Studies on Monte Carlo tuning using Bayesian analysis

Stefan Kluth², Kevin Kröninger¹, Salvatore La Cagnina¹, Andrii Verbytski², Michael Windau¹

TU Dortmund, Experimentelle Physik IV¹ Max-Plank-Institut für Physik, München²

June 2, 2022

Salvatore La Cagnina (TU Dortmund)

Motivation

- Monte Carlo (MC) simulations essential aspect of data analysis in HEP
- Parameters of parton shower and hadronisation models not derivable from first principles
 - \rightarrow Data driven methods
- Goal: Describe data as accurately as possible
- Applications in MC generators for air shower simulations

Figure: Graphical representation of MC event generation in collider experiments.

How to tune

- Multiple approaches (brute force, manually)
- Technical implementation can differ (mainly for the fits)
- State of the art: parametrization based tuning with Professor tool

(https://professor.hepforge.org/, arXiv:0907.2973)

Figure: Schematic view of parameter based MC tuning.

MC Tuning using BAT BAT.jl

(https://github.com/bat/BAT.jl, arXiv:2008.03132)

- Rewrite of the Bayesian Analysis Toolkit in Julia
- Tool collection for statistical problems in a Bayesian context
- Numerical algorithms (such as MCMC) to explore posterior distributions

EFTfitter.jl

(https://github.com/tudo-physik-e4/EFTfitter.jl,

arXiv:1605.05585)

- EFTfitter based on BAT.jl
- Generic tool build to interpret measurements in the context of EFT
- Applicable to any model to infer its parameters from data

MC Tuning in Julia

Compatibility with Rivet histograms (similar to the Professor framework)

- Bin-wise-fit to MC possible with any user function
- Fit executed using LsqFit.jl package

(https://github.com/JuliaNLSolvers/LsqFit.jl)

Least square fit with Levenberg-Marquardt minimization

Fitting to data using BAT with the EFTfitter likelihood

$$-2\ln{(\vec{p}|\vec{D})} = \sum_{i=1}^{n} \sum_{j=1}^{n} [\vec{D} - f^{(b,O)}(\vec{p})]_i \ M_{ij} \ [\vec{D} - f^{(b,O)}(\vec{p})]_j$$

• where M_{ij} is the covariance matrix between for each bin of each observable

Tuning Example

- Generated LEP events (e⁺ + e⁻ → jet jet @ √s = 91.2 GeV) using Herwig at NLO
- RIVET (Robust Independent Validation of Experiment and Theory) (arXiv:1912.05451)
- Provides analysis code and data(!) for several example analyses + lightweight and fast

■ Looking at event-shape variables, particle spectra and multiplicities
■ Total about 100 histograms, with ≈ 1000 bins

Rivet and LEP example setup

- Parameters for cluster hadronisation in Herwig used for tuning
- 8 Parameters for tuning "AlphaQCD"
 - "g:ConstituentMass (m(g))" "s:ConstituentMass (m(s))" "IRCutoff"
 - "ClusterFissioner:ClMax" "ClusterFissioner:ClPow" "ClusterFissioner:PSplit"
 - "ClusterDecayer:CISmr"
- Parameters are varied from default values (50% up and down) (700 samples @ 1M events per sample)

Figure: Sphericity using default tune values provided by Rivet.

Interpolation results

- Systematic find bad fits/low stat
- Reduced χ^2 and χ^2 probability as test statistics as goodness of fit
- Low p-values and/or high χ^2_{red} may indicate badly fitted bins/observables
 - \rightarrow Further look into those fits
- Bin-wise fit for first bins Sphericity for four parameters (on bottom)

Salvatore La Cagnina (TU Dortmund)

Tuning Results

- BAT outputs distributions for parameters
- Marginalized 1D distributions shown for the first two parameters
- Next slide shows the correlation plots of all parameters

Figure: IRCutoff

Figure: m(g),g:ConstituentMass

Salvatore La Cagnina (TU Dortmund)

Bayesian MC Tuning

Tuning Results

 χ^2 values for data and MC for tuned and non-tuned values

- Right plot zoomed and cut values in between 0 and 1
- Visible reduction of χ^2 for tuned MC \rightarrow better MC data agreement

Tuning in context of air showers simulations

- Air shower simulations show a significant muon deficit (muon puzzle)
- Most likely due to deviation of composition of secondary particles in hadronic interactions
- Further tuning of model parameters of air shower generators (possibly including LHC data)
- Compatibility-wise (what a tune needs):
 - MC generator with changeable parameters
 - A set of measurable observables (data)
 - Framework build in Julia, though at its core only needs histograms and parameters for MC and data
- Air shower MC generators such as EPOS or SIBYLL can be tuned
- SIBYLL already tuned with Professor (using RIVET)

Conclusion and Outlook

- Monte Carlo tuning using a Bayesian approach is possible/feasible
- Seamless integration of weighting for observables possible
- BAT tuning also allows for a straightforward implementation of correlated systematic uncertainties
- Studies on the effect on correlation and different weighting schemes towards the tuning results
- BAT tuning applicable to air shower/hadron interaction MC generators like SYBILL and EPOS
 - \rightarrow Future studies conducted by Michael Windau

Backup

Full Observable List

Rivet analysis	code	clear text	DELPHI 1996 S3430090	d09-x01-v01	Mean out-of-plane p in GeV w.r.t. thrust axes vs. x _n	1		
ALEPH_1996_\$3486095	d01-x01-y01	Sphericity, S (charged)	DELPHI_1996_S3430090	d10-x01-y01	Mean p_{\perp} in GeV vs. x_p	PDG_HADRON_MULTIPLICITIES	d24-x01-y01	Mean B ⁺ multiplicity
ALEPH_1996_S3486095	d02-x01-y01	Aplanarity, A (charged)	DELPHI_1996_S3430090	d11-x01-y01	1 – Thrust	PDG HADRON MULTIPLICITIES	d25-x01-y02	Mean J/ψ(1S) multiplie
ALEPH_1996_S3486095	d03-x01-y01	1-Thrust, 1 – T (charged)	DELPHI_1996_S3430090	d12-x01-y01	Thrust major, M	PDG HADBON MULTIPLICITIES	d26-x01-v01	Mean w(2S) multiplici
ALEPH_1996_S3486095	d04-x01-y01	Thrust minor, m (charged)	DELPHI_1996_S3430090	d13-x01-y01	Thrust minor, m	PDG HADRON MULTIPLICITIES	d27-x01-x01	Mean T(1S) multiplici
ALEPH_1996_S3486095	d07-x01-y01	C parameter (charged)	DELPHI_1996_S3430090	d14-x01-y01	Oblateness = M - m	PDG_HADRON_MULTIPLICITIES	d27=x01=y01	Mana ((1005) multiplic
ALEPH_1996_S3486095	d08-x01-y01	Oblateness, M – m (charged)	DELPHI_1996_53430090	d16-x01-y01	Aplanarity A	PDG_HADHON_MULTIPLICITIES	028-x01-y01	Wean /1(1265) multiplic
ALEPH_1996_S3486095	d09-x01-y01	Scaled momentum, $x_p = p / p_{beam} $ (charged)	DELPHI_1996_33430090	d17-x01-y01	Planarity P	PDG_HADRON_MULTIPLICITIES	d29-x01-y01	Mean f ₁ (1420) multiplic
ALEPH_1996_S3486095	d11-x01-y01	In-plane p _T in GeV w.r.t. sphericity axes (charged)	DELPHI 1996 \$3430090	d18-x01-y01	C parameter	PDG_HADRON_MULTIPLICITIES	d30-x01-y01	Mean $\chi_{c1}(3510)$ multipli
ALEPH_1996_S3486095	d12-x01-y01	Out-of-plane p _T in GeV w.r.t. sphericity axes (charged)	DELPHI 1996 S3430090	d19-x01-v01	D parameter	PDG HADRON MULTIPLICITIES	d31-x01-v03	Mean fs(1270) multiplic
ALEPH_1996_S3486095	d17-x01-y01	Log of scaled momentum, log(1/xp) (charged)	DELPHI 1996 S3430090	d33-x01-y01	Energy-energy correlation, EEC	PDG HADBON MULTIPLICITIES	d32-x01-y01	Mean f'(1525) multiplic
ALEPH_1996_S3486095	d18-x01-y01	Charged multiplicity distribution	DELPHI 1996 S3430090	d35-x01-y01	Mean charged multiplicity		doi x01 y01	Magaz (50(1400)) multiple
ALEPH_1996_S3486095	d19-x01-y01	Mean charged multiplicity	JADE_OPAL_2000_\$4300807	d26-x01-y01	Differential 2-jet rate with Durham algorithm (91.2 GeV)	PDG_HADHON_MULTIPLICITIES	034-x01-y02	Mean N2" (1430) mulupi
ALEPH_1996_S3486095	d25-x01-y01	π [±] spectrum	JADE_OPAL_2000_S4300807	d26-x01-y02	Differential 3-jet rate with Durham algorithm (91.2 GeV)	PDG_HADRON_MULTIPLICITIES	d35-x01-y01	Mean B** multiplicity
ALEPH_1996_S3486095	d26-x01-y01	K [±] spectrum	JADE_OPAL_2000_S4300807	d26-x01-y03	Differential 4-jet rate with Durham algorithm (91.2 GeV)	PDG_HADRON_MULTIPLICITIES	d36-x01-y01	Mean D _{s1} multiplicity
ALEPH_1996_S3486095	d29-x01-y01	π ⁰ spectrum	JADE_OPAL_2000_S4300807	d26-x01-y04	Differential 5-jet rate with Durham algorithm (91.2 GeV)	PDG HADRON MULTIPLICITIES	d37-x01-y01	Mean D ⁺ ₋₀ multiplicity
ALEPH_1996_S3486095	d30-x01-y01	η spectrum	PDG_HADRON_MULTIPLICITIES	d01-x01-y03	Mean #* multiplicity	PDG HADBON MULTIPLICITIES	d38-x01-y03	Mean n multiplicity
ALEPH_1996_S3486095	d31-x01-y01	η' spectrum	PDG_HADRON_MULTIPLICITIES	d02-x01-y03	Mean #* multiplicity	PDC HADRON MULTIPLICITIES	d20 x01 y02	Moon A multiplicity
ALEPH_1996_S3486095	d32-x01-y01	K ⁰ spectrum	PDG_HADRON_MULTIPLICITIES	d04-x01-y03	Mean K ⁰ multiplicity		d00-x01-y00	Massa 50 multiplicity
ALEPH_1996_S3486095	d33-x01-y01	Λ ⁰ spectrum	PDG_HADBON_MULTIPLICITIES	d05-x01-y03	Mean // multiplicity	PDG_HADHON_MULTIPLICITIES	040-x01-y02	wear 2* multiplicity
ALEPH_1996_S3486095	d34-x01-y01	E ⁻ spectrum	PDG HADRON MULTIPLICITIES	d06-x01-y03	Mean n/(958) multiplicity	PDG_HADRON_MULTIPLICITIES	d41-x01-y01	Mean Σ ⁻ multiplicity
ALEPH_1996_S3486095	d35-x01-y01	Σ [±] (1385) spectrum	PDG HADRON MULTIPLICITIES	d07-x01-y03	Mean D ⁺ multiplicity	PDG_HADRON_MULTIPLICITIES	d42-x01-y01	Mean Σ ⁺ multiplicity
ALEPH_1996_S3486095	d36-x01-y01	Ξ ⁰ (1530) spectrum	PDG_HADRON_MULTIPLICITIES	d08-x01-y03	Mean D ⁰ multiplicity	PDG HADBON MULTIPLICITIES	d43-x01-v01	Mean Σ [±] multiplicity
ALEPH_1996_S3486095	d37-x01-y01	ρ spectrum	PDG_HADRON_MULTIPLICITIES	d09-x01-y03	Mean D ⁺ _s multiplicity	PDG HADBON MULTIPLICITIES	d44-x01-y03	Mean =- multiplicity
ALEPH_1996_S3486095	d38-x01-y01	ω(782) spectrum	PDG_HADRON_MULTIPLICITIES	d10-x01-y01	Mean B ⁺ , B ⁰ _d multiplicity	PDG_HADRON_MULTIPLICITIES	d45 x01 y02	Moon A++(1222) multin
ALEPH_1996_S3486095	d39-x01-y01	K ^{*0} (892) spectrum	PDG_HADRON_MULTIPLICITIES	d11-x01-y01	Mean B ⁺ _u multiplicity	FDG_HADRON_WOLTFEIGTTES	045-X01-y02	Wear A (1232) Hulup
ALEPH_1996_S3486095	d40-x01-y01	φ spectrum	PDG_HADRON_MULTIPLICITIES	d12-x01-y01	Mean B ⁰ _s multiplicity	PDG_HADRON_MULTIPLICITIES	d46-x01-y03	Mean Σ ⁻ (1385) multipli
ALEPH_1996_S3486095	d43-x01-y01	K*±(892) spectrum	PDG_HADRON_MULTIPLICITIES	d13-x01-y03	Mean I ₀ (980) multiplicity	PDG_HADRON_MULTIPLICITIES	d47-x01-y03	Mean Σ ⁺ (1385) multipli
ALEPH_2001_S4656318	d01-x01-y01	b quark fragmentation function $f(x_B^{\text{weak}})$	PDG_HADRON_MULTIPLICITIES	d15 x01 x02	Mean -9(770) multiplicity	PDG HADRON MULTIPLICITIES	d48-x01-v03	Mean Σ [±] (1385) multipli
ALEPH_2001_S4656318	d07-x01-y01	Mean of b quark fragmentation function f(x ^{weak} _B)	PDG_HADRON_MULTIPLICITIES	d16-x01-y03	Mean a ⁺ (770) multiplicity	PDG HADBON MULTIPLICITIES	d49-x01-y02	Mean =0(1530) multipli
DELPHI_1996_S3430090	d01-x01-y01	In-plane p _⊥ in GeV w.r.t. thrust axes	PDG_HADBON_MULTIPLICITIES	d17-x01-y02	Mean w(782) multiplicity		d10 x01 y02	Mass O- multiplicity
DELPHI_1996_S3430090	d02-x01-y01	Out-of-plane p_ in GeV w.r.t. thrust axes	PDG HADRON MULTIPLICITIES	d18-x01-v03	Mean K*+(892) multiplicity	PDG_HADHON_MULTIPLICITIES	050-x01-y03	Mean 12 multiplicity
DELPHI_1996_S3430090	d03-x01-y01	In-plane p_ in GeV w.r.t. sphericity axes	PDG HADRON MULTIPLICITIES	d19-x01-y03	Mean K ⁺⁰ (892) multiplicity	PUG_HADHON_MULTIPLICITIES	a51-x01-y03	Mean Ag multiplicity
DELPHI_1996_S3430090	d04-x01-y01	Out-of-plane p_ in GeV w.r.t. sphericity axes	PDG_HADRON_MULTIPLICITIES	d20-x01-y03	Mean ϕ (1020) multiplicity	PDG_HADRON_MULTIPLICITIES	d52-x01-y01	Mean A ⁰ _b multiplicity
DELPHI_1996_S3430090	d07-x01-y01	Scaled momentum, $x_p = p / p_{beam} $	PDG_HADRON_MULTIPLICITIES	d21-x01-y03	Mean D*+(2010) multiplicity	PDG HADRON MULTIPLICITIES	d54-x01-y02	Mean A(1520) multiplic
DELPHI 1996 S3430090	d08-x01-y01	Log of scaled momentum, $log(1/x_{o})$	PDG_HADRON_MULTIPLICITIES	d23-x01-y02	Mean D ⁺⁺ _s (2112) multiplicity			()))

Other Interpolation tests

- Looking at maximum ranges of the fit vs MC (upper plot)
- Residual Pull plots using propagated fitting uncertainty (bottom plot)

AlphaQCD Dependency

- There is no observed dependency on AlphaQCD in MC
- Matrixelement integration steps are performed beforehand to save on time which causes this effect

Interpolation rest

Salvatore La Cagnina (TU Dortmund)

Bayesian MC Tuning

Removing MC Chains for secondary modes

- Looking at the logposterior of the MC Chains (upper plot)
- Idea: Make Chains visible that get 'stuck' in local small minima
- Remove those chains → re-run chains that found the global minimum

MC results with all chains

June 2, 2022 20 / 13

MC results with all chains and extrapolation

21 / 13

Tuning Results with extrapolation

- χ^2 values for data and MC for tuned and non-tuned values
- Right plot zoomed and cut values in between 0 and 1
- Visible reduction of χ^2 for tuned MC \rightarrow better MC data agreement