Astroparticle Physics - Selected Topics -

4th Graduate School on Plasma-Astroparticle Physics

Dennis Soldin

Karlsruhe Institute of Technology

Karlsruher Institut für Technologie

Astroparticle Physics Air Shower Physics

4th Graduate School on Plasma-Astroparticle Physics

Dennis Soldin

Karlsruhe Institute of Technology

Karlsruher Institut für Technologie

Disclaimer

- Unfortunately, 2 lectures are way too less time for a complete overview of the field of astroparticle physics, even with a focus on "particle physics"...
- We also want to have exercises to solve some problems and time for discussions
- Thus, this lecture will be highly biased, we will mainly talk about the <u>selected topics</u>: High-energy cosmic rays and extensive air showers

 - Indirect detection of cosmic rays and recent results
 - Astrophysical neutrinos
- We will <u>not</u> talk about (or only touch):

• Low-energy cosmic rays, neutrinos, gamma rays, astrophysical sources, acceleration and propagation of cosmic rays, Dark Matter or exotic particle physics scenarios, ...

Disclaimer II

- Particle Physics" can be found in the textbook by Tom Gaisser et al. (read it!)
- Comprehensive review of recent results (read it!)

Astroparticle Physics 147 (2023) 102794

Contents lists available at ScienceDirect

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Review

Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers*

A. Coleman^{1,a}, J. Eser^{2,a}, E. Mayotte^{3,a}, F. Sarazin^{3,a,*}, F.G. Schröder^{1,4,a,*}, D. Soldin^{1,5,a}, T.M. Venters^{6,a,*}, R. Aloisio^{7,b}, J. Alvarez-Muñiz^{8,b}, R. Alves Batista^{9,b}, D. Bergman^{10,b}, M. Bertaina^{11,b}, L. Caccianiga^{12,b}, O. Deligny^{13,b}, H.P. Dembinski^{14,b}, P.B. Denton^{15,b}, A. di Matteo^{16,b}, N. Globus^{17,18,b}, J. Glombitza^{19,b}, G. Golup^{20,b}, A. Haungs^{4,b}, J.R. Hörandel^{21,b}, T.R. Jaffe^{22,b}, J.L. Kelley^{23,b}, J.F. Krizmanic^{6,b}, L. Lu^{23,b}, J.N. Matthews^{10,b}, I. Mariş^{24,b}, R. Mussa^{16,b}, F. Oikonomou^{25,b}, T. Pierog^{4,b}, E. Santos^{26,b}, P. Tinyakov^{24,b}, Y. Tsunesada^{27,28,b}, M. Unger^{4,b}, A. Yushkov^{26,b}, M.G. Albrow^{29,c}, L.A. Anchordoqui^{30,c}, K. Andeen^{31,c}, E. Arnone^{11,16,c}, D. Barghini^{11,16,c}, E. Bechtol^{23,c}, J.A. Bellido^{32,c}, M. Casolino^{33,34,c}, A. Castellina^{16,35,c}, L. Cazon^{8,c}, R. Conceição^{36,c}, R. Cremonini^{37,c}, H. Dujmovic^{4,c}, R. Engel^{4,5,c}, G. Farrar^{38,c}, F. Fenu^{11,16,c}, S. Ferrarese^{11,c}, T. Fujii^{39,c}, D. Gardiol^{16,35,c}, M. Gritsevich^{40,41,c}, P. Homola^{42,c}, T. Huege^{4,43,c}, K.-H. Kampert^{44,c}, D. Kang^{4,c}, E. Kido^{45,c}, P. Klimov^{46,c}, K. Kotera^{43,47,c}, B. Kozelov^{48,c}, A. Leszczyńska^{1,5,c}, J. Madsen^{23,c}, L. Marcelli^{34,c}, M. Marisaldi^{49,c}, O. Martineau-Huynh^{50,c}, S. Mayotte^{3,c}, K. Mulrey^{21,c}, K. Murase^{51,52,c}, M.S. Muzio^{51,c}, S. Ogio^{28,c}, A.V. Olinto^{2,c}, Y. Onel^{53,c}, T. Paul^{30,c}, L. Piotrowski^{54,c}, M. Plum^{55,c} B. Pont^{21,c}, M. Reininghaus^{4,c}, B. Riedel^{23,c}, F. Riehn^{36,c}, M. Roth^{4,c}, T. Sako^{56,c}, F. Schlüter^{4,57,c}, D.H. Shoemaker^{58,c}, J. Sidhu^{59,c}, I. Sidelnik^{20,c}, C. Timmermans^{21,60,c} O. Tkachenko^{4,c}, D. Veberic^{4,c}, S. Verpoest^{61,c}, V. Verzi^{34,c}, J. Vícha^{26,c}, D. Winn^{53,c}, E. Zas^{8,c}, M. Zotov ^{46,c}

[A. Coleman et al., Astropart. Phys. 147 (2023)]

• Everything discussed in the following and everything beyond about "Cosmic Rays and

Outline

Lecture 1 (Monday, 9 am):

- Introduction to Astroparticle Physics
- Cosmic Rays
- Air shower Physics

Lecture 2 (Monday, 2 pm):

- Indirect Detection of Cosmic Rays
- Recent Results and Open Questions

Lecture 3 (Tuesday, 9 am):

- (Possible continuation)
- Exercise & Discussion!

Theory / Phenomenology

Experiment

<u>Discussion</u>

Astroparticle Physics

What is astroparticle physics?

- Studies of elementary particles of astrophysical origin and their relation to astrophysics and cosmology (Wikipedia)
- Astroparticles:
 - Cosmic Rays
 - Neutrinos
 - Gamma Rays
 - Dark Matter?
- Let's start with cosmic rays!

AGNs, SNRs, GRBs...

11

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Earth

/***** 11111 1111

air shower

smic rays They are charged particles and are deflected by magnetic fields.

- ▶ <u>D. Pacini</u> (1910):
 - Ionization in the atmosphere is due to extra-terrestrial radiation
- ▶ <u>V. Hess</u> (1911/12, Nobel prize 1936):
 - First prove that radiation is of extra-terrestrial origin
- ► Many experiments followed over the last 100 years...
 - <u>Comic rays (CRs) are charged particles</u>, mostly protons, which reach Earth from Space
 - CRs can have <u>extremely</u> high energies...
- However, many open questions remain after more than 100 years of research!

Open Questions

- What are the sources of high-energy CRs?
- What are the acceleration mechanisms of CRs?
- What is their mass composition?
 (later more...)
- What is the origin of features observed in the CR spectrum? (later more...)

Can only be answered with multimessenger observations!

AGNs, SNRs, GRBs...

black

holes

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

0

They are weak, neutral particles that point to their sources and carry information from deep within their origins. Earth

1 1 1 1

*

air shower

Cosmic rays

They are charged particles and are deflected by magnetic fields.

- 104 10² 1 particle/m²/second 10-1 10^{20} 10-4 GeV) 10lev 10^{19} 10-1 Elux (m² Sr ³ 10⁻¹ 10⁻¹ S E 2.7 1 particle/m²/year Ш 10¹⁸ ' 10 Scaled Flux 10-24 10-24 1 particle/km²/year 10^{17} 10-26 1020 1010 1015 Energy (eV)

• Comic rays (CRs) are dominated by atomic nuclei • All-particle flux known over many orders of magnitude in E_0 Various prominent features observed in spectrum

• Comic rays (CRs) are dominated by atomic nuclei • All-particle flux known over many orders of magnitude in E_0

First order approximation:

• Simple power law

$$\frac{d\Phi}{dE_0} = \frac{dN}{dt dA d\Omega dE_0} \propto E_0^{-\gamma}$$

- Spectral index γ
- Simple approximation

$$\frac{d\Phi}{dE_0} \simeq 1.8 \cdot E_0^{-\gamma} \frac{\text{nucleons}}{\text{cm}^2 \,\text{s sr GeV/A}}$$

• More in the exercise!

First order approximation:

• Simple power law

$$\frac{d\Phi}{dE_0} = \frac{dN}{dt dA d\Omega dE_0} \propto E_0^{-\gamma}$$

- Spectral index γ
- Simple approximation

 $\frac{d\Phi}{dE_0} \simeq 1.8 \cdot E_0^{-\gamma} \frac{\text{nucleons}}{\text{cm}^2 \,\text{s sr GeV/A}}$

- $\gamma \simeq 2.7$ up to $E_{\text{knee}} \simeq 4 \,\text{PeV}$
- $\gamma \simeq 3.0$ up to $E_{2nd knee} \simeq 0.6 \,\mathrm{EeV}$
- $\gamma \simeq 3.2$ up to $E_{2nd \, knee} \simeq 0.6 \, \text{EeV}$
- $\gamma \simeq 2.7$ above $E_{ankle} \simeq 4 \,\mathrm{EeV}$
- Mass number A

First order approximation:

• Simple power law

$$\frac{d\Phi}{dE_0} = \frac{dN}{dt dA d\Omega dE_0} \propto E_0^{-\gamma}$$

- Spectral index γ
- Simple approximation

 $\frac{d\Phi}{dE_0} \simeq 1.8 \cdot E_0^{-\gamma} \frac{\text{nucleons}}{\text{cm}^2 \,\text{s sr GeV/A}}$

- $\gamma \simeq 2.7$ up to $E_{\text{knee}} \simeq 4 \,\text{PeV}$
- $\gamma \simeq 3.0$ up to $E_{2nd knee} \simeq 0.6 \,\mathrm{EeV}$
- $\gamma \simeq 3.2$ up to $E_{2nd \, knee} \simeq 0.6 \, \text{EeV}$
- $\gamma \simeq 2.7$ above $E_{ankle} \simeq 4 \,\mathrm{EeV}$
- Mass number A

Interlude: CM vs. Lab Frame

• Four-momentum:

 $\overrightarrow{P} = (E, p_x, p_y, p_z)$ (natural units) $\Rightarrow \overrightarrow{P} \overrightarrow{P} = E^2 + \overrightarrow{p} \overrightarrow{p} = m^2$ $\overrightarrow{P}\overrightarrow{P}$ is conserved!

Invariant mass:

$$s = (\overrightarrow{P}_1 + \overrightarrow{P}_2)^2$$

Center-of-mass energy:

$$\overrightarrow{P}_1 = \overrightarrow{P}_2 = (E, \overrightarrow{p}) \implies s = ?$$

boratory energy:

 $\overrightarrow{P}_1 = (E, \overrightarrow{p}_1) \text{ and } \overrightarrow{P}_2 = (m, 0) \implies s = ?$

р

Interlude: CM vs. Lab Frame

• Four-momentum:

 $\overrightarrow{P} = (E, p_x, p_y, p_z)$ (natural units) $\Rightarrow \overrightarrow{P} \overrightarrow{P} = E^2 + \overrightarrow{p} \overrightarrow{p} = m^2$ $\overrightarrow{P}\overrightarrow{P}$ is conserved!

Invariant mass:

$$s = (\overrightarrow{P}_1 + \overrightarrow{P}_2)^2$$

<u>Center-of-mass energy:</u>

$$\overrightarrow{P}_1 = \overrightarrow{P}_2 = (E, \overrightarrow{p})$$

boratory energy:

$$\overrightarrow{P}_1 = (E, \overrightarrow{p}_1) \text{ and } \overrightarrow{P}_2 = (m, \overrightarrow{p}_2) \iff s =$$

?

Interlude: Ultra-High Energy

- Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

► Need accelerator of size of Mercury's orbit to reach 10²⁰ eV with current technology!

CR Mass Composition

• Global Spline Fit (GSF) flux model

[H.P. Dembinski, R. Engel, A. Fedynitch, T. K. Gaisser, F. Riehn, T. Stanev, PoS ICRC2017 (2017) 533]

CR Mass Composition

- CR mass composition measured over many order of magnitude in E_0
- Often given in terms of mean logarithmic mass, $\langle \ln A \rangle$
- Very large uncertainties, in particular towards high energies!
- Because CR properties are inferred indirectly from "air shower" measurements

* More about the indirect detection of cosmic rays in Lecture 2! 16

Direct measurements (balloon / space)

* More about the indirect detection of cosmic rays in Lecture 2! 16

Extensive Air Showers

Extensive Air Shower (EAS)

Cosmic Ray Interaction

Ground-Based Particle Detector

Basics: Particle Physics

- ► Standard Model (SM) of Particle Physics
 - <u>Leptons:</u>
 - elementary particles
 - No strong interactions (only em and weak)

Basics: Particle Physics

- ► Standard Model (SM) of Particle Physics
 - <u>Leptons:</u>
 - elementary particles
 - No strong interactions (only em and weak)
 - Hadrons:
 - Composite particles
 - ► 2+ quarks held together by <u>strong force</u>
 - Mesons: even number of quarks (2+), e.g.

 $\pi^+ (u\bar{d}), \pi^- (d\bar{u}), \pi^0 (u\bar{u} \text{ or } d\bar{d}), K^+ (u\bar{s}), K^- (s\bar{u}), K^0 (d\bar{s} \text{ or } s\bar{d}), D^+ (c\bar{d}), D^0 (c\bar{u}), \dots$

<u>Baryons:</u> odd number of quarks (3+), e.g.
 p (*uud*), *n* (*udd*), ...

Basics: Particle Physics

- ► Standard Model (SM) of Particle Physics
 - Leptons:
 - elementary particles
 - <u>No strong interactions</u> (only em and weak)
 - Hadrons:
 - Composite particles
 - ► 2+ quarks held together by <u>strong force</u>
 - <u>Mesons:</u> even number of quarks (2+), e.g.

 π^+ $(u\bar{d}), \pi^ (d\bar{u}), \pi^0$ $(u\bar{u} \text{ or } d\bar{d}), K^+$ $(u\bar{s}),$ $K^-(s\bar{u}), K^0(d\bar{s} \text{ or } s\bar{d}), D^+(c\bar{d}), D^0(c\bar{u}), \dots$

▶ <u>Baryons:</u> odd number of quarks (3+), e.g. p (uud), n (udd), ...

Standard Model of Elementary Particles

Extensive Air Showers (EAS)

• CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

• CR properties are inferred from the (secondary) particles measured at the ground

- <u>Observation:</u> We see the complex "mess" after multiple collisions
- <u>Goal:</u> Find out what initiated the collision
- Not trivial...

Basics: Muons

- Muons are the "heavy siblings" of the electron (about 200x heavier)
- First discovered 1936 in measurements of EAS
- Mainly produced through pion (kaon) decays in EAS
- About 100 muons per square meter per second at ground level
- Highly penetrating particles, can traverse several kilometer of rock
- Life-time: $2.2 \,\mu s$, Mass: 105.66 MeV
- Distance traveled in an EAS: $l = \gamma ct$, where $\gamma = E_{\mu}/m_{\mu}$

here $\gamma = E_{\mu}/m_{\mu}$ (more in the exercise)

Basics: Neutrinos

- Neutrinos interact only via the weak interaction!
- Mostly pass through normal matter unimpeded and undetected
- Three flavors: ν_e, ν_μ, ν_τ
- Can oscillate between flavors!
- ▶ Mass: < 0.120 eV
- Mainly produced through nuclear interactions in the sun
- About 65 billion neutrinos per square centimeter per second at ground level!

Some EAS Simulations... (later more details)

Extensive Air Showers

• Simulated gamma, proton, and iron showers at $E_0 = 10^{15} \,\mathrm{eV}$ • Later more about EAS simulations...

[https://www.iap.kit.edu/corsika/]

► Simulated proton shower at 10¹⁴ eV

Extensive Air Showers

EAS simulation (proton, 10^{15}eV)		
 Shower front 	20	
• Longitudinal profile (X_{max})	15	
 Lateral profile 	10	
	5	
	- - 0	
	lg(N 5	
	4 3	
	2 1	
	٥Ę	

[https://www.iap.kit.edu/corsika/]

Extensive Air Showers

- EAS simulation (proton, 10^{15} eV)
 - Shower front
 - Secondary particles measured with detectors at the ground
- Detector simulation
 - Typically based on GEANT4
 - Detailed model for detector response (PMT, electronics, ...)
 - ► Not in this lecture...
- This lecture:
 - What happens during EAS development in detail?

[https://www.iap.kit.edu/corsika/]

10000

EAS Particles (Iron Shower)

muons

electrs

hadrons neutrs

Iron 10¹³ eV

24929 m

EAS Particles (Proton Shower)

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

Proton 10¹³ eV

21336 m

EAS Particles (Gamma Shower)

electrs

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

muons

hadrons neutrs

Gamma 10¹³ eV

24713 m

Atmosphere

- Density of the air, p_{ar}, plays an important role for the EAS development!
- <u>Atmospheric slant depth</u>:

 $X = \int \rho_{\text{air}} \, dl$

(integral taken along shower axis)

Atmosphere (South Pole)

- ► AIRS (Atmospheric InfraRed Sounder) data
- Typical model: 5-layer parametrization (MSIS) in terms of mass overburden

 $T(H) = a_i + b_i^{H/c_i}$, $H_{\text{layer}} = 4,10,40,100 \text{ km}$ $T(H) = a_5 + b_5 \cdot H/c_i$, $H_{\text{max}} = 112.8 \text{ km}$

• Typical height of 1st interaction: $H \simeq 20 \,\mathrm{km}$

Atmosphere (South Pole)

Cross Section

• <u>Particle flux:</u>

$$\Phi = \frac{dN_{\text{beam}}}{dAdt}$$

• Cross section: $\sigma = \frac{1 \ dN_{\text{int}}}{\Phi \ dt}$

Units of an area, typically "barn": 1 barn = 10^{-28} cm²

Cross Section

• Particle flux:

$$\Phi = \frac{dN_{\text{beam}}}{dAdt}$$

Units of an area, typically "barn": 1 barn = 10^{-28} cm²

Interaction Length

Cross section:

$$\sigma = \frac{1}{\Phi} \frac{dN_{\text{int}}}{dt}$$

Now, we can write

Interaction length (units of g/cm²):

$$\lambda_{\rm int} = \frac{\langle m_{\rm target} \rangle}{\sigma_{\rm int}}$$

Interaction length in air:

$$\lambda_{\rm int} = \frac{\langle m_{\rm air} \rangle}{\sigma_{\rm int}} = \frac{24160 \,\mathrm{mb} \,\mathrm{g/cm}^2}{\sigma_{\rm int}}$$

Typical values:

$$\lambda_{\gamma \to e^+ e^-} \approx 46 \,\mathrm{g/cm}^2$$

 $\lambda_{\pi} \approx \lambda_{K} \approx 120 \,\mathrm{g/cm}^{2}$

 $\lambda_{\rm p} \approx 80 \,{\rm g/cm^2}$

 $\lambda_{\rm Fe} \approx 10 \,{\rm g/cm^2}$

Electromagnetic Cascade

- Qualitative description: Heitler model
 - Primary electron (gamma) with energy E_0
 - Particle number doubles with each generation *n*
 - Energy equally distributed
 - Cascade stops when particle energy drops below a critical energy ξ_C
 - Energy at shower maximum (X_{max}) : $E = \xi_C$
 - What is ξ_C ?

[Heitler in The Quantum Theory of Radiation, (1954)]

Energy Loss of Charged Particles

- Ionization energy loss (Bethe-Bloch formula): $\frac{dE_{\rm ion}}{dX} = -\alpha(E) \text{ with } \alpha \approx 2.4 \,\text{MeV/(g/cm^2)}$
- Radiative energy loss (Bremsstrahlung):

$dE_{\rm Brems}$	<i>E</i>	with	$X \sim 36 \mathrm{g/cm^2}$
$d\mathbf{V}$	$-\frac{1}{V}$	VVILII	$\Lambda_0 \sim 50 \mathrm{g/cm}$
UЛ	Λ_0		(radiation length)

- Stopping power: $\frac{dE}{dX} = -\alpha(E) - \frac{E}{X_0}$
- Critical energy at which both are equal: $\xi_C = \alpha X_0 \approx 85 \,\mathrm{MeV}$

Electromagnetic Cascade

- Heitler model: [Heitler in The Quantum Theory of Radiation, (1954)]
 - Primary energy E_0
 - After $n = X/\lambda_{em}$ branchings: $N(X) = 2^{X/\lambda_{\rm em}}$
 - Energy per particle: $E(X) = E_0 / N(X)$ $\Rightarrow E(X_{\text{max}}) = E_0/\xi_C$ $\Rightarrow X_{\max} = \lambda_{em} \cdot \frac{\ln(E_0/\xi_C)}{\ln(2)}$ or with cascade equations (later) $X_{\max} \approx X_0 \ln(E_0/\xi_C)$ and $N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/\xi_C) - 0.33}} E_0/\xi_C$

Hadronic Cascade

• Heitler-Matthews model of the air shower development

• Cascade stops when energy drops below a critical energy, ξ_C , and:

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$

[Matthews, Astropart.Phys. 22 (2005)]

 $\pi^0 \rightarrow \gamma \gamma$

Simplified model of the air shower development (only charged and neutral pions)

- After 5 (6) generations: $E_{had} \sim 12\% (8\%)$
- Example IceTop:

14

- Atmospheric depth: $X \sim 690 \,\mathrm{g/cm^2}$
- Pion interaction length: $\lambda_{\pi} \sim 120 \text{ g/cm}^2$

$$\Rightarrow n = X/\lambda_{\pi} = 690/120 = 5.75 \simeq 6$$

Pions decay below critical energy

$$\xi_{\pi} = 115 \,\text{GeV} \quad (\xi_K = 850 \,\text{GeV})$$

generations
$$E_{\rm em} = \left[1 - \left(\frac{2}{3}\right)^n\right] \cdot E_0$$

Superposition Model

 $E_n = E_0 / A$

• <u>Glauber approximation:</u>

nucleus (binding energy $\sim 5 \,\text{MeV/nucleon}$ $\sigma_{\rm Fe-air} = \frac{A}{n_{\rm part}} \cdot \sigma_{\rm p-air} ,$ where n_{part} is the number of participants $E_n = E_0 / A$ Spectator Target Participants

<u>Assumption</u>: nucleus of mass A and energy E_0 correspond to A nucleons of energy

• Number of muons, N_{μ} , follows charged hadrons, N_{ch} , as

$$N_{\mu} = N_{\rm ch}^n$$
 where $E = E_0 / N_{\rm tot}^n \sim \xi_C$

with total number of particles, N_{tot} , from each interaction • The (average) number of muons is then given by

$$N_{\mu} = A \cdot \left(\frac{E_0}{A \cdot \xi_C}\right)^{\beta}, \ \beta = \frac{\ln N_{\rm ch}}{\ln N_{\rm tot}} \simeq 0.8$$

- \triangleright β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$\pi^{\pm} + p \to \pi^{0} + X$$

$$\pi^{0} \to \gamma \gamma \qquad \text{contribution}$$

$$\pi^{\pm} + p \to \rho^{0} + X$$

$$\rho^{0} \to \pi^{+} \pi^{-} \qquad \text{contribution}$$

- to EM component
- n to hadronic component

Number of muons, N_{μ} , follows charged hadrons, N_{ch} , as

 $N_{\mu} = N_{\rm ch}^n$ where $E = E_0 / N_{\rm tot}^n \sim \xi_C$

with total number of CR energy n each interaction • The (average) number of muons is then given by $N_{\mu} = A \cdot \left(\frac{E_0}{A \cdot \xi_C}\right)^{\beta}, \ \beta = \frac{\ln N_{\rm ch}}{\ln N_{\rm tot}} \simeq 0.82...0.94$

- \triangleright β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$\pi^{\pm} + p \to \pi^{0} + X$$

$$\pi^{0} \to \gamma \gamma$$
 contribution

$$\pi^{\pm} + p \to \rho^{0} + X$$
 contribution

 $\rho^0 \to \pi^+ \pi^-$

- to EM component
- n to hadronic component

- Number of muons, N_μ, follows charged hadrons, N_{ch}, as N_μ = Nⁿ_{ch} where E = E₀/Nⁿ_{tot} ~ ξ_C
 CR mass per of CR energy n each interaction
 The (average) number of muons is then given by N_μ = A · (E₀/A · ξ_C)^β, β = ln N_{ch}/ln N_{tot} ~ 0.82...0.94
- β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$\pi^{\pm} + p \to \pi^{0} + X$$

$$\pi^{0} \to \gamma \gamma$$
 contribution

$$\pi^{\pm} + p \to \rho^{0} + X$$
 contribution

 $\rho^0 \to \pi^+ \pi^-$

- to EM component
- to hadronic component

Basics: Muon Production

- Main decay channels for muon production:
 - <u>Pions:</u>

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) \qquad (\sim 100\%)$$

Kaons:

$$\begin{split} K^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) & (\sim 63.5 \%) \\ K^{0}_{L} &\to \pi^{\pm} + \mu^{\mp} + \nu_{\mu}(\bar{\nu}_{\mu}) & (\sim 27.0 \%) \\ \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) & (\sim 100 \%) \\ K^{0}_{L} &\to \pi^{\pm} + e^{\mp} + \nu_{e}(\bar{\nu}_{e}) & (\sim 38.7 \%) \\ \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) & (\sim 100 \%) \\ \end{split}$$

Muons are the tracers of hadronic interactions!

 Neutral pions transfer hadronic energy to electromagnetic cascade via

 $\pi^0 \to \gamma\gamma \quad (\sim 100\%)$

Basics: Muon Production

Main decay channels for muon production:

 ▶ Pions: $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$ (~ 100 %)
 ▶ Kaons: $K^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$ (~ 63.5 %) $K_{L}^{0} \to \pi^{\pm} + \mu^{\mp} + \nu_{\mu}(\bar{\nu}_{\mu})$ (~ 27.0 %) $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$ (~ 100 %) $K_{L}^{0} \to \pi^{\pm} + e^{\mp} + \nu_{e}(\bar{\nu}_{e})$ (~ 38.7 %) $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$ (~ 100 %)

Muons are the tracers of hadronic interactions!

 Neutral pions transfer hadronic energy to electromagnetic cascade via

 $\pi^0 \to \gamma\gamma \quad (\sim 100\%)$

Basics: Muon Production

• Main decay channels for muon production:

▶ Pions:

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$
 (~ 100 %)
 ▶ Kaons:
 K^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) (~ 63.5 %)
 K_{L}^{0} \to \pi^{\pm} + \mu^{\mp} + \nu_{\mu}(\bar{\nu}_{\mu}) (~ 27.0 %)
 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) (~ 100 \%)$
 $K_{L}^{0} \to \pi^{\pm} + e^{\mp} + \nu_{e}(\bar{\nu}_{e}) (~ 38.7 \%)$
 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) (~ 100 \%)$
 ▶ "Prompt":
 D^{\pm} \to \mu^{\pm} + X (~ 17.6 \%)
 D⁰ → $\mu^{\pm} + X$ (~ 6.7 %)
 others... later more...

Muons are the tracers of hadronic interactions!

 Neutral pions transfer hadronic energy to electromagnetic cascade via

 $\pi^0 \to \gamma\gamma \quad (\sim 100\%)$

Heitler-Matthews Model of EAS

- Limitations of the Heitler-Matthews model:
 - Hadronic interactions produce other particles in addition to pions
 - All particles per generation are assumed to receive the same energy fraction
 - The hadronic interaction length and the hadron multiplicity are not constant but weakly energy dependent
 - The atmosphere does not have constant density which has an impact on the critical energy ξ_C
 - Random processes are replaced by the average process and extensions of the basic model are needed to describe intrinsic shower fluctuations
- To calculate the EAS development accurately very complex coupled differential equations, the <u>Cascade Equations</u>, have to be solved.... hard...

- ► If a particle *h* decays or re-interacts in the atmosphere depends on its
 - decay length:

$$\lambda_{\mathrm{dec},h}(E_h,X) = \rho \cdot l_{\mathrm{dec}} = c \cdot \tau_h \cdot \beta \cdot \gamma \cdot \mu$$

- interaction length: $\langle m_{\text{target}} \rangle$ $\frac{\rho(X)}{\sum_{A} \sigma_{hA}(E_{h}) \cdot n_{A}(X)}$ $\lambda_{\text{int},h}(E_h,X) =$ $\sigma_{\rm int}$
- Propagation described by <u>coupled cascade equations</u>:

$$\frac{d\Phi_h(E_h, X)}{dX} = -\left(\frac{1}{\lambda_{\text{int},h}} - \frac{1}{\lambda_{\text{dec},h}}\right) \cdot \Phi_h(E_h, X) + \sum_j \int \frac{E_j \cdot dN_j(E_h, E_j)}{E_h \cdot dE_j} \cdot \frac{\Phi_j(E_j)}{\lambda_{\text{int},j}} dE_j$$

- ▶ If a particle *h* decays or re-interacts in the atmosphere depends on its

- If a particle *h* decays or re-interacts in the atmosphere depends on its
- <u>decay length</u>: $\lambda_{\text{dec},h}(E_h, X) = \rho \cdot l_{\text{dec}} = c \cdot \tau_h \cdot \beta \cdot \gamma \cdot \rho(X)$ • interaction length: $\lambda_{\text{int},h}(E_h,X) = \frac{\langle m_{\text{target}} \rangle}{\langle m_{\text{target}} \rangle}$ $\rho(X)$ $\sum_{A} \sigma_{hA}(E_h) \cdot n_A(X)$ $\sigma_{\rm int}$ Propagation described by <u>coupled cascade equations</u>: $d\Phi_h(E_h, X)$ dXlint,h dec,h decays re-interactions

- If a particle *h* decays or re-interacts in the atmosphere depends on its
- <u>decay length</u>: $\lambda_{\text{dec},h}(E_h, X) = \rho \cdot l_{\text{dec}} = c \cdot \tau_h \cdot \beta \cdot \gamma \cdot \rho(X)$ • interaction length: $\lambda_{\text{int},h}(E_h,X) = \frac{\langle m_{\text{target}} \rangle}{\langle m_{\text{target}} \rangle}$ $\rho(X)$ $\sum_{A} \sigma_{hA}(E_h) \cdot n_A(X)$ $\sigma_{\rm int}$ Propagation described by <u>coupled cascade equations</u>: $d\Phi_h(E_h,X)$ dXnint,h dec,h decays re-interactions

Electromagnetic Cascade

- <u>Reminder:</u>
 - ► Energy loss of e^+/e^- : ► Radiation length: ► Critical energy: $\frac{dE}{dX} = -\alpha(E) - \frac{E}{X_0}$ $X_0 \approx 36 \text{ g/cm}^2$ $\xi_C = \alpha X_0 \approx 85 \text{ MeV}$
- <u>Cascade equations (electromagnetic cascades):</u>

$$\frac{d\Phi_e(E)}{dE} = -\frac{\sigma_e}{\langle m_{\rm air} \rangle} \Phi_e(E) + \int_E^{\infty} -\frac{\sigma_e}{\langle m_{\rm air} \rangle} \Phi_e(\tilde{E}) P_{e \to e}(\tilde{E}, E) d\tilde{E} + \int_E^{\infty} -\frac{\sigma_\gamma}{\langle m_{\rm air} \rangle} \Phi_\gamma(\tilde{E}) P_{\gamma \to e}(\tilde{E}, E) d\tilde{E} + \alpha \frac{\partial \Phi_e}{\partial E} \Phi_{e}(\tilde{E}, E) \Phi_{e}(\tilde{E}, E) d\tilde{E} + \alpha \frac{\partial \Phi_e}{\partial E} \Phi_{e}(\tilde{E}, E) \Phi_{e}(\tilde$$

 $\Rightarrow X_{\text{max}} \approx X_0 \ln(E_0/\xi_C)$ and N_{max}

[Rossi & Greisen, Rev. Mod. Phys. 13 (1940) 240]

$$E_x \approx \frac{0.31}{\sqrt{\ln(E_0/\xi_C) - 0.33}} E_0/\xi_C$$

Shower Age and Greisen Formula

- Longitudinal Profile:
 - Greisen (1956):

$$N_e(X) = \frac{0.31}{\sqrt{\ln(E_0/\xi_C)}} \exp\left[\frac{X}{X_0} \left(1 - \frac{3}{2}\ln s\right)\right]$$

• Shower age:

$$s = \frac{3X}{X + 2X_{\max}}$$

• Energy spectrum: $\frac{dN_e}{dE} \sim \frac{1}{E^{1+s}}$

Mean Longitudinal Profile

- <u>Calculation with cascade equations:</u>
 - Photons:
 - Pair production
 - Compton scattering
 - Electrons:
 - Bremsstrahlung
 - Moller scattering
 - Positrons:
 - Bremsstrahlung
 - Bhabha scattering

Mean Longitudinal Profile

- <u>Calculation with cascade equations:</u>
 - Number of photons divergent (energy threshold applied)
 - Typical energy of e^+/e^- : $\xi_C \sim 80 \,\text{MeV}$
 - Electron excess $20^{\circ}/_{\circ}-30^{\circ}/_{\circ}$
 - Pair production symmetric
 - Excess of electrons in target

[Bergmann et al., Astropart.Phys. 26 (2007) 420]

Mean Lateral Profile

• Lateral spread driven by Coulomb scattering:

$$\frac{dN}{d\Omega} = \frac{1}{64\pi} \frac{1}{\ln(191 \cdot Z^{-1/3})} \left(\frac{E_s}{E}\right)^2 \frac{1}{\sin^4}$$

- Resulting mean displacement of a particle in air: $r \sim \frac{E_s}{E} \frac{X_0}{\rho_{\text{air}}} \equiv r_M$
- Moliere unit r_M (78m at seas level)
- Nishimura-Kamata-Greisen (NKG) lateral distribution function (LDF): $\frac{dN_e}{rdr} = \left(\frac{r}{r_M}\right)^{s-2} \left(1 + \frac{r}{r_M}\right)^{s-4.5}$

• For more details on the analytical description of EAS, see Tom Gaisser's book...

 $\frac{1}{4(\theta/2)}$, $E_s \approx 21 \,\mathrm{MeV}$

