Astroparticle Physics

- Selected Topics -

4th Graduate School on Plasma-Astroparticle Physics

Dennis Soldin

Karlsruhe Institute of Technology

Air Shower Physics

4th Graduate School on Plasma-Astroparticle Physics

Dennis Soldin

Karlsruhe Institute of Technology

Disclaimer I

- Unfortunately, 2 lectures are way too less time for a complete overview of the field of astroparticle physics, even with a focus on "particle physics"...
- We also want to have exercises to solve some problems and time for discussions
- Thus, this lecture will be highly biased, we will mainly talk about the selected topics:
- High-energy cosmic rays and extensive air showers
- Indirect detection of cosmic rays and recent results
- Astrophysical neutrinos
- We will not talk about (or only touch):
- Low-energy cosmic rays, neutrinos, gamma rays, astrophysical sources, acceleration and propagation of cosmic rays, Dark Matter or exotic particle physics scenarios, ...

Disclaimer II

- Everything discussed in the following and everything beyond about "Cosmic Rays and Particle Physics" can be found in the textbook by Tom Gaisser et al. (read it!)
- Comprehensive review of recent results (read it!)

Outline

Lecture 1 (Monday, 9 am):

- Introduction to Astroparticle Physics
- Cosmic Rays
- Air shower Physics

Lecture 2 (Monday, 2 pm):

- Indirect Detection of Cosmic Rays
- Recent Results and Open Questions

Lecture 3 (Tuesday, 9 am):

- (Possible continuation)
- Exercise \& Discussion!

Astroparticle Physics

What is astroparticle physics?

- Studies of elementary particles of astrophysical origin and their relation to astrophysics and cosmology (Wikipedia)
- Astroparticles:
- Cosmic Rays
- Neutrinos
- Gamma Rays
- Dark Matter?
- Let's start with cosmic rays!

Cosmic Rays

Cosmic Rays

- D. Pacini (1910):
- Ionization in the atmosphere is due to extra-terrestrial radiation

- V. Hess (1911/12, Nobel prize 1936):
- First prove that radiation is of extra-terrestrial origin
- Many experiments followed over the last 100 years...
- Comic rays (CRs) are charged particles, mostly protons, which reach Earth from Space

- CRs can have extremely high energies...
- However, many open questions remain after more than 100 years of research!

Open Questions

- What are the sources of high-energy CRs?
- What are the acceleration mechanisms of CRs?
- What is their mass composition? (later more...)
- What is the origin of features observed in the CR spectrum? (later more...)

Can only be answered with multimessenger observations!

Cosmic Rays

- Comic rays (CRs) are dominated by atomic nuclei
- All-particle flux known over many orders of magnitude in E_{0}

- Various prominent features observed in spectrum

Cosmic Rays

- Comic rays (CRs) are dominated by atomic nuclei
- All-particle flux known over many orders of magnitude in E_{0}

- Various prominent features observed in spectrum

Cosmic Rays

Cosmic Rays

First order approximation:

- Simple power law

$$
\frac{d \Phi}{d E_{0}}=\frac{d N}{d t d A d \Omega d E_{0}} \propto E_{0}^{-\gamma}
$$

- Spectral index γ
- Simple approximation

$$
\frac{d \Phi}{d E_{0}} \simeq 1.8 \cdot E_{0}^{-\gamma} \frac{\text { nucleons }}{\mathrm{cm}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV} / \mathrm{A}}
$$

- More in the exercise!

Cosmic Rays

First order approximation:

- Simple power law

$$
\frac{d \Phi}{d E_{0}}=\frac{d N}{d t d A d \Omega d E_{0}} \propto E_{0}^{-\gamma}
$$

- Spectral index γ
- Simple approximation

$$
\frac{d \Phi}{d E_{0}} \simeq 1.8 \cdot E_{0}^{-\gamma} \frac{\text { nucleons }}{\mathrm{cm}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV} / \mathrm{A}}
$$

- $\gamma \simeq 2.7$ up to $E_{\text {knee }} \simeq 4 \mathrm{PeV}$
- $\gamma \simeq 3.0$ up to $E_{2 \text { nd knee }} \simeq 0.6 \mathrm{EeV}$
- $\gamma \simeq 3.2$ up to $E_{2 \text { nd knee }} \simeq 0.6 \mathrm{EeV}$
- $\gamma \simeq 2.7$ above $E_{\text {ankle }} \simeq 4 \mathrm{EeV}$
- Mass number A

Cosmic Rays

First order approximation:

- Simple power law

$$
\frac{d \Phi}{d E_{0}}=\frac{d N}{d t d A d \Omega d E_{0}} \propto E_{0}^{-\gamma}
$$

- Spectral index γ
- Simple approximation

$$
\frac{d \Phi}{d E_{0}} \simeq 1.8 \cdot E_{0}^{-\gamma} \frac{\text { nucleons }}{\mathrm{cm}^{2} \mathrm{~s} \mathrm{sr} \mathrm{GeV} / \mathrm{A}}
$$

- $\gamma \simeq 2.7$ up to $E_{\text {knee }} \simeq 4 \mathrm{PeV}$
- $\gamma \simeq 3.0$ up to $E_{2 \text { nd knee }} \simeq 0.6 \mathrm{EeV}$
- $\gamma \simeq 3.2$ up to $E_{2 \text { nd knee }} \simeq 0.6 \mathrm{EeV}$
- $\gamma \simeq 2.7$ above $E_{\text {ankle }} \simeq 4 \mathrm{EeV}$
- Mass number A

CR All-Particle Spectrum

CR All-Particle Spectrum

indirect measurements
(satellite or balloon experiments)

CR All-Particle Spectrum

indirect measurements
(satellite or balloon experiments) (large ground-based experiments)

CR All-Particle Spectrum

indirect measurements
(satellite or balloon experiments)
(large ground-based experiments)

Interlude: CM vs. Lab Frame

- Four-momentum:

$$
\begin{aligned}
& \vec{P}=\left(E, p_{x}, p_{y}, p_{z}\right) \quad \text { (natural units) } \\
& \Rightarrow \vec{P} \vec{P}=E^{2}+\vec{p} \vec{p}=m^{2}
\end{aligned}
$$

$$
\vec{P} \vec{P} \text { is conserved! }
$$

- Invariant mass:

$$
s=\left(\vec{P}_{1}+\vec{P}_{2}\right)^{2}
$$

- Center-of-mass energy:

$$
\vec{P}_{1}=\vec{P}_{2}=(E, \vec{p}) \quad \Rightarrow s=?
$$

- Laboratory energy:

$$
\vec{P}_{1}=\left(E, \vec{p}_{1}\right) \text { and } \vec{P}_{2}=(m, 0) \Rightarrow s=?
$$

Interlude: CM vs. Lab Frame

- Four-momentum:

$$
\begin{aligned}
& \vec{P}=\left(E, p_{x}, p_{y}, p_{z}\right) \quad \text { (natural units) } \\
& \Rightarrow \vec{P} \vec{P}=E^{2}+\vec{p} \vec{p}=m^{2}
\end{aligned}
$$

$$
\vec{P} \vec{P} \text { is conserved! }
$$

- Invariant mass:

$$
s=\left(\vec{P}_{1}+\vec{P}_{2}\right)^{2}
$$

- Center-of-mass energy:

$$
\vec{P}_{1}=\vec{P}_{2}=(E, \vec{p})
$$

- Laboratory energy:

$$
\vec{P}_{1}=\left(E, \vec{p}_{1}\right) \text { and } \vec{P}_{2}=\left(m, \vec{p}_{2}\right) \Leftrightarrow s=?
$$

Interlude: Ultra-High Energy

- Large Hadron Collider (LHC), 27 km circumference, superconducting magnets
- Need accelerator of size of Mercury's orbit to reach $10^{20} \mathrm{eV}$ with current technology!

CR All-Particle Spectrum

indirect measurements
(satellite or balloon experiments) (large ground-based experiments)

CR Mass Composition

- Global Spline Fit (GSF) flux model
[H.P. Dembinski, R. Engel, A. Fedynitch, T. K. Gaisser, F. Riehn, T. Stanev, PoS ICRC2017 (2017) 533]

CR Mass Composition

- CR mass composition measured over many order of magnitude in E_{0}
- Often given in terms of mean logarithmic mass, $\langle\ln A\rangle$
- Very large uncertainties, in particular towards high energies!
- Because CR properties are inferred indirectly from "air shower" measurements

[^0]
How to Detect Cosmic Rays?

How to Detect Cosmic Rays?

How to Detect Cosmic Rays?

* More about the indirect detection of cosmic rays in Lecture 2! 16

How to Detect Cosmic Rays?

Direct measurements (balloon / space)

This Lecture!

* More about the indirect detection of cosmic rays in Lecture 2! 16

Extensive Air Showers

Cosmic Ray Interaction

Basics: Particle Physics

Standard Model of Elementary Particles

- Standard Model (SM) of Particle Physics
- Leptons:
- elementary particles
- No strong interactions (only em and weak)

Basics: Particle Physics

- Standard Model (SM) of Particle Physics
- Leptons:
- elementary particles
- No strong interactions (only em and weak)
- Hadrons:
- Composite particles
- $2+$ quarks held together by strong force
- Mesons: even number of quarks (2+), e.g.

$$
\begin{aligned}
& \pi^{+}(u \bar{d}), \pi^{-}(d \bar{u}), \pi^{0}(u \bar{u} \text { or } d \bar{d}), K^{+}(u \bar{s}), \\
& K^{-}(s \bar{u}), K^{0}(d \bar{s} \text { or } s \bar{d}), D^{+}(c \bar{d}), D^{0}(c \bar{u}), \ldots
\end{aligned}
$$

$$
\begin{aligned}
& K)
\end{aligned}
$$

- Baryons: odd number of quarks (3+), e.g. $p(u u d), n(u d d), \ldots$

Basics: Particle Physics

- Standard Model (SM) of Particle Physics
- Leptons:
- elementary particles
- No strong interactions (only em and weak)
- Hadrons:
- Composite particles
- $2+$ quarks held together by strong force
- Mesons: even number of quarks (2+), e.g.

$$
\begin{aligned}
& \pi^{+}(u \bar{d}), \pi^{-}(d \bar{u}), \pi^{0}(u \bar{u} \text { or } d \bar{d}), K^{+}(u \bar{s}), \\
& K^{-}(s \bar{u}), K^{0}(d \bar{s} \text { or } s \bar{d}), D^{+}(c \bar{d}), D^{0}(c \bar{u}), \ldots
\end{aligned}
$$

- Baryons: odd number of quarks (3+), e.g. p (uud), $n(u d d), \ldots$

Extensive Air Showers

Cosmic Ray

Atmosphere
\checkmark Extensive
Air Shower
(EAS)

- EAS are the connection between Ground-Based cosmic ray and particle physics! Particle Detector

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

- CR properties are inferred from the (secondary) particles measured at the ground

Extensive Air Showers (EAS)

- Observation: We see the complex "mess" after multiple collisions
- Goal: Find out what initiated the collision
- Not trivial...

Basics: Muons

- Muons are the "heavy siblings" of the electron (about 200x heavier)
- First discovered 1936 in measurements of EAS
- Mainly produced through pion (kaon) decays in EAS
- About 100 muons per square meter per second at ground level
- Highly penetrating particles, can traverse several kilometer of rock

- Life-time: $2.2 \mu \mathrm{~s}$, Mass: 105.66 MeV
- Distance traveled in an EAS: $l=\gamma c t$, where $\gamma=E_{\mu} / m_{\mu}$
(more in the exercise)

Basics: Neutrinos

- Neutrinos interact only via the weak interaction!
- Mostly pass through normal matter unimpeded and undetected
- Three flavors: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$
- Can oscillate between flavors!
- Mass: < 0.120 eV
- Mainly produced through nuclear interactions in the sun

- About 65 billion neutrinos per square centimeter per second at ground level!

Some EAS Simulations... (later more details)

Extensive Air Showers

- Simulated gamma, proton, and iron showers at $E_{0}=10^{15} \mathrm{eV}$
- Later more about EAS simulations...

Extensive Air Showers

- Simulated proton shower at $10^{14} \mathrm{eV}$

All particles
No electrons

No electrons, no muons

[https://www.iap.kit.edu/corsika/]

Extensive Air Showers

- EAS simulation (proton, $10^{15} \mathrm{eV}$)
- Shower front
- Longitudinal profile ($X_{\max }$)
- Lateral profile

Extensive Air Showers

- EAS simulation (proton, $10^{15} \mathrm{eV}$)
- Shower front
- Secondary particles measured with detectors at the ground
- Detector simulation
- Typically based on GEANT4
- Detailed model for detector response (PMT, electronics, ...)
- Not in this lecture...
- This lecture:
- What happens during EAS development in detail?

EAS Particles (Iron Shower)

muons

electrs

Iron $10^{13} \mathrm{eV}$
hadrons neutrs

24929 m

EAS Particles (Proton Shower)

EAS Particles (Gamma Shower)

Extensive Air Showers (EAS)

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

- CR properties are inferred from the (secondary) particles measured at the ground

$\nabla \vec{A} \times(\vec{A} \times \vec{B}) \vec{A} \neq \vec{A} \bar{V} \cdot \vec{B} \vec{P} \cdot \vec{B} \cdot \nabla \cdot \vec{A}+\vec{H}(\vec{B} \cdot \nabla) \vec{A}+(\vec{A} \cdot \vec{A}) \vec{B}$
$\nabla^{2} \Psi-\frac{\partial 1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{1}{r^{2}} \frac{\partial}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{11}{r^{2} \cdot \frac{\partial^{2}}{2} \sin ^{2} \cdot \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}}$

$$
\nabla \Psi=\hat{x} \frac{\partial \Psi \Psi}{\partial \hat{x}_{t}}+\hat{y} \cdot \frac{\partial \Psi \Psi}{\partial y_{y}}+\hat{z} \frac{\partial \Psi}{\partial z}
$$

$$
\overrightarrow{\mathcal{S}} \equiv \overrightarrow{\mathrm{H}_{1}} \otimes \overrightarrow{H_{\bar{H}_{1}}}
$$

$$
\vec{D}=\epsilon_{0} \stackrel{2}{\vec{E}}+\vec{D} \quad \vec{D} \quad \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q \hat{\varepsilon}}{r^{2}}+n_{1} \nabla \cdot(\Psi \vec{A})=\Psi \nabla \cdot A+A \cdot \nabla \Psi
$$

Atmosphere

- Density of the air, $\rho_{\text {air }}$, plays an important role for the EAS development!
- Atmospheric slant depth:
$X=\int \rho_{\text {air }} d l$
(integral taken along shower axis)

Atmosphere (South Pole)

- AIRS (Atmospheric InfraRed Sounder) data
- Typical model: 5-layer parametrization (MSIS) in terms of mass overburden

$$
\begin{aligned}
& T(H)=a_{i}+b_{i}^{H / c_{i}}, H_{\text {layer }}=4,10,40,100 \mathrm{~km} \\
& T(H)=a_{5}+b_{5} \cdot H / c_{i}, \quad H_{\max }=112.8 \mathrm{~km}
\end{aligned}
$$

- Typical height of 1 st interaction: $H \simeq 20 \mathrm{~km}$

Atmosphere (South Pole)

Cross Section

- Particle flux:

$$
\Phi=\frac{d N_{\text {beam }}}{d A d t}
$$

- Cross section:

$$
\sigma=\frac{1}{\Phi} \frac{d N_{\mathrm{int}}}{d t}
$$

$$
\text { Units of an area, typically "barn": } 1 \text { barn }=10^{-28} \mathrm{~cm}^{2}
$$

Cross Section

- Particle flux:

$$
\Phi=\frac{d N_{\text {beam }}}{d A d t}
$$

- Cross section:

Interaction Length

- Cross section:

$$
\sigma=\frac{1}{\Phi} \frac{d N_{\mathrm{int}}}{d t}
$$

- Now, we can write

$$
\begin{aligned}
& \frac{d N_{\text {int }}}{d t d V}=\frac{\rho_{\text {target }}}{\left\langle m_{\text {target }}\right\rangle} \sigma \Phi \quad \text { with } \quad d X=\rho_{\text {target }} d l \\
& \Rightarrow \frac{d \Phi}{d X}=-\frac{\sigma}{m_{\text {target }}} \Phi \equiv-\frac{1}{\lambda_{\text {int }}} \Phi
\end{aligned}
$$

- Interaction length (units of $\mathrm{g} / \mathrm{cm}^{2}$):

$$
\lambda_{\text {int }}=\frac{\left\langle m_{\text {target }}\right\rangle}{\sigma_{\text {int }}}
$$

- Interaction length in air:

$$
\lambda_{\mathrm{int}}=\frac{\left\langle m_{\mathrm{air}}\right\rangle}{\sigma_{\mathrm{int}}}=\frac{24160 \mathrm{mbg} / \mathrm{cm}^{2}}{\sigma_{\mathrm{int}}}
$$

- Typical values:

$$
\begin{aligned}
& \lambda_{\gamma \rightarrow e^{+} e^{-}} \approx 46 \mathrm{~g} / \mathrm{cm}^{2} \\
& \lambda_{\pi} \approx \lambda_{K} \approx 120 \mathrm{~g} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
\lambda_{\mathrm{p}} \approx 80 \mathrm{~g} / \mathrm{cm}^{2}
$$

$$
\lambda_{\mathrm{Fe}} \approx 10 \mathrm{~g} / \mathrm{cm}^{2}
$$

Electromagnetic Cascade

- Qualitative description: Heitler model
- Primary electron (gamma) with energy E_{0}
- Particle number doubles with each generation n
- Energy equally distributed
- Cascade stops when particle energy drops below a critical energy ξ_{C}
- Energy at shower maximum $\left(X_{\text {max }}\right): E=\xi_{C}$
- What is ξ_{C} ?

[Heitler in The Quantum Theory of Radiation, (1954)]

Energy Loss of Charged Particles

- Ionization energy loss (Bethe-Bloch formula):

$$
\frac{d E_{\mathrm{ion}}}{d X}=-\alpha(E) \text { with } \alpha \approx 2.4 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)
$$

- Radiative energy loss (Bremsstrahlung):

$$
\frac{d E_{\text {Brems }}}{d X}=-\frac{E}{X_{0}} \text { with } \underset{\substack{X_{0} \approx 36 \mathrm{~g} / \mathrm{cm}^{2} \\ \text { (radiation length) }}}{\text {. }}
$$

- Stopping power:

$$
\frac{d E}{d X}=-\alpha(E)-\frac{E}{X_{0}}
$$

- Critical energy at which both are equal:

$$
\xi_{C}=\alpha X_{0} \approx 85 \mathrm{MeV}
$$

Electromagnetic Cascade

- Heitler model: [Heitler in The Quantum Theory of Radiation,(1954]]
- Primary energy E_{0}
- After $n=X / \lambda_{\text {em }}$ branchings:

$$
N(X)=2^{X / \lambda_{\mathrm{em}}}
$$

- Energy per particle:

$$
\begin{aligned}
& E(X)=E_{0} / N(X) \\
\Rightarrow & E\left(X_{\max }\right)=E_{0} / \xi_{C} \\
\Rightarrow & X_{\max }=\lambda_{\mathrm{em}} \cdot \frac{\ln \left(E_{0} / \xi_{C}\right)}{\ln (2)}
\end{aligned}
$$

or with cascade equations (later)

$$
X_{\max } \approx X_{0} \ln \left(E_{0} / \xi_{C}\right) \quad \text { and } \quad N_{\max } \approx \frac{0.31}{\sqrt{\ln \left(E_{0} / \xi_{C}\right)-0.33}} E_{0} / \xi_{C}
$$

Hadronic Cascade

- Heitler-Matthews model of the air shower development

- Cascade stops when energy drops below a critical energy, ξ_{C}, and:

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right)
$$

$$
\pi^{0} \rightarrow \gamma \gamma
$$

Heitler-Matthews Model of EAS

- Simplified model of the air shower development (only charged and neutral pions)

- After 5 (6) generations: $E_{\text {had }} \sim 12 \%(8 \%)$
- Example IceTop:
- Atmospheric depth: $X \sim 690 \mathrm{~g} / \mathrm{cm}^{2}$
- Pion interaction length: $\lambda_{\pi} \sim 120 \mathrm{~g} / \mathrm{cm}^{2}$

$$
\Rightarrow n=X / \lambda_{\pi}=690 / 120=5.75 \simeq 6
$$

- Pions decay below critical energy

$$
\xi_{\pi}=115 \mathrm{GeV} \quad\left(\xi_{K}=850 \mathrm{GeV}\right)
$$

$$
E_{\mathrm{had}}=\left(\frac{2}{3}\right)^{n} \cdot E_{0} \quad \text { after } n \text { generations } \quad E_{\mathrm{em}}=\left[1-\left(\frac{2}{3}\right)^{n}\right] \cdot E_{0}
$$

Superposition Model

- Assumption: nucleus of mass A and energy E_{0} correspond to A nucleons of energy

$$
E_{n}=E_{0} / A
$$

- Glauber approximation:

$$
\sigma_{\mathrm{Fe}-\mathrm{air}}=\frac{A}{n_{\mathrm{part}}} \cdot \sigma_{\mathrm{p}-\mathrm{air}}
$$

where $n_{\text {part }}$ is the number of participants
$\underset{\text { (binding energy } \sim 5 \mathrm{MeV} / \text { nucleon }}{\text { nucleus }}$

$$
E_{n}=E_{0} / A
$$

Heitler-Matthews Model of EAS

- Number of muons, N_{μ}, follows charged hadrons, N_{ch}, as

$$
N_{\mu}=N_{\mathrm{ch}}^{n} \text { where } E=E_{0} / N_{\mathrm{tot}}^{n} \sim \xi_{C}
$$

with total number of particles, $N_{\text {tot }}$, from each interaction

- The (average) number of muons is then given by

$$
N_{\mu}=A \cdot\left(\frac{E_{0}}{A \cdot \xi_{C}}\right)^{\beta}, \beta=\frac{\ln N_{\mathrm{ch}}}{\ln N_{\mathrm{tot}}} \simeq 0.82 \ldots 0.94
$$

:

- β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$
\begin{aligned}
\pi^{ \pm}+p \rightarrow & \pi^{0}+X & & \\
& \pi^{0} \rightarrow \gamma \gamma & & \text { contribution to EM component } \\
\pi^{ \pm}+p \rightarrow & \rho^{0}+X & & \text { contribution to hadronic component }
\end{aligned}
$$

Heitler-Matthews Model of EAS

- Number of muons, N_{μ}, follows charged hadrons, N_{ch}, as

$$
N_{\mu}=N_{\mathrm{ch}}^{n} \text { where } E=E_{0} / N_{\mathrm{tot}}^{n} \sim \xi_{C}
$$

with total number of CR energy n each interaction

- The (average) numb er of muons is then given by

$$
N_{\mu}=A \cdot\left(\frac{E_{0}}{A \cdot \xi_{C}}\right)^{\beta}, \beta=\frac{\ln N_{\mathrm{ch}}}{\ln N_{\mathrm{tot}}} \simeq 0.82 \ldots 0.94
$$

:

- β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$
\begin{array}{rlrl}
\pi^{ \pm}+p \rightarrow & \pi^{0}+X & & \\
& \pi^{0} \rightarrow \gamma \gamma \\
\pi^{ \pm}+p \rightarrow & \rho^{0}+X & & \text { contribution to EM component } \\
& \rho^{0} \rightarrow \pi^{+} \pi^{-} & & \text {contribution to hadronic component }
\end{array}
$$

Heitler-Matthews Model of EAS

- Number of muons, N_{μ}, follows charged hadrons, N_{ch}, as

$$
N_{\mu}=N_{\mathrm{ch}}^{n} \text { where } E=E_{0} / N_{\mathrm{tot}}^{n} \sim \xi_{C}
$$

- The (anderage) number of muons is then given by

$$
N_{\mu}=A \cdot\left(\frac{E_{0}}{A \cdot \xi_{C}}\right)^{\beta}, \beta=\frac{\ln N_{\mathrm{ch}}}{\ln N_{\mathrm{tot}}} \simeq 0.82 \ldots 0.94
$$

:

- β needs to be obtained from simulation as there are not only pions
- Processes that transfer energy between EM and hadron components crucial!

$$
\begin{array}{rlrl}
\pi^{ \pm}+p \rightarrow & \pi^{0}+X & \\
& \pi^{0} \rightarrow \gamma \gamma & \text { contribution to EM component } \\
\pi^{ \pm}+p \rightarrow & \rho^{0}+X & & \\
& \rho^{0} \rightarrow \pi^{+} \pi^{-} & \text {contribution to hadronic component }
\end{array}
$$

Basics: Muon Production

- Main decay channels for muon production:

Muons are the tracers of

- Pions:

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) \quad(\sim 100 \%)
$$

- Kaons:

$$
\begin{array}{rlr}
K^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 63.5 \%) \\
K_{L}^{0} \rightarrow & \pi^{ \pm}+\mu^{\mp}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 27.0 \%) \\
& \pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 100 \%) \\
K_{L}^{0} \rightarrow & \pi^{ \pm}+e^{\mp}+\nu_{e}\left(\bar{\nu}_{e}\right) & (\sim 38.7 \%) \\
& \pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 100 \%)
\end{array}
$$

- Neutral pions transfer hadronic energy to electromagnetic cascade via

$$
\pi^{0} \rightarrow \gamma \gamma \quad(\sim 100 \%)
$$

Basics: Muon Production

- Main decay channels for muon production:

Muons are the tracers of

- Pions:

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right)
$$

"Conventional"
(~ 100%)

- Kaons:

$$
\begin{array}{rc}
K^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 63.5 \%) \\
K_{L}^{0} \rightarrow \pi^{ \pm}+\mu^{\mp}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 27.0 \%) \\
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 100 \%) \\
K_{L}^{0} \rightarrow & \pi^{ \pm}+e^{\mp}+\nu_{e}\left(\bar{\nu}_{e}\right) \\
& (\sim 38.7 \%) \\
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 100 \%) \\
\hline
\end{array}
$$

- Neutral pions transfer hadronic energy to electromagnetic cascade via

$$
\pi^{0} \rightarrow \gamma \gamma \quad(\sim 100 \%)
$$

Basics: Muon Production

- Main decay channels for muon production:

- Pions:

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right)
$$

"Conventional"
(~ 100%)

- Kaons:

$$
\left.\begin{array}{rc}
K^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 63.5 \%) \\
K_{L}^{0} \rightarrow \pi^{ \pm}+\mu^{\mp}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) & (\sim 27.0 \%) \\
& \pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right) \\
K_{L}^{0} \rightarrow & \pi^{ \pm}+e^{\mp}+\nu_{e}\left(\bar{\nu}_{e}\right) \\
& (\sim 38.7 \%) \\
& \pi^{ \pm} \rightarrow \mu^{ \pm}+\nu_{\mu}\left(\bar{\nu}_{\mu}\right)
\end{array}\right)(\sim 100 \%) .
$$

- "Prompt":
$D^{ \pm} \rightarrow \mu^{ \pm}+X$
(~17.6\%)
$D^{0} \rightarrow \mu^{ \pm}+X$
($\sim 6.7 \%$)
others... later more...

Muons are the tracers of hadronic interactions!

- Neutral pions transfer hadronic energy to electromagnetic cascade via

$$
\pi^{0} \rightarrow \gamma \gamma \quad(\sim 100 \%)
$$

Heitler-Matthews Model of EAS

- Limitations of the Heitler-Matthews model:
- Hadronic interactions produce other particles in addition to pions
- All particles per generation are assumed to receive the same energy fraction
- The hadronic interaction length and the hadron multiplicity are not constant but weakly energy dependent
- The atmosphere does not have constant density which has an impact on the critical energy ξ_{C}
- Random processes are replaced by the average process and extensions of the basic model are needed to describe intrinsic shower fluctuations
- To calculate the EAS development accurately very complex coupled differential equations, the Cascade Equations, have to be solved.... hard...

Cascade Equations

Cascade Equations

- If a particle h decays or re-interacts in the atmosphere depends on its
- decay length:

$$
\lambda_{\mathrm{dec}, h}\left(E_{h}, X\right)=\rho \cdot l_{\mathrm{dec}}=c \cdot \tau_{h} \cdot \beta \cdot \gamma \cdot \rho(X)
$$

- interaction length:

$$
\lambda_{\text {int }, h}\left(E_{h}, X\right)=\frac{\left\langle m_{\text {target }}\right\rangle}{\sigma_{\text {int }}}=\frac{\rho(X)}{\sum_{A} \sigma_{h A}\left(E_{h}\right) \cdot n_{A}(X)}
$$

- Propagation described by coupled cascade equations:

$$
\frac{d \Phi_{h}\left(E_{h}, X\right)}{d X}=-\left(\frac{1}{\lambda_{\mathrm{int}, h}}-\frac{1}{\lambda_{\operatorname{dec}, h}}\right) \cdot \Phi_{h}\left(E_{h}, X\right)+\sum_{j} \int \frac{E_{j} \cdot d N_{j}\left(E_{h}, E_{j}\right)}{E_{h} \cdot d E_{j}} \cdot \frac{\Phi_{j}\left(E_{j}\right)}{\lambda_{\mathrm{int}, j}} d E_{j}
$$

Cascade Equations

- If a particle h decays or re-interacts in the atmosphere depends on its
- decay length:

$$
\lambda_{\mathrm{dec}, h}\left(E_{h}, X\right)=\rho \cdot l_{\mathrm{dec}}=c \cdot \tau_{h} \cdot \beta \cdot \gamma \cdot \rho(X)
$$

- interaction length:

$$
\lambda_{\text {int }, h}\left(E_{h}, X\right)=\frac{\left\langle m_{\text {target }}\right\rangle}{\sigma_{\text {int }}}=\frac{\rho(X)}{\sum_{A} \sigma_{h A}\left(E_{h}\right) \cdot n_{A}(X)}
$$

- Propagation described by oupled cascade equations:

$$
\left.\frac{d \Phi_{h}\left(E_{h}, X\right)}{d X}=-\left(\frac{1}{\lambda_{\mathrm{int}, h}}\right)-\frac{1}{\lambda_{\mathrm{dec}, h}}\right) \cdot \Phi_{h}\left(E_{h}, X\right)+\sum_{j} \frac{E_{j} \cdot d N_{j}\left(E_{h}, E_{j}\right)}{E_{h} \cdot d E_{j}} \cdot \frac{\Phi_{j}\left(E_{j}\right)}{\lambda_{\mathrm{int}, j}} d E_{j}
$$

re-interactions

Cascade Equations

- If a particle h decays or re-interacts in the atmosphere depends on its
- decay length:

$$
\lambda_{\operatorname{dec}, h}\left(E_{h}, X\right)=\rho \cdot l_{\operatorname{dec}}=c \cdot \tau_{h} \cdot \beta \cdot \gamma \cdot \rho(X)
$$

- Propagation described by oupled cascadelquations:

$$
\left.\frac{d \Phi_{h}\left(E_{h}, X\right)}{d X}=-\left(\frac{1}{\lambda_{\text {int, }, h}}\right)-\left(\frac{1}{\lambda_{\text {dec }, h}}\right)\right) \cdot \Phi_{h}\left(E_{h}, X\right)+\sum_{j} \frac{E_{j} \cdot d N_{j}\left(E_{h}, E_{j}\right)}{E_{h} \cdot d E_{j}} \cdot \frac{\Phi_{j}\left(E_{j}\right)}{\lambda_{\text {int }, j}} d E_{j}
$$

Cascade Equations

- If a particle h decays or re-interacts in the atmosphere depends on its
- decay length:

$$
\lambda_{\mathrm{dec}, h}\left(E_{h}, X\right)=\rho \cdot l_{\mathrm{dec}}=c \cdot \tau_{h} \cdot \beta \cdot \gamma \cdot \rho(X)
$$

- Propagation described by oupled cascadelquations:

$$
\frac{d \Phi_{h}\left(E_{h}, X\right)}{d X}=-\left(\frac{1}{\lambda_{\text {int, } h}}\right)-\underbrace{\left(\frac{1}{\lambda_{\text {dec. }, ~}}\right) \cdot \Phi_{h}\left(E_{h}, X\right)}_{\text {re-interactions }}+\underbrace{\left.\sum_{j} \frac{E_{j} \cdot d N_{j}\left(E_{h}, E_{j}\right)}{E_{h} \cdot d E_{j}} \cdot \frac{\Phi_{j}\left(E_{j}\right)}{\lambda_{\text {int, }, i}} d E_{j}\right)}_{\text {decays }}
$$

Electromagnetic Cascade

- Reminder:
- Energy loss of e^{+} / e^{-}:

$$
\frac{d E}{d X}=-\alpha(E)-\frac{E}{X_{0}}
$$

- Radiation length:
$X_{0} \approx 36 \mathrm{~g} / \mathrm{cm}^{2}$
- Critical energy:
$\xi_{C}=\alpha X_{0} \approx 85 \mathrm{MeV}$
- Cascade equations (electromagnetic cascades):

$$
\begin{aligned}
& \frac{d \Phi_{e}(E)}{d E}=-\frac{\sigma_{e}}{\left\langle m_{\mathrm{air}}\right\rangle} \Phi_{e}(E)+\int_{E}^{\infty}-\frac{\sigma_{e}}{\left\langle m_{\mathrm{air}}\right\rangle} \Phi_{e}(\tilde{E}) P_{e \rightarrow e}(\tilde{E}, E) d \tilde{E}+\int_{E}^{\infty}-\frac{\sigma_{\gamma}}{\left\langle m_{\text {air }}\right\rangle} \Phi_{\gamma}(\tilde{E}) P_{\gamma \rightarrow e}(\tilde{E}, E) d \tilde{E}+\alpha \frac{\partial \Phi_{e}(E)}{\partial E} \\
& \quad \text { [Rossi \& Greisen, Rev. Mod. Phys. 13 (1940) 240] } \\
& \quad \Rightarrow \quad X_{\max } \approx X_{0} \ln \left(E_{0} / \xi_{C}\right) \quad \text { and } \quad N_{\max } \approx \frac{0.31}{\sqrt{\ln \left(E_{0} / \xi_{C}\right)-0.33}} E_{0} / \xi_{C}
\end{aligned}
$$

Shower Age and Greisen Formula

- Longitudinal Profile:
- Greisen (1956):

$$
N_{e}(X)=\frac{0.31}{\sqrt{\ln \left(E_{0} / \xi_{C}\right)}} \exp \left[\frac{X}{X_{0}}\left(1-\frac{3}{2} \ln s\right)\right]
$$

- Shower age:

$$
s=\frac{3 X}{X+2 X_{\max }}
$$

- Energy spectrum:

$$
\frac{d N_{e}}{d E} \sim \frac{1}{E^{1+s}}
$$

Mean Longitudinal Profile

- Calculation with cascade equations:
- Photons:
- Pair production
- Compton scattering
- Electrons:
- Bremsstrahlung
- Moller scattering
- Positrons:
- Bremsstrahlung
- Bhabha scattering

Mean Longitudinal Profile

- Calculation with cascade equations:
- Number of photons divergent (energy threshold applied)
- Typical energy of $e^{+} / e^{-}: \xi_{C} \sim 80 \mathrm{MeV}$
- Electron excess 20\%-30\%
- Pair production symmetric
- Excess of electrons in target

Mean Lateral Profile

- Lateral spread driven by Coulomb scattering:

$$
\frac{d N}{d \Omega}=\frac{1}{64 \pi} \frac{1}{\ln \left(191 \cdot Z^{-1 / 3}\right)}\left(\frac{E_{s}}{E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)} \quad, \quad E_{s} \approx 21 \mathrm{MeV}
$$

- Resulting mean displacement of a particle in air:

$$
r \sim \frac{E_{s}}{E} \frac{X_{0}}{\rho_{\mathrm{air}}} \equiv r_{M}
$$

- Moliere unit r_{M} (78 m at seas level)
- Nishimura-Kamata-Greisen (NKG) lateral distribution function (LDF):

$$
\frac{d N_{e}}{r d r}=\left(\frac{r}{r_{M}}\right)^{s-2}\left(1+\frac{r}{r_{M}}\right)^{s-4.5}
$$

- For more details on the analytical description of EAS, see Tom Gaisser's book...

[^0]: H.P. Dembinski, R. Engel, A. Fedynitch, T. K. Gaisser, F. Riehn, T. Stanev, PoS ICRC2017 (2017) 533]

