galaxies

ヘロト ヘ部ト ヘヨト ヘヨト

# Early history

• Alfvén (1937)

Cosmic-ray confinement implies
 "the existence of a magnetic field in interstellar space"

#### • Fermi (1949)

<sup>ISS</sup> "The main process of [cosmic-ray] acceleration is due to [interstellar] magnetic fields ... The magnetic field in the dilute matter is ~ 5  $\mu$ G, while its intensity is probably greater in the heavier clouds"

#### Hall; Hiltner (1949); Davis & Greenstein (1951)

- Linear polarization of starlight
- Bue to elongated dust grains aligned by an interstellar magnetic field

#### • Kiepenheuer (1950)

Galactic radio synchrotron emission

Credit: Bryan Gaensler

イロト イヨト イヨト

# **Observational tools**

- Polarization of starlight & dust thermal emission
  Due to dust grains → general (dusty) ISM
  - $\square \vec{B}_{\perp}$  (orientation only)

### Synchrotron emission

Produced by *CR electrons*  $\rightarrow$  general (CR-filled) ISM  $\mathbb{B}_{\perp}$  (strength & orientation)

### Faraday rotation

Caused by thermal electrons  $\rightarrow$  ionized regions  $\mathbb{B}_{\parallel}$  (strength & sign)

### Zeeman splitting

Molecular & atomic *spectral lines*  $\rightarrow$  neutral regions  $\blacksquare B_{\parallel}$  (strength & sign)









Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Outline





### Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

# 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Outline



# Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

# 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Physical concept

Dust grains tend to spin about their short axes & to align their spin axes with  $\vec{B}$ 

This grain alignement leads to linear polarization



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization orientation

- Starlight attenuated by dust (optical) is polarized  $\|\vec{B}_{\perp}\|$
- Dust thermal emission (infrared) is polarized  $\perp \vec{B}_{\perp}$



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# **Polarization fraction**

| <i>p</i> ≡ | $\frac{P}{I}$ |
|------------|---------------|
|------------|---------------|

- Starlight attenuated by dust :  $p \simeq \tau p_0 \cos^2 \gamma$
- Dust thermal emission :  $p = p_0 \cos^2 \gamma$

 $\downarrow p_0 = p_{\text{intr}} F_{\text{align}} F_{\delta B}$ 

 $\vec{B} \in \text{PoS}$  $\left(\cos^2 \gamma = 1\right)$ 

 $\Rightarrow p = p_0$ 



$$\vec{B} \perp \text{PoS}$$
$$\left(\cos^2 \gamma = 0\right)$$

 $\Rightarrow p = 0$ 



イロト イヨト イヨト イヨト

Credit: Vincent Guillet

= 990

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# **Dust polarization**

Altogether

- Polarization orientation
- Polarization fraction

 $\square$  orientation of  $\vec{B}$  in PoS

 $\square$  inclination of  $\vec{B}$  to PoS

(for ideal conditions)

ヘロト ヘ部ト ヘヨト ヘヨト

Katia FERRIÈRE Galactic magnetic fields I. Observations

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization of starlight



#### $\vec{B}_{\perp}$ half-vectors from 8 662 stars

The second state of the s

- Toward the halo :  $\vec{B}$  has a vertical component  $\vec{B}$  ,  $\vec{B}$ 

| Katia FERRIÈRE | Galactic magnetic fields | I. Observations |  |
|----------------|--------------------------|-----------------|--|
|----------------|--------------------------|-----------------|--|

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization of starlight

Stars have accurately measured distances (with Gaia) Stars have accurately measured distances (with Gaia) Stars have accurately measured distances (with Gaia)

Stellar polarization cube of nearby ISM



3 layers at 0 – 20 pc 20 – 40 pc 40 – 60 pc

< □ > < □ > < □ > < □ >

-

Credit: Marta Alves

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization of dust thermal emission

Total intensity &  $\vec{B}_{\perp}$  half-vectors at 353 GHz (Planck)



Planck collaboration (2015)

- $\square$  In the disk :  $\vec{B}_{ord}$  is horizontal
  - Toward the halo :  $\vec{B}$  has a vertical component

イロト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization of dust thermal emission







Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Polarization of dust thermal emission



Planck collaboration (2015)

For Anti-correlation between 
$$p = \frac{P}{T}$$
 &  $S = \sqrt{\langle (\Delta \psi)^2 \rangle}$ 

ヘロト ヘ部ト ヘヨト ヘヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Magnetic field orientation in dust filaments

Galactic fields from the *Herschel* Galactic cold core (GCC) key-program with  $\vec{B}_{\perp}$  half-vectors from *Planck* (353 GHz)



Credit: Jonathan Oers

イロト イヨト イヨト イヨ

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Magnetic field orientation in dust filaments

Galactic fields from the *Herschel* Galactic cold core (GCC) key-program with  $\vec{B}_{\perp}$  half-vectors from *Planck* (353 GHz)



Katia FERRIÈRE

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Outline



## Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

## 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Physical concept

Relativistic electrons gyrating about magnetic field lines emit *synchrotron radiation* 



Credit: Philippe Terral

Katia FERRIÈRE Galactic magnetic fields I. Observations

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Total & polarized intensities

Emissivity:  $\mathcal{E} = f(\alpha) n_{\text{CRe}} \frac{B_{\perp}}{\nu}^{\alpha+1} \nu^{-\alpha} \quad \& \quad \mathcal{E}_{\text{pol}} = p_{\text{syn}} \mathcal{E} \quad \& \quad \overleftrightarrow{\mathcal{E}}_{\text{pol}} \perp \overrightarrow{B}_{\perp}$ 

- Total intensity :  $I = \int \mathcal{E} \, ds$  **EVALUATE:**  $B_{\perp}$
- Polarized intensity :  $\overrightarrow{P} = \int \overleftrightarrow{\mathcal{E}}_{\text{pol}} ds \quad \overrightarrow{B}_{\perp})_{\text{ord}}$



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Total & polarized intensities

Emissivity:  $\mathcal{E} = f(\alpha) n_{\text{CRe}} \frac{B_{\perp}}{\nu}^{\alpha+1} \nu^{-\alpha} \quad \& \quad \mathcal{E}_{\text{pol}} = p_{\text{syn}} \mathcal{E} \quad \& \quad \overleftrightarrow{\mathcal{E}}_{\text{pol}} \perp \overrightarrow{B}_{\perp}$ 

- Total intensity :  $I = \int \mathcal{E} \, ds$   $\mathbb{R}$
- Polarized intensity :  $\overrightarrow{P} = \int \overleftrightarrow{\mathcal{E}}_{pol} ds \qquad \overrightarrow{\mathcal{B}}_{\perp}_{lord}$

$$Q + i U = \int \mathcal{E}_{\text{pol}} e^{2i\psi} \, ds$$

ヘロト 人間 ト 人間 ト 人間 トー

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Total & polarized intensities

TI at 408 MHz (76 m Jodrell-Bank + 100 m Effelsberg)



PI &  $\vec{B}_{\perp}$  half-vectors at 23 GHz (WMAP)



ヘロト ヘヨト ヘヨト

- $\mathbb{I}$  Near the Sun :  $B_{\text{ord}} \sim 3 \,\mu\text{G}$  &  $B_{\text{tot}} \sim 5 \,\mu\text{G}$ 
  - In the disk :  $\vec{B}_{ord}$  is horizontal
  - Toward the halo :  $\vec{B}$  has a vertical component

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Fluctuations in synchrotron intensity

Theoretical developments (Lazarian & Pogosyan 2012)

- & numerical simulations (Herron et al. 2016)
- Synchrotron intensity fluctuations are anisotropic, forming filaments  $\| \vec{B}_{\perp} \|$

Synchrotron total intensity map



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Fluctuations in synchrotron intensity

Synchrotron intensity gradients  $\mathbf{w}$  orientation of  $\vec{B}_{\perp}$ 

Synchrotron intensity gradients & polarization half-vectors (Planck)



Lazarian et al. (2017)

・ロト ・ 日 ・ ・ 目 ・ ・

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Outline





Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

### 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium, the orientation of linear polarization undergoes *Faraday rotation* 



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Physical concept

When a linearly polarized radio wave travels through a magneto-ionized medium, the orientation of linear polarization undergoes *Faraday rotation* 



Credit: Theophilus Britt Griswold (NASA Goddard)

ヘロト ヘ部ト ヘヨト ヘヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

## Rotation angle & rotation measure

Rotation angle :  $\Delta \psi = \mathbf{RM} \lambda^2$ 

Rotation measure :

$$\mathrm{RM} = C \int n_{\mathrm{e}} B_{\parallel} \, ds \qquad \qquad \text{if } B_{\parallel}$$



Credit: Theophilus Britt Griswold (NASA Goddard)

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Rotation angle & rotation measure

Rotation angle :  $\Delta \psi = \text{RM } \lambda^2$ Rotation measure :  $\text{RM} = C \int n_e B_{\parallel} ds$  we  $B_{\parallel}$ 

For Galactic pulsars :  $DM = \int n_e \, ds \implies \langle B_{\parallel} \rangle = \frac{RM}{C \, DM}$ 

For extragalactic sources : Need a model of  $n_{\rm e}$ 

・ロト ・ 四ト ・ ヨト ・ ヨト ・

### **Rotation measures**

RMs of pulsars & EGRSs with  $|b| < 8^{\circ}$ 





Schnitzeler et al. (2019)

Han et al. (2018)

- $\label{eq:reg} \begin{array}{l} \mbox{\tiny ${\rm reg}$} \end{array} \sim 1.5 \ \mu {\rm G} \ \& \ B_{\rm tot} \sim 5 \ \mu {\rm G} \\ \hline B_{\rm reg} \ \mbox{is nearly azimuthal} \quad (\simeq -8^\circ \ {\rm from} \ \hat{e}_\phi) \end{array}$ 
  - In the disk :  $\vec{B}_{reg}$  is horizontal & mostly azimuthal, with *reversals* in  $B_{\phi}$  $\vec{B}_{reg}$  probably has a spiral shape
  - In the halo :  $\vec{B}_{reg}$  is CCW at z > 0 & CW at z < 0 $\vec{B}_{reg}$  possibly has an upward spiraling shape

### **Rotation measures**



van Eck et al. (2011)

- $\mathbb{I} = -\text{Near the Sun} : \frac{B_{\text{reg}}}{B_{\text{reg}}} \approx \frac{1.5 \,\mu\text{G}}{B_{\text{tot}}} & \frac{B_{\text{tot}}}{5 \,\mu\text{G}} \\ \frac{B_{\text{reg}}}{B_{\text{reg}}} \text{ is nearly azimuthal } (\simeq -8^{\circ} \text{ from } \hat{e}_{\phi})$ 
  - In the disk :  $\vec{B}_{reg}$  is horizontal & mostly azimuthal, with *reversals* in  $B_{\phi}$  $\vec{B}_{reg}$  probably has a spiral shape
  - In the halo :  $\vec{B}_{reg}$  is CCW at z > 0 & CW at z < 0 $\vec{B}_{reg}$  possibly has an upward spiraling shape

Dust polarization Synchrotron emission Faraday rotation Faraday tomography Zeeman splitting





### Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation

### Faraday tomography

Zeeman splitting

### 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# General concept

### Underlying processes

- Galactic synchrotron emission : linearly polarized
- Faraday rotation :  $\lambda$ -dependent

### General idea

- Measure synchrotron polarized intensity at many different  $\boldsymbol{\lambda}$
- Convert  $\lambda$ -dependence into s-dependence

### Output

Faraday cube = 3D map of synchrotron polarized emission as  $fc(\alpha, \delta, \Phi)$ 

ヘロト ヘ部ト ヘヨト ヘヨト

### General method

• Faraday rotation of background source

 $\Delta \psi = \text{RM } \lambda^2$  with  $\text{RM} = C \int_0^L n_e B_{\parallel} ds$  (rotation measure)



#### • Faraday rotation of Galactic synchrotron emission

Synchrotron emission & Faraday rotation are spatially mixed

$$\vec{P}(\lambda^2) = \int \vec{F}(\Phi) e^{2i\Phi\lambda^2} d\Phi$$
 with  $\Phi(z) = C \int_0^z n_e B_{\parallel} ds$  (Faraday depth)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Fourier transform  $\Rightarrow \vec{F}(\Phi) = \frac{1}{\pi} \int \vec{P}(\lambda^2) e^{-2i\Phi\lambda^2} d\lambda^2$ 



Figure Credit: Marijke Haverkorn

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Faraday spectrum



Figure Credit: Marta Alves



Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Faraday cube

For a given sky area

- Derive Faraday spectrum,  $\vec{F}(\Phi)$ , in many directions  $(\alpha, \delta)$
- Combine all derived Faraday spectra into Faraday cube = 3D map of  $\vec{F}(\alpha, \delta, \Phi)$

Faraday cube toward Fan region, obtained with LOFAR (van Eck et al. 2017)



3 slices at  $\Phi_1 = -2.0 \text{ rad } \text{m}^{-2}$  $\Phi_2 = -1.5 \text{ rad } \text{m}^{-2}$  $\Phi_3 = -1.0 \text{ rad } \text{m}^{-2}$ 

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Expected results

- From synchrotron polarized intensity map to Faraday cube
  - Measure  $\vec{P}(\lambda^2)$  at many different  $\lambda$
  - Fourier transform  $\vec{P}(\lambda^2)$  to obtain  $\vec{F}(\Phi)$
- From Faraday cube to physical space
  - Uncover synchrotron-emitting & Faraday-rotating features in Faraday cube
  - Identify these features with interstellar matter structures
- For synchrotron-emitting regions  $\int \vec{F}(\Phi) \ d\Phi \quad \text{reg} \quad \vec{B}_{\perp}$
- For Faraday-rotating regions
  - $\Delta \Phi$  is  $B_{\parallel}$

イロト イボト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Outline





- Our Galaxy
- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting

# 3 External galaxies

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Physical concept

Atom/molecule with nonzero (electronic) angular momentum has (high) magnetic moment

Coupling between magnetic moment & external magnetic field splits energy levels with  $j \neq 0$  into 2j+1 sublevels (m = -j, ..., +j) $\Rightarrow$  leads to *splitting* of spectral lines

Splitting: 
$$\Delta v = \frac{1}{4\pi} \Omega_e = \frac{eB}{4\pi m_e c}$$

In principle: - splitting strength of  $\vec{B}$ - polarization strength of  $\vec{B}$ 

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Splitting of spectral line

• If B = 0





#### • If $B \neq 0$





Introduction Our Galaxy Zeeman splitting

# Splitting of spectral line

• If  $\vec{B} \parallel \text{LoS}$ 



#### Circular polarization B



• If  $\vec{B} \perp \log$ 



ß

Linear polarization



ヘロト ヘ部ト ヘヨト ヘヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Stokes parameters

• Total intensity

$$I = I_{\pi} + I_{\sigma^{+}} + I_{\sigma^{-}} = \hat{I}_{\pi} \sin^{2} \theta + (\hat{I}_{\sigma^{+}} + \hat{I}_{\sigma^{-}}) \frac{1}{2} (1 + \cos^{2} \theta)$$



### • Circular polarization

$$V = I_{\cup} - I_{\cup}$$
$$= (\hat{I}_{\sigma^+} - \hat{I}_{\sigma^-}) \cos \theta$$

$$Q = I_{\uparrow} - I_{\leftrightarrow}$$
$$= \left[ \hat{I}_{\pi} - \frac{1}{2} (\hat{I}_{\sigma^+} + \hat{I}_{\sigma^-}) \right] \sin^2 \theta$$

& 
$$U = I_{\searrow} - I_{\nearrow}$$

ß

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

### **Stokes parameters**

• If  $\vec{B} \parallel \text{LoS}$   $(\theta = 0^{\circ})$ 

Circular polarization







• If  $\vec{B} \perp \text{LoS}$   $(\theta = 90^{\circ})$ 

Solution Linear polarization







Katia FERRIÈRE

Galactic magnetic fields

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

## **Stokes parameters**

• If  $\vec{B}$  oblique to LoS

### Solution Elliptical polarization









イロト イヨト イヨト イヨ

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Limit of small splitting ( $\Delta v \ll$ line width)

V

• If  $\vec{B} \parallel \text{LoS}$   $(\theta = 0^{\circ})$ 

Solution Circular polarization







• If  $\vec{B} \perp \text{LoS}$  ( $\theta = 90^{\circ}$ )

Solution Linear polarization







Katia FERRIÈRE

Galactic magnetic fields

I. Observations

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Limit of small splitting ( $\Delta \nu \ll$ line width)

V

• If  $\vec{B}$  oblique to LoS

Solution Elliptical polarization







Measure 
$$\begin{cases} -V = (\hat{I}_{\sigma^+} - \hat{I}_{\sigma^-})\cos\theta = -\frac{dI_v}{dv}\Delta v\cos\theta & \text{reg} & B_{\parallel} \\ -Q = [\hat{I}_{\pi} - \frac{1}{2}(\hat{I}_{\sigma^+} + \hat{I}_{\sigma^-})]\sin^2\theta = -\frac{1}{4}\frac{d^2I_v}{dv^2}\Delta v^2\sin^2\theta & \text{reg} & B_{\perp} \end{cases}$$

л

< □ > < 合

- A E M

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Magnetic field strength



Crutcher et al. (2010)

イロト イヨト イヨト イヨト

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Goldreich-Kylafis effect

If anisotropic radiation field

- $\Rightarrow \sigma^+, \pi, \sigma^-$  transitions are radiatively excited at different rates
- $\Rightarrow$  m=+1, m=0, m=-1 levels are not equally populated

This imbalance can lead to *linear polarization*  $\| \vec{B}_{\perp} \text{ or } \perp \vec{B}_{\perp} \|$ 

Balanced population



・ コ ト ・ 日 ト ・ 目 ト ・

-

Dust polarization Synchrotron emission Faraday rotation Zeeman splitting

# Goldreich-Kylafis effect

If anisotropic radiation field

- $\Rightarrow \sigma^+, \pi, \sigma^-$  transitions are radiatively excited at different rates
- $\Rightarrow$  m=+1, m=0, m=-1 levels are not equally populated

This imbalance can lead to *linear polarization*  $\| \vec{B}_{\perp} \text{ or } \perp \vec{B}_{\perp} \|$ 

Unbalanced population



# Outline



### Our Galaxy

- Dust polarization
- Synchrotron emission
- Faraday rotation
- Zeeman splitting



ヘロト ヘ部ト ヘヨト ヘヨト

### **Observational tools**

- Faraday rotation
  - $\mathbb{B}_{\parallel}$  (strength & sign)
- Polarization of dust thermal emission  $\mathbb{B}_{+}$  (orientation only)

Katia FERRIÈRE Galactic magnetic fields I. Observations

・ロト ・四ト ・ヨト・ヨト・

### Synchrotron emission

#### Spiral galaxies

- $B_{\rm tot} \sim a \text{ few } \mu \text{G}$
- $\vec{B}$  has an ordered component
- \* Face on
  - Disk :  $\vec{B}_{ord}$  follows the spiral arms
  - \* Edge on
    - Disk :  $\vec{B}_{ord}$  is horizontal
    - Halo :  $\vec{B}_{ord}$  has an X shape



M 51



HST

Effelsberg + VLA (6.2 cm)



NGC 891

### Synchrotron emission

#### Spiral galaxies

- $B_{\rm tot} \sim a \text{ few } \mu \text{G}$
- $\vec{B}$  has an ordered component
- \* Face on
  - Disk :  $\vec{B}_{ord}$  follows the spiral arms
  - \* Edge on
    - Disk :  $\vec{B}_{ord}$  is horizontal
    - Halo :  $\vec{B}_{ord}$  has an X shape





Effelsberg + VLA (6.2 cm)



NGC 891

M 51

### Synchrotron emission

### Elliptical galaxies

- Most are radio quiet
  - Low level of star formation
  - $\Rightarrow$  Lack of relativistic electrons
  - $\Rightarrow$  Undetectable  $\vec{B}$

Dynamo models

 $\blacksquare B_{tot} \sim a \text{ few } \mu G$  ??

•  $\vec{B}$  has only a fluctuating component

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

# Faraday rotation

#### Spiral galaxies

- $\vec{B}$  has a regular component
- Vertical structure More difficult to establish Indications of even-symmetry B<sup>'</sup><sub>reg</sub>

#### RM map of M 31 (Effelsberg 6 cm & 11 cm)



Beck (2015). Copyright: MPIfR/Bonn

# Polarization of dust thermal emission

### Spiral galaxies

- $\vec{B}$  has an ordered component
- - \* Edge on
    - Disk :  $\vec{B}_{ord}$  is horizontal
    - Off disk :  $\vec{B}_{ord}$  has a vertical component

Katia FERRIÈRE



M 51

HST

SOFIA/HAWC+ (154  $\mu$ m)



NGC 891