

Analysis of MOJAVE data with Neural Networks

Arne Poggenpohl

December 16, 2022

Astroparticle Physics / WG Elsässer Department of Physics, TU Dortmund University

Cosmic messengers

Figure: Different types of messengers in astronomy. [1]

astroteilchenphysik

Radio astronomy

- Atmosphere is transparent for radio radiation
- Rayleigh criterion:

 $\theta \approx 1,22 \cdot \frac{\lambda}{D}$ i.e. $\theta \approx 1,22 \cdot \frac{0,21 \text{ m}}{25 \text{ m}} = 0,0084 \approx 0,48^{\circ}$

- Single telescope size constrained
- → Combining array of telescopes
 - → Radio interferometry

astroteilchenphysik

Radio interferometry

MOJAVE data

- Monitoring Of Jets in Active galactic nuclei with VLBA Experiments
- Measurement series over several years
- Very Long Baseline Array
 - 10 telescopes
 - 25 m diameter
 - 8611 km maximum baseline
 - 0,17 22 mas angular resolution
- Similar data quality throughout the data set

Figure: Source in the MOJAVE dataset. [4]

Problems

- Jets consist of several components (bursts)
- Track components over time to determine kinematics
- → Physical properties of the host galaxy

astroteilchenphysik

Problems

- Jets consist of several components (bursts)
- Track components over time to determine kinematics
- → Physical properties of the host galaxy

Solutions

- Previously: PyBDSF or DIFMAP
 - Analysis performed manually
 - → Takes long for big data
 - → Difficult to reproduce

astroteilchenphysik

Problems

- Jets consist of several components (bursts)
- Track components over time to determine kinematics
- → Physical properties of the host galaxy

Solutions

- Previously: PyBDSF or DIFMAP
 - Analysis performed manually
 - → Takes long for big data
 - → Difficult to reproduce
- This approach:
 - Creates simulations
 - Uses neural network to track components
 - → Building and training neural network requires expertise
 - → Fast evaluation, reproducible results

astroteilchenphysik

Neural network for object detection

- Object detection is famous task for NN
- Convolutional layers to extract features

Figure: A 2D Convolution. [5]

astroteilchenphysik

Neural network for object detection

- Object detection is famous task for NN
- Convolutional layers to extract features

Figure: Application examples of kernels. [6]

astroteilchenphysik

Neural network for object detection

- Object detection is famous task for NN
- Convolutional layers to extract features
- Different approaches for object detection
 - Evaluate classifier at several locations and scales
 - Sliding window approach
 - R-CNN:
 - 1. Predict potential boxes
 - 2. Apply classifier
 - 3. Post-processing
 - → Complex pipelines are slow and hard to optimize

Figure: Application examples of kernels. [6]

astroteilchenphysik

Neural network for object detection

- Object detection is famous task for NN
- Convolutional layers to extract features
- Different approaches for object detection
 - Evaluate classifier at several locations and scales
 - Sliding window approach
 - R-CNN:
 - 1. Predict potential boxes
 - 2. Apply classifier
 - 3. Post-processing
 - → Complex pipelines are slow and hard to optimize

→ YOLO

Figure: Application examples of kernels. [6]

You Only Look Once

- Predicts boxes, objectness and classes
- Every pixel in output is prediction
- Non-maximum suppression (NMS) to iteratively remove lower scoring boxes
- Layers
 - Convolution
 - Deconvolution
 - Activations: ReLU, LeakyReLU, SiLU
 - Batch normalization, MaxPooling

astroteilchenphysik

experimentelle physik 5

Figure: You Only Look Once: Unified, Real-Time Object Detection. (2015) [7]

YOLOv6 framework

Figure: The YOLOv6 framework. [8]

Loss function

Box regression: Complete Intersection over Union (CIoU)

$$L_{Box} = 1 - IoU + \frac{d^2}{c^2} + \alpha v$$

Figure: DIoU loss for bounding box regression. [9]

Loss function

Box regression: Complete Intersection over Union (CIoU)

$$L_{Box} = 1 - IoU + \frac{d^2}{c^2} + \alpha v$$

Objectness: Binary cross entropy with sigmoid (BCEWithLogits)

 $L_{Obj} = -w \left[y \cdot \log\left(\sigma(x)\right) + (1-y) \cdot \log\left(1-\sigma(x)\right) \right]$

Figure: DIoU loss for bounding box regression. [9]

Loss function

Box regression: Complete Intersection over Union (CIoU)

$$L_{Box} = 1 - IoU + \frac{d^2}{c^2} + \alpha v$$

Objectness: Binary cross entropy with sigmoid (BCEWithLogits)

 $L_{Obj} = -w[y \cdot \log(\sigma(x)) + (1 - y) \cdot \log(1 - \sigma(x))]$

Rotation: Mean absolute error (MAE or L1)

$$L_{Rot} = |x - y|$$

Figure: DIoU loss for bounding box regression. [9]

Loss function

Box regression: Complete Intersection over Union (CIoU)

$$L_{Box} = 1 - IoU + \frac{d^2}{c^2} + \alpha v$$

Objectness: Binary cross entropy with sigmoid (BCEWithLogits)

$$L_{Obj} = -w \left[y \cdot \log(\sigma(x)) + (1 - y) \cdot \log(1 - \sigma(x)) \right]$$

Rotation: Mean absolute error (MAE or L1)

$$L_{Rot} = |x - y|$$

Total loss:

$$L = L_{Box} + L_{Obj} + L_{Rot}$$

Training on 20000 simulated sources

Figure: Loss and metric during training. [10]

Non-maximum supression

A : List of predictions, B : Final list

c : IoU threshold, **d** : Objectness threshold

- 1. Select box from A with highest objectness score (larger than d) and add it to B. (Initially B is empty).
- 2. Compare this predictions with all the predictions calculate the IoU of this predictions all other predictions in *B*. If IoU is larger than *c*, remove that predictions from *B*.
- 3. This process is repeated until there are no more proposals left in A.

astroteilchenphysik

Simulation

- Gaussian distributions forming a jet
- Improvements:
 - Rotation of components
 - Larger eccentricity possible
 - Offset of core component
 - Randomly drop components
 - Advanced noise

Figure: Simulated sources with radiosim in 2021. [11]

Figure: Simulated sources with radiosim for this work. [12]

astroteilchenphysik

Predictions for simulation data

- Output layers of size 64x64, 32x32, 16x16
- Combine objectness by multiplication
- Boxes of largest output layer used for NMS
 - → 4096 pixels with predictions
 - → Thresholds in NMS determining

Figure: Predicted boxes and objectness.

astroteilchenphysik

Predictions for simulation data

- Output layers of size 64x64, 32x32, 16x16
- Combine objectness by multiplication
- Boxes of largest output layer used for NMS
 - → 4096 pixels with predictions
 - → Thresholds in NMS determining

Figure: Predicted boxes and objectness.

astroteilchenphysik

Predictions for simulation data

- Output layers of size 64x64, 32x32, 16x16
- Combine objectness by multiplication
- Boxes of largest output layer used for NMS
 - → 4096 pixels with predictions
 - → Thresholds in NMS determining

Figure: Predicted boxes and objectness.

astroteilchenphysik

Preprocessing of MOJAVE data

Source is barely visible

Figure: MOJAVE image of 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Preprocessing of MOJAVE data

- Source is barely visible
- Zoom on source → Cropping to 128 pixel

Figure: MOJAVE image of 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Preprocessing of MOJAVE data

- Source is barely visible
- Zoom on source → Cropping to **128** pixel
- Scaling → **log**₁₀

Figure: MOJAVE image of 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Preprocessing of MOJAVE data

- Source is barely visible
- Zoom on source → Cropping to **128** pixel
- Scaling → log₁₀
- Scaling → between **0** and **1**

Figure: MOJAVE image of 1142+198 from 26.09.2016. [13]

Preprocessing of MOJAVE data

- Source is barely visible
- Zoom on source → Cropping to 128 pixel
- Scaling → log₁₀
- Scaling \rightarrow between 0 and 1
- Noise cut (before \log_{10}) $\rightarrow x[x < |\min(x)|] = -1$

experimentelle physik 5

astroteilchenphysik

Figure: MOJAVE image of 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Evaluation of MOJAVE data

Figure: Evaluation of MOJAVE 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Evaluation of MOJAVE data

Figure: Evaluation of MOJAVE 1142+198 from 10.12.2016. [13]

astroteilchenphysik

Evaluation of MOJAVE data

Figure: Evaluation of MOJAVE 1142+198 from 30.07.2017. [13]

astroteilchenphysik

Clustering

- Find similar components at each time step
- Spectral Clustering
 - Calculate affinity matrix
 - Scale with kNN distances
 - Reduce dimension by choosing largest eigenvalues
 - Eigenvectors create a low dimensional space
 - Perform kNN Clustering in lower dimension
- Build mean of equal components in one image

Figure: Spectral Clustering to group components.

astroteilchenphysik

Clustering

Boxes after clustering

Figure: MOJAVE 1142+198 from 26.09.2016. [13]

Figure: MOJAVE 1142+198 from 26.09.2016. [13]

astroteilchenphysik

Clustering

Boxes after clustering

Figure: MOJAVE 1142+198 from 10.12.2016. [13]

Figure: MOJAVE 1142+198 from 10.12.2016. [13]

astroteilchenphysik

Clustering

Boxes after clustering

Figure: MOJAVE 1142+198 from 30.07.2017. [13]

Figure: MOJAVE 1142+198 from 30.07.2017. [13]

Velocity calculation

- Components are located and assigned to each other
- Velocity in mas/yr from linear regression
- Converted into units of c₀ with given distance to source
- Performed by Kevin Schmidt manually with DIFMAP in 2018

Figure: Kinematic analysis of 1142+198 by Kevin Schmidt. [14]

Velocity calculation

Figure: Distance of components and linear regression.

Component	Velocity / c _o
1	-0,0068 ± 0,0034
2	-0,0166 ± 0,0485
3	0
4	-0,0590 ± 0,0284
5	-0,0098 ± 0,0062
6	-0,0838 ± 0,0536

Maximum jet speed by Lister et al. 2021 [15]:

(0,125 ± 0,051) C

Conclusion

Prediction of components with YOLO possible	Component
NMS critical part of analysis	1 –(
Clustering works as expected	2 -(
But: Velocity of components all negative	3
	4 -0

Component	Velocity / c _o
1	-0,0068 ± 0,0034
2	-0,0166 ± 0,0485
3	0
4	-0,0590 ± 0,0284
5	-0,0098 ± 0,0062
6	-0,0838 ± 0,0536

astroteilchenphysik

Outlook

- For this work:
 - Reasonable performance metric(s)
 - Apply common methods on simulation for comparison
 - Analysis on more MOJAVE data

Figure: First approach of a realistic 3D simulation.

astroteilchenphysik

Outlook

- For this work:
 - Reasonable performance metric(s)
 - Apply common methods on simulation for comparison
 - Analysis on more MOJAVE data
- For future projects:
 - Find different architectures for reconstruction
 - Realistic simulations (physical properties, 3D, time development, ...)

Figure: First approach of a realistic 3D simulation.

- [1] Juan Antonio Aguilar and Jamie Yang. Cosmic messengers. IceCube/WIPAC.
- [2] An Introduction to Radio Astronomy. URL: https://www.cv.nrao.edu/~sransom/web/Ch1.html (visited on 11/30/2022).
- [3] Felix Geyer. "Reconstructing Radio Interferometric Data Using Neural Networks." Master of Science. TU Dortmund University, 2020.
- [4] The MOJAVE Program Homepage. URL: https://www.cv.nrao.edu/MOJAVE/ (visited on 11/30/2022).
- [5] Convolution Operator. URL: https://tikz.net/conv2d/ (visited on 11/30/2022).
- Y. V. R. Nagapawan, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan. "Convolutional Neural Network." In: Programming with TensorFlow: Solution for Edge Computing Applications. Ed. by Kolla Bhanu Prakash and G. R. Kanagachidambaresan. Cham: Springer International Publishing, 2021, pp. 45–51. ISBN: 978-3-030-57077-4. DOI: 10.1007/978-3-030-57077-4_6. URL: https://doi.org/10.1007/978-3-030-57077-4_6.
- Joseph Redmon et al. "You Only Look Once: Unified, Real-Time Object Detection." In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640. URL: http://arxiv.org/abs/1506.02640.
- Chuyi Li et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. 2022. DOI: 10.48550/ARXIV.2209.02976. URL: https://arxiv.org/abs/2209.02976.
- [9] Zhaohui Zheng et al. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. 2019. DOI: 10.48550/ARXIV.1911.08287. URL: https://arxiv.org/abs/1911.08287.

technische universität dortmund

- [10] Kevin Schmidt et al. radionets: Imaging Radio Interferometric Data with Neural Networks. Version v1.0.0. Nov. 2020. URL: https://github.com/radionets-project/radionets.
- Paul-Simon Blomenkamp. "Automated Source Detection in Radio Interferometric Images using Computer Vision."
 Master of Science. TU Dortmund University, 2021.
- [12] Schmidt Kevin, Geyer Felix, and Poggenpohl Arne. radiosim: Simulation of radio skies to create astrophysical data sets. URL: https://github.com/radionets-project/radiosim.
- [13] MOJAVE 1142+198. URL: https://www.cv.nrao.edu/MOJAVE/sourcepages/1142+198.shtml (visited on 11/30/2022).
- [14] Kevin Schmidt. "Study of Jet Characteristics of TeV Radio Galaxy Candidates based on VLBA and MAGIC Observations." Master of Science. TU Dortmund University, 2018.
- [15] M. L. Lister et al. "Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies." In: The Astrophysical Journal (2021). DOI: 10.3847/1538-4357/ac230f.