

Nested Machine Learning Models for CTA

Master Thesis Half-Time Talk

Lukas Beiske

December 16, 2022

E5b Astroparticle Physics Department of Physics - TU Dortmund

Overview

Introduction

Scaled Parameters and Feature Selection

Energy Regression

Gamma-Hadron Classification

Origin Reconstruction

Performance

Outlook

astroteilchenphysik

L. Beiske | December 16, 2022

Introduction

Imaging Atmospheric Cherenkov Telescopes (IACTs)

experimentelle physik 5 e h

Imaging Atmospheric Cherenkov Telescopes (IACTs)

y-ray entering the atmosphere

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Imaging Atmospheric Cherenkov Telescopes (IACTs)

astroteilchenphysik

The Cherenkov Telescope Array

- CTA South (Paranal Observatory, Chile)
- CTA North (La Palma)
 - 4 LSTs + 9 MSTs
- Large-Sized Telescope (LST)
 - 23 m mirror diameter
 - 4.3° FoV
- Medium-Sized Telescope (MST)
 - 11.5 m mirror diameter
 - 7.7° FoV

[CTAO]

astroteilchenphysik

Dataprocessing using ctapipe R1 - Pixel 314 Pixel 42 Pixel 314 Data Volume Reduction DL0 Pulse Pixel 42 Pixel 314 Extraction R0 # Photons Time / ns Calibration - 35 dec time event energy gammaness ra - 30 1500 0.82 83.6 22.1 59024.63123 - 25 G - 20 2 400 0.73 83.5 21.9 59024.64183 - 15 5 680 0.92 83.7 22.0 59024.67093 -10 -5 0 Reconstruction DL2 Image Cleaning (DL1a) event width length ... intensity Time / ns # Photons 0.15 0.52 1253.1 0 0 05 0.12 ... 321.3 2 - 35 - 30 5 0.08 0.19 ... 512.7 15 - 25 - 20 DL1b - 15 Parametrization - 10 -5

[A. Knierim, M. Linhoff]

Introduction

The disp Method

- Monoscopic origin reconstruction for IACTs
- Assume main shower axis to be correctly reconstructed →source position on axis
- Train regressor to estimate distance from image center of gravity (|disp|/norm)
- Train classifier to decide between remaining two possibilities (sign)

experimentelle physik 5

astroteilchenphysik

Scaled Parameters and Feature Selection

Scaled parameters

Compare image length (l) and width (w) with expectation value and variance from simulations as function of image charge (q), impact distance (d), and telescope type (t):

$$SL = \frac{l(q, d, t) - \langle l(q, d, t) \rangle}{\sigma_l(q, d, t)}$$

$$SW = \frac{w(q, d, t) - \langle w(q, d, t) \rangle}{\sigma_w(q, d, t)}$$
Easy combination for stereo observations:

$$MSL = \frac{\sum_{\text{tels}} SL}{\sqrt{n_{\text{tels}}}}$$

$$MSW = \frac{\sum_{\text{tels}} SW}{\sqrt{n_{\text{tels}}}}$$

$$MSW = \frac{\sum_{\text{tels}} SW}{\sqrt{n_{\text{tels}}}}$$

astroteilchenphysik

MRMR feature selection – Energy

At each iteration i compute $score_i$ for all f not yet selected

 $score_i(f) = \frac{relevance(f | target)}{redundancy(f | f_{already selected})}$

and add the feature with the highest score.

Energy features (15)

- peak_time_std
- intensity_std
- timing_deviation
- hillas_length
- concentration_pixel
- leakage_intensity_width_2
- log_abs_timing_slope
- area
- concentration_cog
- log_tel_impact_distance
- hillas_width
- log_intensity
- morphology_n_pixels
- HillasReconstructor_h_max
- leakage_pixels_width_2

astroteilchenphysik

MRMR feature selection – Particle Id

At each iteration i compute $score_i$ for all f not yet selected

 $score_i(f) = \frac{relevance(f | target)}{redundancy(f | f_{already selected})}$

and add the feature with the highest score.

Particle Id features (15)

- scaled_width
- HillasReconstructor_h_max
- log_tel_impact_distance
- hillas_width
- morphology_n_islands
- timing_deviation
- area
- scaled_length
- RandomForestRegressor_energy
- log_RandomForestRegressor_energy
- leakage_pixels_width_2
- hillas_length
- peak_time_kurtosis
- RandomForestRegressor_tel_energy
- morphology_n_pixels

scaled width -				363938.68
hillas width -			267309.59	
timing deviation -		192426.30		
morphology n islands -		162477.95		
area		145176.59		
scaled length -	49410.90			
hillas length -	32163.32			
RandomForestRegressor energy -	27238.81			
log RandomForestRegressor energy -	25832.13			
RandomForestRegressor tel energy -	24490.29			
- elexia n vpolodarom	22912.03			
HillasReconstructor h max-	21919.30			
leakage pixels width 2 -	20700.08			
concentration cog	17902.32			
log tel impact distance -	15403.86			
log abs timing slope -	14666.30			
intensity kurtosis -	7138.11			
leakage intensity width 2 -	6386.02			
peak time kurtosis -	5901.59			
peak time std -	5836.81			
concentration core	5818.17			
log intensity -	5464.32			
HillasReconstructor average intensity -	4437.07			
intensity skewness -	3933.72			
log RandomForestRegressor tel energy -	3912.96			
hillas intensity -	1819.92			
intensity std -	1441.63			
intensity mean -	1015.68			
hillas kūrtosis -	262.44			
hillas r-	245.68			
intensity max-	81.78			
concentration pixel	66.22			
peak time skewness -	48.63			
HillasReconstructor tel impact distance	14.35			
timing slope -	2.23			
hillas skewness	0.14			
-				
	1			

0 50000 100000 150000 200000 250000 300000 350000 400000 *F*-test score

astroteilchenphysik

MRMR feature selection – disp

At each iteration i compute $score_i$ for all f not yet selected

 $score_i(f) = \frac{relevance(f | target)}{redundancy(f | f_{already selected})}$

and add the feature with the highest score.

disp features (19)

- log_RandomForestRegressor_energy
- log_tel_impact_distance
- log_RandomForestRegressor_tel_energy
- log_abs_timing_slope
- peak_time_std
- concentration_pixel
- hillas_length
- concentration_cog
- timing_deviation
- scaled_length
- HillasReconstructor_h_max
- RandomForestRegressor_energy
- area
- peak_time_kurtosis
- RandomForestRegressor_tel_energy
- timing_slope
- hillas_skewness
- HillasReconstructor_core_x
- HillasReconstructor_core_y

Scaled Parameters and Feature Selection

astroteilchenphysik

MRMR feature selection - disp

At each iteration *i* compute *score*_{*i*} for all *f* not yet selected

 $score_i(f) = \frac{relevance(f | target)}{redundancy(f | f_{already selected})}$

and add the feature with the highest score.

disp features (19)

- log_RandomForestRegressor_energy
- log_tel_impact_distance
- log_RandomForestRegressor_tel_energy
- log_abs_timing_slope
- peak_time_std
- concentration_pixel
- hillas_length
- concentration_cog
- timing_deviation
- scaled_length
- HillasReconstructor_h_max
- RandomForestRegressor_energy
- area
- peak_time_kurtosis
- RandomForestRegressor_tel_energy
- timing_slope
- hillas_skewness
- HillasReconstructor_core_x
- HillasReconstructor_core_y

sign classifier

Scaled Parameters and Feature Selection

astroteilchenphysik

Concept

Energy Regression

Energy Regression (Telescope)

Randomized hyperparameter optimization yields:

5-fold cross-validation:

551 635 LST events

1 199 782 MST events

Energy Regression (Telescope)

Randomized hyperparameter optimization yields:

5-fold cross-validation:

551 635 LST events

1 199 782 MST events

Energy confusion for MST $(R^2 = 0.8641 \pm 0.0044)$

experimentelle physik 5 astroteilchenphysik

Feature Importance for LST

0.2

0.4

feature importance

0.6

peak_time_std -

0.0

Energy Regression (Telescope)

Randomized hyperparameter optimization yields:

1 199 782 MST events

- C. C.

Energy Regression (Telescope)

Randomized hyperparameter optimization yields:

log_target: True

5-fold cross-validation:

551 635 LST events

1 199 782 MST events

L. Beiske | December 16, 2022

Configuration array energy regressor

astroteilchenphysik

Energy Regression (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 969 events

```
model cls: RandomForestRegressor
model_config:
    n estimators: 200
    max features: "sqrt"
    min_samples_leaf: 0.00001
   n jobs: 40
log_target: True
features:
    - n_telescopes_HillasReconstructor
    - n LST HillasReconstructor
    - n_MST_HillasReconstructor
    - mean scaled length
    - mean scaled width
    - HillasReconstructor_core_x
    - HillasReconstructor core y
    - HillasReconstructor_average_intensity
    - HillasReconstructor h max
    - HillasReconstructor alt
    - HillasReconstructor_az
    - RandomForestClassifier prediction
    - RandomForestRegressor energy
```


astroteilchenphysik

Energy Regression (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 969 events

Configuration array energy regressor model_cls: RandomForestRegressor model_config:

n_estimators: 200 max_features: "sqrt" min_samples_leaf: 0.00001 n_jobs: 40

log_target: True

features:

- n_telescopes_HillasReconstructor
- n_LST_HillasReconstructor
- n_MST_HillasReconstructor
- mean_scaled_length
- mean_scaled_width
- HillasReconstructor_core_x
- HillasReconstructor_core_y
- HillasReconstructor_average_intensity
- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

Energy Regression (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 969 events

Configuration array energy regressor

```
model cls: RandomForestRegressor
model_config:
    n estimators: 200
    max features: "sqrt"
    min_samples_leaf: 0.00001
    n jobs: 40
log_target: True
features:
    - n_telescopes_HillasReconstructor
    - n LST HillasReconstructor
    - n_MST_HillasReconstructor

    mean scaled length

    - mean scaled width
    - HillasReconstructor_core_x
    - HillasReconstructor core y
    - HillasReconstructor_average_intensity
    - HillasReconstructor h max
    - HillasReconstructor alt
    - HillasReconstructor_az
    - RandomForestClassifier prediction
    - RandomForestRegressor energy
```


Gamma-Hadron Classification

astroteilchenphysik

Gamma-Hadron Classification (Telescope)

Randomized hyperparameter optimization yields:

Configuration particle classifier	
<pre>ParticleClassifier: model_cls: RandomForestClassifier model_config: n_estimators: 69 max_features: 0.5227 max_samples: 0.7138 min_samples_leaf: 0.000013 n_jobs: 40</pre>	

- LST: 552 754 signal + 561 171 background events
- MST: 1199267 signal + 1122374 background events

astroteilchenphysik

Gamma-Hadron Classification (Telescope)

Randomized hyperparameter optimization yields:

Configuration particle classifier	
<pre>ParticleClassifier: model_cls: RandomForestClassifier model_config: n_estimators: 69 max_features: 0.5227 max_samples: 0.7138 min_samples_leaf: 0.000013 n_jobs: 40</pre>	

- LST: 552 754 signal + 561 171 background events
- MST: 1199267 signal + 1122374 background events

Gamma-Hadron Classification (Telescope)

Randomized hyperparameter optimization yields:

Configuration particle classifier

```
ParticleClassifier:

model_cls: RandomForestClassifier

model_config:

n_estimators: 69

max_features: 0.5227

max_samples: 0.7138

min_samples_leaf: 0.000013

n_jobs: 40
```

- LST: 552 754 signal + 561 171 background events
- MST: 1199267 signal + 1122374 background events

Gamma-Hadron Classification (Telescope)

Randomized hyperparameter optimization yields:

Configuration particle classifier

```
ParticleClassifier:
  model_cls: RandomForestClassifier
  model_config:
    n_estimators: 69
    max_features: 0.5227
    max_samples: 0.7138
    min_samples_leaf: 0.000013
    n_jobs: 40
```

- LST: 552 754 signal + 561 171 background events
- MST: 1199267 signal + 1122374 background events

Configuration array particle classifier

astroteilchenphysik

Gamma-Hadron Classification (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 910 387 events

```
model cls: RandomForestClassifier
model_config:
 n estimators: 200
 max features: "sqrt"
 min samples_leaf: 0.00001
 n jobs: 40
features:
  - n telescopes HillasReconstructor
  - n_LST_HillasReconstructor
  - n MST HillasReconstructor
  - mean scaled length
  - mean_scaled_width
  - HillasReconstructor core x
  - HillasReconstructor_core_y
  - HillasReconstructor_average_intensity
  - HillasReconstructor h max
  - HillasReconstructor alt
  - HillasReconstructor az
   RandomForestClassifier prediction
  - RandomForestRegressor_energy
```


astroteilchenphysik

Gamma-Hadron Classification (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 910 387 events

Configuration array particle classifier

```
model cls: RandomForestClassifier
model_config:
 n estimators: 200
 max features: "sqrt"
 min samples_leaf: 0.00001
 n jobs: 40
features:
  - n telescopes HillasReconstructor
  - n_LST_HillasReconstructor
  - n MST HillasReconstructor
  - mean scaled length
  - mean_scaled_width
  - HillasReconstructor core x
  - HillasReconstructor_core_y
  - HillasReconstructor_average_intensity
  - HillasReconstructor h max
  - HillasReconstructor alt
  - HillasReconstructor az
   RandomForestClassifier prediction
   RandomForestRegressor_energy
```


astroteilchenphysik

Gamma-Hadron Classification (Array)

- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 910 387 events

Configuration array particle classifier

```
model cls: RandomForestClassifier
model_config:
 n estimators: 200
 max features: "sqrt"
 min_samples_leaf: 0.00001
 n jobs: 40
features:
  - n telescopes HillasReconstructor
  - n_LST_HillasReconstructor
  - n MST HillasReconstructor
  - mean scaled length
  - mean scaled width
  - HillasReconstructor core x
  - HillasReconstructor_core_y
  - HillasReconstructor_average_intensity
  - HillasReconstructor h max
  - HillasReconstructor alt
  - HillasReconstructor az
   RandomForestClassifier prediction
   RandomForestRegressor_energy
```


Origin Reconstruction

astroteilchenphysik

Origin Reconstruction using disp

Randomized hyperparameter optimization yields:

- 552 754 LST events
- nts 🛛 🛯 1 199 267 MST events

astroteilchenphysik

Origin Reconstruction using disp

Randomized hyperparameter optimization yields:

 $E_{\rm true} / {\rm TeV}$

- 552 754 | ST events 1199 267 MST events

Randomized hyperparameter optimization yields:

Configuration disp reconstructor

```
norm_cls: RandomForestRegressor
norm_config:
    n_estimators: 69
    max_features: 0.5227
    max_samples: 0.7138
    min_samples_leaf: 0.000013
    n_jobs: 40
```

```
log_target: True
```

```
sign_cls: RandomForestClassifier
sign_config:
    n_estimators: 343
    max_features: 0.6587
    max_samples: 0.5815
    min_samples_leaf: 0.000035
    n_jobs: 40
```

5-fold cross-validation:

552 754 LST events

ents 🛛 🗧 1 199 267 MST events

feature importance

Randomized hyperparameter optimization yields:

feature importance

5-fold cross-validation:

552 754 | ST events 1199 267 MST events

Randomized hyperparameter optimization yields:

Configuration disp reconstructor

```
norm cls: RandomForestRegressor
norm_config:
 n estimators: 69
 max features: 0.5227
 max samples: 0.7138
 min samples leaf: 0.000013
 n jobs: 40
```

log target: True

```
sign_cls: RandomForestClassifier
sign config:
 n estimators: 343
 max features: 0.6587
 max samples: 0.5815
 min_samples_leaf: 0.000035
 n jobs: 40
```

5-fold cross-validation:

552 754 | ST events 1199 267 MST events

feature importance

L. Beiske | December 16, 2022

Randomized hyperparameter optimization yields:

Configuration disp reconstructor

```
norm cls: RandomForestRegressor
norm_config:
 n estimators: 69
 max features: 0.5227
 max samples: 0.7138
 min samples leaf: 0.000013
 n jobs: 40
```

```
log target: True
```

```
sign_cls: RandomForestClassifier
sign config:
 n estimators: 343
 max features: 0.6587
 max samples: 0.5815
 min_samples_leaf: 0.000035
 n jobs: 40
```

Feature Importance for sign for MST (accuracy = 0.9395 ± 0.0005)

feature importance

5-fold cross-validation:

552 754 | ST events 1199 267 MST events

astroteilchenphysik

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, alt, az)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

```
model cls: RandomForestRegressor
model config:
  n estimators: 200
 max features: "sqrt"
 min_samples_leaf: 0.00001
 n jobs: 40
features:
  - n telescopes HillasReconstructor
  - n LST HillasReconstructor
  - n MST HillasReconstructor
  - mean scaled length
  - mean_scaled_width
  - HillasReconstructor core x
  - HillasReconstructor core y
  - HillasReconstructor_average_intensity
  - HillasReconstructor h max
  - HillasReconstructor alt
  - HillasReconstructor_az
   disp alt
  - disp az
  - disp_ang_distance_uncert
```

- RandomForestClassifier_prediction
- RandomForestRegressor_energy

technische universität dortmund

5 experimentelle physik 5

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

```
model_cls: RandomForestRegressor
model_config:
    n_estimators: 200
    max_features: "sqrt"
    min_samples_leaf: 0.00001
    n_jobs: 40
features:
    - n_telescopes_HillasReconstructor
    - n_LST_HillasReconstructor
```

- n_MST_HillasReconstructor
- mean_scaled_length
- mean_scaled_width
- HillasReconstructor_core_x
- HillasReconstructor_core_y
- HillasReconstructor_average_intensity
- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- disp_alt
- disp_az
- disp_ang_distance_uncert
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

technische universität dortmund

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

astroteilchenphysik

experimentelle physik 5

```
model cls: RandomForestRegressor
model config:
  n estimators: 200
 max features: "sqrt"
 min_samples_leaf: 0.00001
 n jobs: 40
features:
  - n telescopes HillasReconstructor
  - n LST HillasReconstructor
  - n MST HillasReconstructor
  - mean scaled length
  - mean_scaled_width
  - HillasReconstructor core x
  - HillasReconstructor core v
  - HillasReconstructor_average_intensity
  - HillasReconstructor_h_max
   HillasReconstructor alt
  - HillasReconstructor_az
   disp alt
   disp az
  - disp_ang_distance_uncert
   RandomForestClassifier prediction
  - RandomForestRegressor energy
```

technische universität dortmund

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

experimentelle physik 5

```
model_cls: RandomForestRegressor
model_config:
    n_estimators: 200
    max_features: "sqrt"
    min_samples_leaf: 0.00001
    n_jobs: 40
features:
    - n_telescopes_HillasReconstructor
    - n_LST_HillasReconstructor
    - n_MST_HillasReconstructor
    - mean_scaled_length
    - mean_scaled_width
    HillasReconstructor_core_x
    HillasReconstructor_core_y
    HillasReconstructor_average_intensity
    WillasReconstructor_average_intensity
```

- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- disp_alt

astroteilchenphysik

- disp_az
- disp_ang_distance_uncert
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

astroteilchenphysik

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

```
model_cls: RandomForestRegressor
model_config:
    n_estimators: 200
    max_features: "sqrt"
    min_samples_leaf: 0.00001
    n_jobs: 40
```

features:

- n_telescopes_HillasReconstructor
- n_LST_HillasReconstructor
- n_MST_HillasReconstructor
- mean_scaled_length
- mean_scaled_width
- HillasReconstructor_core_x
- HillasReconstructor_core_y
- HillasReconstructor_average_intensity
- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- disp_alt
- disp_az
- disp_ang_distance_uncert
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

astroteilchenphysik

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

```
model_cls: RandomForestRegressor
model_config:
    n_estimators: 200
    max_features: "sqrt"
    min_samples_leaf: 0.00001
    n_jobs: 40
features:
    - n telescopes HillasReconstructor
```

- n_LST_HillasReconstructor
- n_MST_HillasReconstructor
- mean_scaled_length
- mean_scaled_width
- HillasReconstructor_core_x
- HillasReconstructor_core_y
- HillasReconstructor_average_intensity
- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- disp_alt
- disp_az
- disp_ang_distance_uncert
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

astroteilchenphysik

Origin Reconstruction (Array)

- Predict 3D cartesian position based on unit-sphere (1, *alt, az*)
- Use (averaged) telescope predictions and array-wide features
- No hyperparameter optimization (yet)
- 5-fold cross-validation on 461 212 events

Configuration (every) array origin regressor

```
model_cls: RandomForestRegressor
model_config:
    n_estimators: 200
    max_features: "sqrt"
    min_samples_leaf: 0.00001
    n_jobs: 40
```

features:

- n_telescopes_HillasReconstructor
- n_LST_HillasReconstructor
- n_MST_HillasReconstructor
- mean_scaled_length
- mean_scaled_width
- HillasReconstructor_core_x
- HillasReconstructor_core_y
- HillasReconstructor_average_intensity
- HillasReconstructor_h_max
- HillasReconstructor_alt
- HillasReconstructor_az
- disp_alt
- disp_az
- disp_ang_distance_uncert
- RandomForestClassifier_prediction
- RandomForestRegressor_energy

Performance

astroteilchenphysik

Gamma-Hadron Performance (Energy-Dependent)

Array classifier

experimentelle physik 5 astroteilchenphysik

Gamma-Hadron Scores

astroteilchenphysik

Gammaness and θ Cuts

astroteilchenphysik

Gammaness and θ Cuts

Energy Migration

Energy – Bias and Resolution

Gammaness cut (40% eff.) & Θ cut (68% eff.) & FoV offset < 1.0 deg

Sensitivity

⇒ This and all following plots use gammaness cuts optimized for maximum sensitivity!

Angular Resolution

Optimized gammaness cut

astroteilchenphysik

Effective Area

Outlook

TODO

- Separate dataset for array models → optimize hyperparameters
- Try other methods for averaging disp predictions (→ Lukas' master thesis)
- Telescope models using only mono features → include "mono" events
- Try other ML algorithms (e.g. boosted decision trees) incl. hyperparameter optimization

Backup

Timing Parameters vs Impact Distance

Quality Cuts

Background Rejection

Angular Resolution – More Plots

Α

astroteilchenphysik

Angular Resolution – 4x4

L. Beiske | December 16, 2022

astroteilchenphysik

Error of Mean disp Predicitons

L. Beiske | December 16, 2022

Outlook