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Fig. 1 Left: Illustration of a proton’s position (blue vector), guiding centre (purple vector),
and directional Larmor radius (green vector) during its gyration (black circle, with arrows
indicating the direction of rotation) around the background magnetic field line (red vector).
This figure was adapted from Northrop (1961). Right: Simulation of a proton in a constant and
uniform magnetic field performed with a fourth-order Runge-Kutta scheme. The trajectories
of the particle (solid red) and its guiding centre (dotted blue: Eq. 7; dashed purple: running
average of particle’s position over a gyration) are shown, together with a single background
magnetic field line (dashed black; coinciding with the guiding centre).

2.2 Magnetic Focusing

The theoretical background and derivations of this section is well documented in
plasma physic textbooks and will only be summarised. When the magnetic field
has a gradient along it, the particle will experience a force parallel to the magnetic
field which will be in the opposite direction of the gradient, Fk = �M(@B0/@s) =
�MrkB0, where ds is a line segment parallel to the magnetic field, rk denotes the

gradient along the magnetic field, and M = mv
2

?/2B0 is the particle’s magnetic
moment. Due to the invariance of the magnetic moment (dM/dt = 0) in the
absence of magnetic turbulence and the conservation of kinetic energy, this force
is accompanied by an interchange between parallel and perpendicular energy: as
the particle moves into a region of larger magnetic field strength, its perpendicular
speed increases, with the e↵ect that its parallel speed decreases. Ultimately this
causes the particle’s motion to be reversed and the particle is mirrored. Not all
particles, however, will be mirrored. It can be shown that a particle starting out
in a region with field strength B with

|µ| > µm =

r
1� B

Bm
, (8)

will not be able to penetrate a region of magnetic field strength Bm (Rossi and
Olbert 1970; Chen 1984; Choudhuri 1998).

Due to the decrease of the heliospheric magnetic field (HMF) strength with
heliocentric radius (Parker 1958, see also Appendix F), SEPs will experience mag-
netic focusing. As a particle moves into regions of weaker parallel magnetic fields,
the particle’s perpendicular speed will decrease while its parallel speed will in-
crease, causing the particle’s motion to become increasingly ballistic. Focusing is
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Fig. 2 Simulation of a proton in a constant and uniform background magnetic field with a
spectrum of slab turbulence. The three-dimensional view (top left) is projected onto the xy-
(top right), xz- (bottom left), and yz-plane (bottom right). The trajectories of the particle (solid
red) and its guiding centre (dotted blue: Eq. 7; dashed purple: running average of particle’s
position over a gyration) are shown, together with a single background magnetic field line.

wave results in very large changes in both the perpendicular and parallel speeds
and hence, in the pitch-angle. If the wave is moving much slower than the particle,
the GC seems to jump to di↵erent regions of the slowly propagating magnetic field
line over which it is moving. If the wave speed is equal to the particle’s parallel
speed (the Landau or Cherenkov resonance), a very strong resonance occur and
the GC seems to be bouncing between two turning points, reminiscent of classical
hard-sphere collisions. If the fluctuating electric field is also included, the only
significant result is that the particle’s energy then changes (see van den Berg
2018, for illustrations of these discussions).

Fig. 2 shows the trajectories of a proton and its GC when interacting with a
spectrum of slab turbulence. The GC was calculated here in two di↵erent ways,
firstly the ‘instantaneous GC’ was calculated from Eq. 7 and secondly the ‘aver-
age GC over a gyration’ was calculated by performing a running average of the
particle’s position over a gyroperiod in the background magnetic field. Notice that
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neglected in this frame. Alternatively, the Vlaslov equation, essentially the colli-
sionless Boltzmann equation with the Lorentz force substituted, can be used as a
point of departure. The distribution function and the electric and magnetic field
must then be written as the sum of a large scale average and a rapid fluctuating
part, with the fluctuating part acting as a perturbation on the average part. Such
derivations, as given by Zhang (2006) or Zank (2014), lead to the focused transport
equation (FTE), but are lengthy and beyond the scope of the current discussion.

Although the name “focused transport equation” might be a misnomer, as it
describes the evolution of any anisotropic distribution, it is appropriate in the case
of SEPs since the anisotropy is caused primarily by focusing. The simplest form
of the FTE, is that of Roelof (1969) without advection or energy losses
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where L(s) is the focusing length of the magnetic field given by Eq. 22 and Dµµ is
the pitch-angle di↵usion coe�cient (PADC) describing the random changes of the
pitch-angle due to turbulence. This equation describes the evolution of the distri-
bution function f(s;µ; t) for a constant particle speed v. The various terms, from
left to right, describe temporal, spatial (the streaming of particles along the mag-
netic field, since µv is their parallel speed), and pitch-angle changes (discussed in
Appendix D) on the left hand side, and pitch-angle di↵usion on the right hand side.
It should be noticed that the FTE is a highly non-linear, second order, parabolic
partial di↵erential equation. The di↵erent processes’ e↵ects cannot be added lin-
early because each process is dependent on quantities which are a↵ected by the
other processes. The various terms therefore a↵ect one another and the dominat-
ing process is ultimately determined by its relative strength. This non-linearity
and competition between terms imply that none of the terms can be neglected to
model SEPs realistically.

The PADC must be specified and a variety of options are available from di↵er-
ent theories. Three rather simple forms will be used here for illustrative proposes.
A widely used PADC is that of Beeck and Wibberenz (1986),

D
BW

µµ = D0(1� µ
2)(|µ|q�1 +H), (10)

based on quasi-linear theory (QLT; Jokipii 1966; Shalchi 2009). Here D0 is the
scattering amplitude, q is the spectral index of the magnetic turbulence’s inertial
range, and H is an arbitrary (in terms of its value) correction to describe the
inclusion of dynamical e↵ects. If q = 1 and H = 0, then

D
iso

µµ(µ) = D0(1� µ
2) (11)

is called isotropic scattering. This PADC can be used in the presence of very strong
turbulence, but if the turbulence is weaker and pitch-angle scattering is caused by
resonances with a spectrum of waves, then anisotropic scattering must be used. If
dynamical e↵ects are neglected (H = 0), then

D
QLT

µµ (µ) = D0(1� µ
2)|µ|q�1 (12)

has the known problem of a resonance gap at µ = 0 (DQLT

µµ (0) = 0) (Dröge 2000a).
Fig. 6 shows the di↵erent PADCs and their derivatives. Care should be taken here
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Fig. 5 Illustration of the various processes and definitions introduced. Shown is the particle’s
momentum space in a field-aligned coordinate system. See Section 2.4 for details. This picture
was inspired by Prinsloo et al. (2019).

vectors have the same magnitude. If the particles were to have di↵erent energies
and gyrophases, but the same pitch-angle, then their momentum vectors will form
the shaded cone. The cone will then represent a possible anisotropic distribution
as the particles have a preferred direction of motion along the background magnetic

field. For a gyrotropic distribution of mono-energetic particles, pitch-angle scat-
tering will cause the circle to change into a spherical shell (also referred to as
a shell-distribution), assuming that the scattering does not change the particles’
energy and that enough time has elapsed. Similarly, pitch-angle scattering will
cause the cone of an anisotropic distribution to become a filled sphere. In such a
case, the distribution will be called isotropic with particles of all energies moving
in all directions. Turbulence can therefore drastically change the characteristics of
the original particle distribution and will mostly act to isotropise an anisotropic
distribution.
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A A Finite Di↵erence Solver

As shown in this work, analytical approximations of Eq. 9 have very severe limitations, and
therefore, it has to be integrated (solved) numerically to capture the transport processes in-
volved. Such a numerical implementation, for this spatially 1D version of the transport equa-
tion, is discussed by Strauss et al. (2017b), which is based on the numerical techniques discussed
in Strauss and Fichtner (2015). Details are also given in the dissertation of Heita (2018). This
model has subsequently been developed to be more user-friendly, and the source-code thereof
can be found at https://github.com/RDStrauss/SEP_propagator. The code is published un-
der the Creative Commons license, but is not intended to be used for commercial applications.
We ask anyone using this model to reference this paper in all research outputs and to contact
the authors when used extensively.

The code contains a number of user-defined inputs, such as the particle species under
consideration (i.e. electrons or protons), the e↵ective radial MFP, the SW speed, the kinetic
energy of the particles, and di↵erent options regarding the injected SEP distribution at the
inner boundary condition. Details can be found in the comments section of the source-code. In
Section 3.3.3, this finite di↵erence solver was applied to the 7 February 2010 electron event as
observed by STEREO B. Fig. 12 only showed a best fit scenario that can reproduce the observed
particle intensity and anisotropy very well. Here, the sensitivity of the code to parameter
variation is illustrated with four cases in Fig. 21. The top row shows the slower rise for a
smaller MFP, in the left panel, and a quicker rise and quicker decay for a larger MFP, in the
right panel. The bottom row shows a similar variation for a longer acceleration time, in the left
panel, and a longer escape time, in the right panel, in the injection function. These example
solutions are also included in the online repository.

B A Stochastic Di↵erential Equation Solver

Stochastic calculus is a study area with several works dealing with its mathematical formal-
ism and application to a variety of problems, including Gardiner (1985), van Kampen (1992),
Kloeden and Platen (1995), Øksendal (2000), Lemons (2002), and Strauss and E↵enberger
(2017). Of special interest is Gardiner (1985), Kloeden and Platen (1995), and Strauss and Ef-
fenberger (2017), which gives an introduction of stochastic calculus specifically for the fields of
natural sciences, an introduction focusing on numerical methods to solve stochastic di↵erential
equations (SDEs), and a review of the application of this to CR modelling with toy models to
introduce the basic concepts, respectively. SDEs can be computationally expensive and these
types of models did not become feasible until the dawn of parallel-processing. Nonetheless,
MacKinnon and Craig (1991) first applied SDEs in solving the FTE for binary collisions of
particles with ‘cold’ hydrogen atoms in the chromosphere and Kocharov et al. (1998) first used
them to solve the SEP model of Ru↵olo (1995). A three dimensional focused transport model
for SEPs with and without energy losses are presented by Qin et al. (2006) or Zhang et al.
(2009) and Dröge et al. (2010), respectively. (I didn’t add Kopp et al. (2012) because it don’t
have much to do with SEPs. Yes there are some useful discussions and stu↵, but then we’ll
have to add Pei et al. (2010) and Bobik et al. (2016) and half a dozen other references which
can be found in THHG2SDEs?)

If S and M represents the stochastic variables corresponding to s and µ, respectively, then
the two first order SDEs equivalent to the Roelof equation (Eq. 9) are

dS = µv dt

dM =


(1� µ
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where dWµ(t) is a Wiener process. These SDEs are solved using the Euler-Maruyama scheme,

S(t+�t) = S(t) +M(t)v�t

M(t+�t) = M(t) +

"
(1�M

2(t))v

2L(S(t))
+

@Dµµ

@µ

����
µ=M(t)

#
�t+

q
2Dµµ(M(t))�t⇤,



Galactic Cosmic Ray Transport
Importance of Anisotropic Transport, Diffusion Tensor

F. Effenberger et al.: Anisotropic diffusion of Galactic cosmic ray protons

Fig. 3. Sample paths of pseudo-particles in the Galactic magnetic spiral field, colored by three different colors for three particles, each starting at
the same point in phase space (i.e. Earth’s position at 1 GeV) and projected onto the Galactic plane. The black lines show integrated magnetic field
lines to illustrate the magnetic field orientation. The left panel shows sample paths for isotropic diffusion, with no visible effect of the magnetic
field orientation. The right panel illustrates the preferential diffusion along the magnetic field for a simulation with anisotropy ε = 0.1. Note that
the exit point of the red particle in the right panel is actually the radial boundary, while the other particles all exit through the halo’s z-boundary
(not visible).

space point, 104 pseudo particle trajectories were computed. A
comparison between the calculated spectra in the case of pure
isotropic diffusion (upper panel) and two anisotropic cases, with
weak (ε = 0.1, middle panel) and strong (ε = 0.01, lower panel)
diffusion anisotropy, is shown in Fig. 4. For further compari-
son, the LIS given by Webber & Higbie (2009; WH09 hereafter)
is included in the plots. We used the parametrization given in
Herbst et al. (2010), where a comparison between a few pro-
posed LIS can be found as well. In face of the still imprecisely
known modulation effects on measured spectra inside the he-
liosphere (see, e.g., Florinski et al. 2011; Scherer et al. 2011),
such an LIS parametrization can give only a rough orientation
for what to expect for Galactic CR propagation studies. Our re-
sults have been rescaled to approximately fit the WH09 LIS in
the isotropic diffusion case, by accounting for the free parame-
ter Q0 in the source strength. The anisotropic spectra have been
rescaled again, respectively. To yield the good agreement shown
in both upper panels of Fig. 4 between the calculated spectra and
the WH09 LIS, the break in the diffusion coefficient introduced
above as well as both continuous loss processes, are required.
Including the latter improves on earlier studies, such as Büsching
& Potgieter (2008), where only a parametrized catastrophic loss
term was considered.

The spectra for different positions along the Sun’s Galactic
orbit show only very little variation in the isotropic diffusion
case. Particularly, the variation is largely independent of en-
ergy over the entire energy range considered. In contrast to this,
the variation is much stronger for the anisotropic scenario, de-
pending on the imposed diffusion anisotropy. The differences
are, in these cases, dependent on energy as well. For high en-
ergies, the spectra start to converge again towards the isotropic
differences. This is due to the increasing dominance of escape
losses for these high energies. For lower energies, the pion and

ionization losses are much more important than in the isotropic
case, because the confinement time of CRs is longer as a result
of the reduced diffusion perpendicular to the disk.

Notably, the spectrum at Earth for the weak anisotropic case
fits the reference LIS even better than the pure isotropic re-
sult, which shows that, depending on the overall parameter set,
anisotropic diffusion scenarios can improve on the model results
of conventional studies. In this context, one has to keep in mind,
however, that the precise form of the low-energy LIS and its con-
nection to the Galactic spectrum on a kpc scale is still unclear
and depends on modulation effects in the heliosphere, as well as
on similar effects in the local solar system environment (see, e.g.,
the discussion in Scherer et al. 2011). Furthermore, the assumed
break in the diffusion coefficient may be different or even ab-
sent in a more complete propagation scenario, since up to now
it has mainly been phenomenologically motivated, to yield the
expected local spectra.

The spectra for the strong anisotropic case (ε = 0.01) show
some significant deviations from the expected spectral shape ow-
ing to the largely increased relative importance of the loss pro-
cesses, resulting, e.g., in a flatter high-energy spectrum. In the
context of the model setup of this study, this means that such
high diffusion anisotropy is probably unrealistic. Nevertheless,
we included this case since it shows the resulting large orbital
variation at lower energies (see also Fig. 5) where the spectral
shape is still unclear. In addition, models with different struc-
tures in the Galactic halo, namely with different gas densities
and halo heights, as well as a possible magnetic field component
perpendicular to the disk, may alter the resultant spectra further,
because of the changed influence of the loss processes. These as-
pects could be clarified further in a subsequent study that takes
different CR species and more sophisticated magnetic field mod-
els into account.
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(Shalchi et al. 2010). The actual variation in anisotropy with en-
ergy is an interesting aspect, but for the relatively narrow energy
range up to 1 TeV considered in this study, the anisotropy can
be regarded to first order as independent of energy, thus follow-
ing Giacalone & Jokipii (1999). Since the latter author’s finding
of energy independence is valid for both isotropic (see also the
partially similar result by Casse et al. 2002) and composite tur-
bulence, and given the, to some extent, different results found by
Shalchi et al. (2010) assuming a Goldreich-Sridhar turbulence,
conclusions about the detailed underlying turbulence properties
should not be drawn on the basis of our study.

2.2. Galactic magnetic field models

As soon as anisotropic diffusion is considered, the knowledge
of the large-scale magnetic field in the galaxy becomes impor-
tant. Reviews of this subject have been written, e.g., by Beck
et al. (1996), Ferrière (2001) and Heiles & Haverkorn (2012).
Pulsar rotation measure data (Han et al. 2006) give evidence
for a counter-clockwise field orientation (viewed from the north
Galactic pole) in the spiral arms interior to the Sun’s orbit and
weaker evidence for a counter-clockwise field in the Perseus
arm, see however, the criticism by Wielebinski (2005). In inter-
arm regions, including the solar neighborhood, the data suggest
that the field is clockwise. Han (2006) proposed that the Galactic
magnetic field in the disk has a bisymmetric structure with re-
versals on the boundaries of the spiral arms. Magnetic fields in
the general class of spiral galaxies have been studied by, e.g.,
Wielebinski & Beck (2005) and Dettmar & Soida (2006) and
can be compared with that of our own galaxy.

Fortunately, as long as drift effects are neglected, the actual
sign-dependent orientation is not relevant for the diffusion along
and perpendicular to the magnetic field, which enables us to em-
ploy a simplified model of the Galactic magnetic field that has
no field reversals and is aligned to the spiral arm structure in the
disk. Neglecting furthermore its weak halo-component, a simple
model for the mean Galactic magnetic field in cylindrical coor-
dinates is given by

B = B0(sinψ er + cosψ eϕ)
1
r

exp
(
− z2

2σ2
z,m

)
(6)

which is divergence free by construction. Here, ψ is the counter-
clockwise logarithmic spiral arm pitch-angle, which has an ap-
proximate value of ψ = 12◦, according to the metastudy by
Vallée (2005). The same spiral arm parametrization is employed
for the source distribution function discussed in the following
section. Note, that the halo-scale parameter σz,m is not relevant
in this context, since only the magnetic field direction is used for
constructing the diffusion tensor.

2.3. Source distribution

For the injection of CRs we assume a source distribution that fol-
lows the Galactic spiral arm structure, where most of the super-
novae (SN) supposedly occur. As a basis we take the same spi-
ral arm model as mentioned above, i.e. the model established by
Vallée (2002, 2005), which consists of four logarithmic and sym-
metrically positioned arms. Around these, we take a Gaussian
shape (analogous to the approach in Shaviv 2003) to yield an
analytic expression for the source term Q, by summing up over
all four arms (n ∈ {1, 2, 3, 4}):

qn = Q0 p−s exp
(
− (r − rn)2

2σ2
r
− z2

2σ2
z

)
(7)

Fig. 1. Orientation of the Galactic spiral arms in the present model.
Norma, Scutum, Saggitarius, and Perseus arms are colored by green,
blue, red, and purple, respectively. The black line shows the solar orbit,
and the Galactic center region is marked in black. The four ×-markings
indicate the positions at 90◦, 108◦, 126◦, and 144◦, where the CR spectra
have been calculated (see Sect. 3).

with rn = r0 exp(k(ϕ + ϕn)), where ϕn introduces the symmetric
rotation of each arm by 90◦, i.e. ϕn = (n − 1)π/2. k = cosψ
with ψ = 12◦ is the constant pitch-angle cosine of the spiral
arms. Figure 1 illustrates the orientation of the spiral arms rela-
tive to the Sun’s position and orbit. We take σr = σz = 0.2 kpc
to have a reasonable interarm separation, while r0 = 2.52 kpc
according to Vallée’s model. The model galaxy has the often as-
sumed cylindrical shape with a radius of 15 kpc and a height of
4 kpc (Büsching et al. 2005), and the Sun’s orbit is at a radius of
r% = 7.9 kpc. The average spectral index s of the sources’ power
law injection in momentum is set to s = 2.3, in agreement with
recent estimates on CR source spectra (see e.g. Putze et al. 2011;
Ave et al. 2009). Figure 2 gives a visualization of this source dis-
tribution. The overall source strength Q0 is a free parameter that
can be fitted to a given reference like a local interstellar spectrum
(LIS; see also the discussion in Sect. 3).

2.4. Loss processes

The two most dominant loss processes for CR protons during
their propagation through the ISM are energy losses due to pion
production for relativistic energies and ionization processes in
the ISM plasma for lower energies (see Fig. 1 in Mannheim &
Schlickeiser 1994).

According to Chapter 5 in Schlickeiser (2002), the pion
losses can be approximated for Lorentz factors γ & 1 as

−
(
dγ
dt

)
= 1.4 × 10−16(nHI + 2nH2 ) A−0.47γ1.28 s−1, (8)

where we assume a z-dependent ISM gas density with (nHI +
2nH2) =

1.24
cosh(30 z) (in units of particles per cm3 and z in kpc,
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ABSTRACT

Galactic transport models for cosmic rays involve the diffusive motion of these particles in the interstellar medium. Owing to the
large-scale structured Galactic magnetic field, this diffusion is anisotropic with respect to the local field direction. We included this
transport effect along with continuous loss processes in a quantitative model of Galactic propagation for cosmic ray protons that
is based on stochastic differential equations. We calculated energy spectra at different positions along the Sun’s Galactic orbit and
compared them to the isotropic diffusion case. The results show that a larger amplitude of variation and different spectral shapes
are obtained in the introduced anisotropic diffusion scenario, which in turn emphasizes the need for accurate Galactic magnetic field
models.

Key words. cosmic rays – astroparticle physics – diffusion – ISM: magnetic fields – methods: numerical

1. Introduction

Modeling the cosmic ray (CR) transport in the galaxy is a fun-
damental topic in high-energy astrophysics. Such studies are of
great importance in the analysis of CR origin, with the prime
candidates being supernovae remnants or pulsar wind nebulae.
The characteristics of the models depend on the properties of the
interstellar medium (ISM) through which the particles travel and
can thus give some insight into its fundamental constitution. For
example, the Galactic magnetic field and its turbulent compo-
nent are connected to the transport parameters in such models. A
reference on general CR properties can be found, e.g., in the text-
books by Berezinskii et al. (1990), Gaisser (1990), Schlickeiser
(2002), or Stanev (2004).

The basic propagation process of CRs in the ISM is the dif-
fusive motion of the particles due to scattering at magnetic field
fluctuations. From numerous studies in heliospheric physics, it
is well known that the diffusive transport of energetic particles
cannot be described by a scalar diffusion coefficient but requires
a diffusion tensor that takes into account that parallel and per-
pendicular diffusion are different (e.g. Jokipii 1966; Potgieter
2011). In Galactic propagation studies, however, anisotropic dif-
fusion of CRs has been investigated only for basic magnetic
field configurations of partly localized applicability; see, e.g.,
Chuvilgin & Ptuskin (1993), Breitschwerdt et al. (2002), Snodin
et al. (2006) and references therein. While the latter authors were
interested in the consequences of anisotropic diffusion for en-
ergy equipartition, Hanasz & Lesch (2003) and Ryu et al. (2003)
analyzed its importance for the Parker instability.

More recently, Hanasz et al. (2009) have found that
anisotropic diffusion is an essential requirement for the
CR-driven magnetic dynamo action in galaxies. Their assess-
ment of the diffusion anisotropy is based on the full-orbit anal-
ysis performed by Giacalone & Jokipii (1999) who found the

perpendicular diffusion to be significantly lower than the parallel
one in a broad energy range and for both isotropic and compos-
ite turbulence. Moreover, a recent derivation of the perpendicu-
lar diffusion coefficient for Galactic propagation, using the en-
hanced nonlinear guiding center theory and a Goldreich-Sridhar
turbulence model was performed by Shalchi et al. (2010) and re-
sulted in ratios between the parallel and perpendicular diffusion
coefficient, which were much lower than unity as well, namely
κ⊥/κ‖ ≈ 10−4−10−1, depending on particle rigidity. An analy-
sis for different turbulence spectra in the context of supernova
remnant shock acceleration of CRs (Marcowith et al. 2006) or
their transport in chaotic magnetic fields (Casse et al. 2002) has
yielded similar values for this ratio.

Many popular models for Galactic CR transport, how-
ever, include only a single diffusion coefficient, such as the
GALPROP code (Strong et al. 2010). Although Strong et al.
(2007) principally acknowledge that anisotropic diffusion is im-
portant, they argue that owing to large-scale fluctuations in the
magnetic field on scales on the order of 100 pc, the global dif-
fusion will be spatially isotropic. Observations of the Galactic
magnetic field indicate, though, that the field has a large-scale
ordering with a regular field strength, which has about the same
magnitude as the turbulent component (see, e.g., Ferrière 2001).
A similar indication is given by observations of external spi-
ral galaxies (Beck 2011; Fletcher et al. 2011), which show a
global magnetic field structure aligned to the spiral arm pattern.
Therefore, it must be concluded that anisotropic diffusion can
have a strong effect on Galactic CR propagation.

Besides its fundamental astrophysical relevance, the spa-
tial distribution of CR flux in the galaxy is also of interest in
the context of long-term climatology. Shaviv (2002) proposed
a CR-climate connection on the timescale of 108 years due
to the transit of the solar system through the Galactic spiral
arms during its orbit around the Galactic center. The argument
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assumes that the low-altitude cloud coverage increases due
to an increased formation of cloud-condensation nuclei when
the CR flux is high (Svensmark et al. 2007). Thus, an anti-
correlation between temperature and CR flux is to be expected
and is indeed reported by Shaviv & Veizer (2003). Most recently,
Svensmark (2012) has found further evidence of a connection of
nearby supernovae and their CR output and life on Earth. More
details on the CR-climate connection can be found in Scherer
et al. (2006). Although we do not state here that we adhere to
this view in all aspects (see, e.g., the critical remarks in Overholt
et al. 2009), we think that it gives a further interesting motivation
to study the Galactic CR distribution, especially its longitudinal
structure, in greater detail.

The aim of this investigation is to calculate Galactic
CR spectra at different positions along the Sun’s orbit around the
Galactic center and to analyze the influence of anisotropic diffu-
sion on the longitudinal cosmic ray distribution. We first present
the underlying propagation model and its relevant input, such
as the diffusion tensor and its connection to the Galactic mag-
netic field, the three-dimensional source distribution of CR and
its connection to the spiral-arm structure and supernova (SN) oc-
currence, and loss-processes in the ISM. We also introduce our
numerical solution method to the CR transport equation based on
stochastic differential equations. Finally, the calculated CR spec-
tra and orbital flux variations are discussed and conclusion are
drawn. Some earlier results on this topic can also be found in
Effenberger et al. (2011).

2. The propagation model

The basic transport theory of CRs is described in many contem-
porary monographs, e.g. Schlickeiser (2002), Stanev (2004), and
(Shalchi 2009). Recently, Strong et al. (2007) have surveyed the
theory and experimental tests for the propagation of cosmic rays
in the Galaxy. The considerations are commonly based on the
following parabolic transport equation (e.g., Ptuskin et al. 2006):
∂N
∂t
= ∇ · (κ̂ · ∇N − uN) − ∂

∂p

[
ṗN − p

3
(∇ · u)N

]
+ Q (1)

where N(r, p, t) = p2 f (r, p, t) is the differential intensity of CRs
and f their phase space density, which is assumed to be isotropic
in momentum space. As usual, r, p, and t denote the location in
space, momentum, and time, and we use a Galactic cylindrical
coordinate system [r, ϕ, z]. The source term Q includes primary
particle injection, which, in this study, is considered to be only
by supernovae and their remnant shock features. The spatial dif-
fusion, in general, should be described by a tensor, but in most
applications to Galactic propagation so far, it is simplified to a
scalar coefficient κs, i.e. κ̂ = (κi j) = (δi jκs) (see the discussion
above). An ordered motion of the ISM can be taken into account
via the convection velocity u (e.g., Fichtner et al. 1991; Ptuskin
et al. 1997; Völk 2007), but is neglected for this study due to
its decreasing importance for higher CR energies. Continuous
momentum losses are described by the momentum change rate
ṗ. Catastrophic loss processes, such as spallation, do not apply,
since in this study only Galactic protons are considered.

2.1. The anisotropic diffusion tensor

As discussed in the introduction, the diffusion of CRs in mag-
netic fields with a prominent ordered field component is gener-
ally anisotropic with respect to this field orientation, i.e. stronger

in field-parallel direction and weaker in the perpendicular direc-
tions. This effect can be included in the propagation model by a
diffusion tensor which is locally, that is, in a field-aligned coor-
dinate system, diagonal:

κ̂L =



κ⊥1 0 0
0 κ⊥2 0
0 0 κ‖


 . (2)

Here, drift effects or aspects of non-axisymmetric turbulence
(Weinhorst et al. 2008), which could lead to off-diagonal ele-
ments in the diffusion tensor, are neglected.

Since the CR transport is described in a global frame of refer-
ence (i.e. the Galactic frame with a cylindrical coordinate system
in case of this study), the field-aligned tensor has to be trans-
formed to this frame by the usual transformation

κ̂ = Aκ̂LAT. (3)

This transformation is analogous to the Euler angle transforma-
tion known from classical mechanics. The matrix A = R3R2R1
describes three consecutive rotations Ri with A−1 = AT (since
A ∈ SO3). These rotations are defined by the relative orienta-
tion of the local and the global coordinate system with respect to
each other.

If the two perpendicular diffusion coefficients are not equal,
this transformation is of particular importance in establishing the
appropriate orientation in the calculation of the global diffusion
tensor. Recently, Effenberger et al. (2012) established a gener-
alized scheme based on the local field geometry to account for
this. In the present study, however, both perpendicular diffusion
coefficients are set equal to reduce the set of unknown parame-
ters (connected to the unknown detailed turbulence properties in
the ISM), i.e. κ⊥1 = κ⊥2 = κ⊥. Furthermore, since the Galactic
magnetic field in consideration is to first order parallel to the
Galactic disk (see the discussion in the following section), the
field tangential et and the z-axis ez unit vectors provide, together
with the completing third unit vector en = ez × et, a well-defined
coordinate system. These unit vectors represent the columns of
the transformation matrix A.

To complete the model of the diffusive part of CR propaga-
tion, the local tensor elements, i.e. κ‖ and κ⊥, have to be defined.
For the parallel diffusion coefficient κ‖, we assume the same bro-
ken power-law dependence as has been taken for the scalar dif-
fusion coefficient in Büsching & Potgieter (2008), namely:

κ‖ = κ0

(
p
p0

)α
(4)

with α = 0.6 for p > p0, α = −0.48 for p ≤ p0, κ0 =
0.027 kpc2/Myr, and p0 = 4 GeV/c.

Originally, this particular break energy of 3−4 GeV was
motivated to fit the plain diffusion model results like those in
Moskalenko et al. (2002) to the observed boron to carbon ratios.
A first refinement can be found in Ptuskin et al. (2006) and a
more rigorous study has been performed by Shalchi & Büsching
(2010). By including turbulence dissipation effects and replac-
ing the quasilinear transport theory by a second-order diffusion
theory, they confirm the possible existence of such a turnover in
the parallel diffusion coefficient.

The perpendicular diffusion κ⊥ is scaled to be a fraction of κ‖,
i.e.,

κ⊥ = εκ‖, (5)

where the diffusion-anisotropy ε is assumed to be in the
range of 0.1 to 0.01 for Galactic protons with GeV energies
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Fig. 2. Volume rendering visualization of the input source distribution
of CRs. The coloring indicates the source strength from red (low) to
yellow (high) in arbitrary units.

Büsching & Potgieter 2008). The mass number A of a pro-
ton is just unity. A similar formula for the ionization losses is
given by

−
(
dp
dt

)
= 3.1 × 10−7 Z2 ne

β

x3
m + β3

eV c−1 s−1 (9)

where the electron density is the same as the above gas density
and the charge state of protons Z is equal to 1. For the purpose of
this study, the velocity factor β = v/c of the particles is always
much greater than the thermal electron βe, which is related to xm
by xm = (3/4π1/2)1/3βe = 1.10 βe. This means that the momen-
tum loss rate scales approximately as p−2. The total momentum
loss rate entering Eq. (1) is the sum of both loss processes.

2.5. The numerical solution method based on stochastic
differential equations

To solve the transport equation for the problem setup introduced
in this study, we employ a numerical solution scheme based on
the Itō equivalence of a Fokker-Planck type equation and cor-
responding stochastic differential equations (SDEs) involving a
random Wiener process. This method has become increasingly
popular in CR transport studies because of its numerical simplic-
ity and conformance with modern computer architecture, i.e. its
straightforward parallelization and scalability. Mentioning only
a few examples, a starting point for heliospheric studies of this
kind can be found in the paper by Zhang (1999) where he ap-
plied the method to CR modulation. More recently, Pei et al.
(2010) and Strauss et al. (2011) have applied SDEs in a more
comprehensive heliospheric model. Farahat et al. (2008) em-
ployed SDEs for a CR propagation study in the Galaxy and,
e.g., Marcowith & Kirk (1999), as well as Achterberg & Schure
(2011) calculated the shock acceleration of energetic particles.

The basic idea in SDE schemes is to trace pseudo-particle
trajectories from their origin forward in time or, alternatively,
integrate backwards in time from the phase space point of inter-
est. The particle trajectory is given by the integral of an SDE of
the form

dxi = Ai(xi)ds +
∑

j

Bi j(xi)dW j (10)

where the relation B̂B̂T = 0.5 κ̂ has to be fulfilled, that is, a root
for the diffusion tensor κ̂ has to be determined. Here, dW j is a
(multidimensional) Wiener process increment, which has a time-
stationary, normal-distributed probability density with expecta-
tion value 0 and variance 1. The deterministic part is directly
related to the convection velocity in the transport equation, i.e.
Ai = −ui. Numerically, this SDE is integrated via a simple Euler-
forward scheme and the Wiener-process is simulated with the
Box-Muller method (e.g., Box & Muller 1958) by using

dWi(s) = η(s)
√

ds (11)

where η(s) is equivalent to a Gaussian distribution N(0, 1). The
necessary random numbers are generated with the MTI19937
version of the so-called Mersenne Twister (Matsumoto &
Nishimura 1998). The integration parameter s is related to phys-
ical time by

t = t0 − s (12)

where t0 is the final time for the backward method. The source
contribution to the individual particle trajectory is added up by
a path amplitude. Finally, for the backward method, all parti-
cle trajectories are weighted together to yield the resulting phase
space density (i.e. the solution to the associated Fokker-Planck
equation) at the starting phase space point. The boundary and
initial conditions can be accounted for in the weighting, but for
this study they are simply zero (corresponding to an escaping
boundary condition for the CRs). We only apply the backward
method in this study, since it is well-suited to the given problem.
For more details on the numerical scheme and especially on de-
termining the root of the diffusion tensor, we refer the reader to
Kopp et al. (2012) and Strauss et al. (2011) where the basis of
the code used in this study is discussed in greater detail.

Exemples of pseudo-particle trajectories are shown in Fig. 3.
There, the additional information contained in SDE calculations
becomes obvious. The pseudo-particles’ paths follow the field
lines during their stochastic motion as soon as anisotropic dif-
fusion becomes relevant. Consequently, the modification to the
diffusion process becomes directly visible in such trajectories.
However, one has to keep in mind that these are not real particle
trajectories or gyro-center motions, but only tracers of the phase
space of the diffusion-convection problem.

3. The resulting spatial and spectral CR distribution

We calculated CR proton spectra within the introduced model
at four different positions along the Sun’s Galactic orbit. The
positions are indicated in Fig. 1. We took a very long integra-
tion time (t0 ≈ 10 000 Myr) to assure that we approached a
steady state situation, which is confirmed by checking that all
particles haveexited the computational domain. For each phase
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Full-Orbit Simulation
Solving the Newton-Lorentz Equations for many charged (Test) Particles
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and the same rigidity which is conserved in a purely magnetic system. However, their ini-
tial x- and y-coordinates as well as their initial pitch-angle cosine µ0 are different. There
are, in principle, two ways of implementing the turbulent magnetic fields in test-particle
codes:

1. Using discrete grid: In this case we first create and save magnetic field data at each
grid point using Eqs. (10.1)–(10.8) for the whole space and then interpolate for where
the particle is moving. This could be done using a two-dimensional grid for the per-
pendicular directions accompanied with a one-dimensional grid for the parallel direction
or rigorously using a three-dimensional grid. The grid method was used by Mace et al.
(2000), Casse et al. (2002), Qin et al. (2002a,b), Pommois et al. (2007), and Reville et al.
(2008).

2. Creating fields along the trajectory: An alternative is to create fields anew at each time
step. The given initial position allows us to create the field initially which is then seeded
back to the numerical integrator to solve for position which is then seeded to turbulence
creation and so on and so forth. This type of simulations were performed by Giacalone
and Jokipii (1994, 1999), Tautz (2010a, 2010b), Hussein and Shalchi (2014a), and Arendt
and Shalchi (2018).

The second method listed above saves time and uses less memory compared to the grid
method because it generates magnetic fields only where the particle is actually moving, not
on all the provided space as the first method does. On the other hand, when it comes to
visualization, the grid-based system allows to visualize the magnetic field lines across the
whole space and therefore one can see how particles are moving in the vicinity of field lines.
This could be useful in order to develop a deeper understanding of the physics of particle
transport.

In order to solve the second-order Newton-Lorentz equation one can use a fourth-order
Runge-Kutta solver with an adaptive time step option. Although this can be seen as a
standard method in this field, more recently a modified third-order symplectic integration
method was used as an alternative (see Arendt and Shalchi 2018). This ensures energy
conservation and should provide an important improvement of test-particle simulations if
stochastic acceleration due to turbulent electric fields is studied.

In simulations parameters are made to be dimensionless. For instance, all length scales
are divided by the turbulence bendover scale !. Furthermore, we define the dimensionless
running time via T = "t and the dimensionless rigidity vector via R := v/("!). With these
parameters, we can derive the dimensionless Newton-Lorentz equation

d

dT
R = R ×

(
ez + δB(x)

B0

)
(10.12)

where the turbulent field δB(x) is given by Eq. (10.1). The relation between position and
velocity v = dx/dt turns into the dimensionless equation

d

dT

x
!

= R. (10.13)

Special care is required if there is more than one bendover scale !. For two-component
turbulence, we usually choose ! = !‖. Then, however, if the two-dimensional modes are
created via Eq. (10.1), positions are measured in terms of the slab bendover scale !‖. In the
two-dimensional modes we also have kn = k⊥!⊥, therefore, the ratio !⊥/!‖ appears in front
of x · k and this scale ratio controls the transport of particles.
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creation and so on and so forth. This type of simulations were performed by Giacalone
and Jokipii (1994, 1999), Tautz (2010a, 2010b), Hussein and Shalchi (2014a), and Arendt
and Shalchi (2018).

The second method listed above saves time and uses less memory compared to the grid
method because it generates magnetic fields only where the particle is actually moving, not
on all the provided space as the first method does. On the other hand, when it comes to
visualization, the grid-based system allows to visualize the magnetic field lines across the
whole space and therefore one can see how particles are moving in the vicinity of field lines.
This could be useful in order to develop a deeper understanding of the physics of particle
transport.

In order to solve the second-order Newton-Lorentz equation one can use a fourth-order
Runge-Kutta solver with an adaptive time step option. Although this can be seen as a
standard method in this field, more recently a modified third-order symplectic integration
method was used as an alternative (see Arendt and Shalchi 2018). This ensures energy
conservation and should provide an important improvement of test-particle simulations if
stochastic acceleration due to turbulent electric fields is studied.

In simulations parameters are made to be dimensionless. For instance, all length scales
are divided by the turbulence bendover scale !. Furthermore, we define the dimensionless
running time via T = "t and the dimensionless rigidity vector via R := v/("!). With these
parameters, we can derive the dimensionless Newton-Lorentz equation
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where the turbulent field δB(x) is given by Eq. (10.1). The relation between position and
velocity v = dx/dt turns into the dimensionless equation
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Special care is required if there is more than one bendover scale !. For two-component
turbulence, we usually choose ! = !‖. Then, however, if the two-dimensional modes are
created via Eq. (10.1), positions are measured in terms of the slab bendover scale !‖. In the
two-dimensional modes we also have kn = k⊥!⊥, therefore, the ratio !⊥/!‖ appears in front
of x · k and this scale ratio controls the transport of particles.
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)

REFERENCES:
1. Boris, J.P., The acceleration calculation from a scalar potential, Plasma Physics Laboratory, Princeton Univeristy, MATT-152, March 1970
2. Boris, J.P., Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Conference on Numerical Simulations of Plasmas, November 1970

3. Birdsall, C.K., and Langdon, A.B., “Plasma Physics Via Computer Simulations“, Institute of Physics Publishing, Bristol and Philadelphia, 1991
4. Tajima, T., “Computational Plasma Physics“, Westview Press, 2004
Related Articles:

Loading an isotropic velocity distribution
Simple Particle In Cell Code in Matlab
Current Density Limit

Subscribe to the newsletterSubscribe to the newsletter and follow us on  and follow us on TwitterTwitter. Send us an . Send us an emailemail if you have any questions. if you have any questions.

33 COMMENTS TO “PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)”
1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.
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19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!
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In the literature, often RK methods are used.
We use the Boris Push method for energy conservation:
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
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In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)
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33 COMMENTS TO “PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)”
1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?
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5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.
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7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)

REFERENCES:
1. Boris, J.P., The acceleration calculation from a scalar potential, Plasma Physics Laboratory, Princeton Univeristy, MATT-152, March 1970
2. Boris, J.P., Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Conference on Numerical Simulations of Plasmas, November 1970

3. Birdsall, C.K., and Langdon, A.B., “Plasma Physics Via Computer Simulations“, Institute of Physics Publishing, Bristol and Philadelphia, 1991
4. Tajima, T., “Computational Plasma Physics“, Westview Press, 2004
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1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.
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7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!

Reply
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)

REFERENCES:
1. Boris, J.P., The acceleration calculation from a scalar potential, Plasma Physics Laboratory, Princeton Univeristy, MATT-152, March 1970
2. Boris, J.P., Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Conference on Numerical Simulations of Plasmas, November 1970

3. Birdsall, C.K., and Langdon, A.B., “Plasma Physics Via Computer Simulations“, Institute of Physics Publishing, Bristol and Philadelphia, 1991
4. Tajima, T., “Computational Plasma Physics“, Westview Press, 2004
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1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!

Reply
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Synthetic Turbulence
Requirements for an Advanced Synthetic Turbulence Model

i) The synthetic magnetic fields have to be divergence free: ∇ · B⃗ = 0.

ii) The synthetic fields need to be homogeneous.

iii) The synthetic fields should reproduce a predefined energy spectrum (Kolmogorov, 
1941; Iroshnikov, 1963; Kraichnan, 1965; Boldyrev, 2005).

iv) There should be no restriction other than computational ones for a maximum 
Reynolds number.

v) The spectrum should be anisotropic, which means that it should have different 
exponents perpendicular and parallel to a local guide field (Goldreich & Sridhar, 1995; 
Boldyrev, 2005).

vi) The generation of the synthetic fields must be local and adaptive in space.

vii) The synthetic turbulence should exhibit intermittency, as prescribed by a given 
intermittency model.

viii) The synthetic turbulent fields should exhibit an increment PDF that is negatively 
skewed.

ix) Synthetic turbulence should be constructed as a multifractal Brownian bridge.
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the
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Shalchi (2015a) a Rechester & Rosenbluth type of diffusion coefficient was derived from
UNLT theory indicating that there is at least some connection between Rechester and Rosen-
bluth (1978) and energetic particle transport in space plasmas. In Shalchi (2019a) a heuris-
tic approach for perpendicular transport was developed providing different formulas for the
perpendicular diffusion coefficient. This finally provided an explanation of the parameter
a2 used in previous analytical theories. Furthermore, this heuristic approach explained how
systematic theories could be improved in the future which could lead to a complete under-
standing of perpendicular transport.

It is the purpose of this review article to discuss developments in the analytical theory of
perpendicular diffusion over the past 50 years. This also includes a brief review of heuris-
tic approaches and test-particle simulations. It will be shown that perpendicular diffusion
depends on the properties of the turbulent magnetic fields but also on parallel diffusion.
Therefore, this review will start with a discussion of various turbulence models which were
proposed in the literature over the past view decades (Sect. 2) followed by a review of theo-
ries developed for field line random walk (Sect. 3) a process that often controls perpendicu-
lar transport. Thereafter, the reader will find a short discussion of parallel particle transport
(Sect. 4). However, parallel diffusion itself is complicated and still subject of current re-
search. The main focus of this review is on perpendicular diffusion of energetic particles
(Sect. 5) with the emphasis on the unified non-linear transport theory including a discussion
of different transport regimes (Sect. 6), time-dependent transport (Sect. 7), simple analytical
forms (Sect. 8), and a recently developed heuristic approach (Sect. 9). Thereafter, there is
a discussion of numerical tools used in transport theory as well as a comparison between
simulations and analytical theory (Sect. 10). Although not the central point of this review,
the reader can also find some applications of the results discussed in this review (Sect. 11)
such as particle propagation through interplanetary and interstellar spaces as well as the
role of perpendicular diffusion in the theory of diffusive shock acceleration. At the end of
this article there will be a summary, a conclusion, and a short outlook (Sect. 12) discussing
unsolved problems and possible future projects.

2 Analytic Models for Magnetic Turbulence

In analytical theories for perpendicular diffusion the components of the so-called spectral
tensor are required as input as shown in Sect. 5. In the following we discuss different models
which were proposed in the past. It needs to be emphasized that the theoretical study of
turbulence is an ongoing field of research. Therefore, the models discussed in the following
are not supposed to be the final solution to the problem. Instead they should be understood
as examples sometimes motivated by solar wind observations or theoretical work. After
presenting these models, fundamental turbulence scales such as integral scales and the ultra-
scale are discussed.

2.1 Correlation and Spectral Tensors

Especially in astrophysics and space science we deal with magnetic turbulence. The knowl-
edge of the properties of these stochastic magnetic fields is important in several applications
such as the theory of field line random walk and cosmic ray propagation. We consider a
physical system where the total magnetic field is a position of a mean field B0 and a turbu-
lent component δBn

B(x, t) = B0ez + δB(x, t). (2.1)

Magnetostatic Turbulence (following Shalchi 2020 review)
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the
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Table 8 The values of the parameters used in the simulations for the different turbulence models. Here we
have listed the parameters ηn , αn, and #n used in Eqs. (10.1)–(10.3) in order to create the turbulent magnetic
field. The parameters $‖ , $⊥ , and $0 are the corresponding bendover scales. The used values for the energy
range spectral index q are also listed. The first three cases are based on a single sum in the field creation
whereas the last two cases are based on a double-sum

Turbulence model ηn αn #n Wave numbers q

Slab 1 0 Random kn = $‖k‖ 0

Two-dimensional 0 0 Random kn = $⊥k⊥ 2 or 3

Isotropic Random Random Random kn = $0k 3

Noisy slab model 0 0 Random kn = $⊥k⊥, km = $‖k‖ 0

NRMHD 0 0 Random kn = $⊥k⊥, km = $‖k‖ 3

wave number kn and the unit vector

ek,n =





√
1 − η2

n cosφn
√

1 − η2
n sinφn

ηn



 . (10.2)

Furthermore, we have used the random phase βn, restricted by 0 ≤ βn < 2π , and the polar-
ization vector

ξn =




− sinφn cosαn + ηn cosφn sinαn

cosφn cosαn + ηn sinφn sinαn

−
√

1 − η2
n sinαn



 (10.3)

with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
some examples).

If the slab model is simulated, for instance, we set ηn = 1 so that ek,n = ez for all n.
Furthermore, we set αn = 0 so that ξn = − sinφnex + cosφney for all n. This choice of ηn

and αn ensures that all wave vectors are aligned parallel with respect to the mean field and
that δBz = 0. These are exactly the conditions which need to be satisfied if the slab model is
considered. The remaining angles φn are random numbers satisfying 0 ≤ φn < 2π emulating
the chaotic nature of the field δB.

In a very similar manner we can generate two-dimensional turbulence. In this case
we set αn = 0 as before to ensure that δBz = 0. However, we now use ηn = 0 so that
ek,n = cosφnex + sinφney and ξn = − sinφnx + cosφney as required for two-dimensional
turbulence.

Isotropic turbulence can also be generated via Eqs. (10.1)–(10.3). In this case all angles
θn, φn, and αn are random numbers leading to a turbulence model where the wave vector as
well as the magnetic field vector are isotropic.

One can easily show by combining Eqs. (10.2) and (10.3) that for the general case we
have ek,n · ξn = 0, corresponding to the solenoidal constraint k · δB = 0, as required. The
amplitude function A(kn) used in Eq. (10.1) depends on the spectrum G(kn) via

A2(kn) = G(kn)*kn

(
N∑

m=1

G(km)*km

)−1

. (10.4)
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field. The parameters $‖ , $⊥ , and $0 are the corresponding bendover scales. The used values for the energy
range spectral index q are also listed. The first three cases are based on a single sum in the field creation
whereas the last two cases are based on a double-sum
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Two-dimensional 0 0 Random kn = $⊥k⊥ 2 or 3
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NRMHD 0 0 Random kn = $⊥k⊥, km = $‖k‖ 3

wave number kn and the unit vector

ek,n =





√
1 − η2

n cosφn
√

1 − η2
n sinφn

ηn



 . (10.2)

Furthermore, we have used the random phase βn, restricted by 0 ≤ βn < 2π , and the polar-
ization vector
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
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−
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n sinαn



 (10.3)

with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
some examples).

If the slab model is simulated, for instance, we set ηn = 1 so that ek,n = ez for all n.
Furthermore, we set αn = 0 so that ξn = − sinφnex + cosφney for all n. This choice of ηn

and αn ensures that all wave vectors are aligned parallel with respect to the mean field and
that δBz = 0. These are exactly the conditions which need to be satisfied if the slab model is
considered. The remaining angles φn are random numbers satisfying 0 ≤ φn < 2π emulating
the chaotic nature of the field δB.

In a very similar manner we can generate two-dimensional turbulence. In this case
we set αn = 0 as before to ensure that δBz = 0. However, we now use ηn = 0 so that
ek,n = cosφnex + sinφney and ξn = − sinφnx + cosφney as required for two-dimensional
turbulence.

Isotropic turbulence can also be generated via Eqs. (10.1)–(10.3). In this case all angles
θn, φn, and αn are random numbers leading to a turbulence model where the wave vector as
well as the magnetic field vector are isotropic.

One can easily show by combining Eqs. (10.2) and (10.3) that for the general case we
have ek,n · ξn = 0, corresponding to the solenoidal constraint k · δB = 0, as required. The
amplitude function A(kn) used in Eq. (10.1) depends on the spectrum G(kn) via

A2(kn) = G(kn)*kn

(
N∑

m=1

G(km)*km

)−1

. (10.4)
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The parameter !kn describes the spacing between wave numbers and is discussed below.
Note, the wave numbers used in simulations are unitless meaning that the physical wave
numbers are multiplied by a characteristic scale of turbulence, usually one of the bendover
scales. This means, for instance, that for slab turbulence the parameter kn in Eq. (10.4) is
really kn"‖. The amplitude function (10.4) has to be normalized so that

N∑

n=1

A2(kn) = 1. (10.5)

Using Eq. (10.4) in the latter condition yields

N∑

n=1

A2(kn) =
∑N

n=1 G(kn)!kn∑N
m=1 G(km)!km

= 1. (10.6)

For the spectrum G(kn) we use a form corresponding to the analytical models described in
Sect. 2, namely

G(kn) = k
q
n

(1 + k2
n)

(s+q)/2
. (10.7)

The parameters q and s are energy and inertial range spectral indices as before. The used
values for these two parameters and the meaning of kn in the different models are summa-
rized in Table 8. In most simulations a logarithmic spacing in kn is implemented so that

!kn

kn

= exp
[

ln(kmax/kmin)

N − 1

]
(10.8)

which is constant. In the context of two-dimensional turbulence the grid created in wave
number space via Eq. (10.8) is visualized in Fig. 3 together with the spectra used in analytical
treatments of field line and particle transport.19 Furthermore, the possible values for the wave
numbers are restricted by kmin ≤ kn ≤ kmax. Typical values for minimum and maximum
wave numbers are kmin = 10−5 and kmax = 103. There are two constraints that should be
taken into account in test-particle simulations. First we know that pitch-angle scattering
happens mostly close to the resonance condition µRLk‖ = 1 (see Sect. 4.3). Therefore, the
simulations have to be performed so that we hit the resonance. Furthermore, we need to
ensure that no particle travels more than the distance Lmax = k−1

min. This is done via the
relation vtmax < Lmax corresponding to a restriction of time. For kmin = 10−5, for instance,
we have Lmax = 105 leading to the condition vtmax < 105". Since in the simulations we use
T = #t for time, this turns into TmaxRL/" < 105. Obviously, this restriction becomes more
relevant for high rigidities.

10.2 More General Models for Turbulence

As obvious from Eq. (10.1), we only discuss the case of magnetostatic turbulence here.
Of course, one can incorporate wave propagation effects in such simulations (see, e.g.,
Michałek and Ostrowski 1996; Tautz 2010b; Hussein and Shalchi 2014b). Test-particle sim-
ulations in dynamical turbulence were performed for the first time in Hussein and Shalchi
(2016) based on a more-dimensional Fourier technique.

19The grid shown in Fig. 3 is just an example. Usually in such simulations we use a large number of wave
numbers such as N = 256.
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Table 8 The values of the parameters used in the simulations for the different turbulence models. Here we
have listed the parameters ηn , αn, and #n used in Eqs. (10.1)–(10.3) in order to create the turbulent magnetic
field. The parameters $‖ , $⊥ , and $0 are the corresponding bendover scales. The used values for the energy
range spectral index q are also listed. The first three cases are based on a single sum in the field creation
whereas the last two cases are based on a double-sum

Turbulence model ηn αn #n Wave numbers q

Slab 1 0 Random kn = $‖k‖ 0

Two-dimensional 0 0 Random kn = $⊥k⊥ 2 or 3

Isotropic Random Random Random kn = $0k 3

Noisy slab model 0 0 Random kn = $⊥k⊥, km = $‖k‖ 0

NRMHD 0 0 Random kn = $⊥k⊥, km = $‖k‖ 3

wave number kn and the unit vector

ek,n =





√
1 − η2

n cosφn
√

1 − η2
n sinφn

ηn



 . (10.2)

Furthermore, we have used the random phase βn, restricted by 0 ≤ βn < 2π , and the polar-
ization vector

ξn =




− sinφn cosαn + ηn cosφn sinαn

cosφn cosαn + ηn sinφn sinαn

−
√

1 − η2
n sinαn



 (10.3)

with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
some examples).

If the slab model is simulated, for instance, we set ηn = 1 so that ek,n = ez for all n.
Furthermore, we set αn = 0 so that ξn = − sinφnex + cosφney for all n. This choice of ηn

and αn ensures that all wave vectors are aligned parallel with respect to the mean field and
that δBz = 0. These are exactly the conditions which need to be satisfied if the slab model is
considered. The remaining angles φn are random numbers satisfying 0 ≤ φn < 2π emulating
the chaotic nature of the field δB.

In a very similar manner we can generate two-dimensional turbulence. In this case
we set αn = 0 as before to ensure that δBz = 0. However, we now use ηn = 0 so that
ek,n = cosφnex + sinφney and ξn = − sinφnx + cosφney as required for two-dimensional
turbulence.

Isotropic turbulence can also be generated via Eqs. (10.1)–(10.3). In this case all angles
θn, φn, and αn are random numbers leading to a turbulence model where the wave vector as
well as the magnetic field vector are isotropic.

One can easily show by combining Eqs. (10.2) and (10.3) that for the general case we
have ek,n · ξn = 0, corresponding to the solenoidal constraint k · δB = 0, as required. The
amplitude function A(kn) used in Eq. (10.1) depends on the spectrum G(kn) via

A2(kn) = G(kn)*kn

(
N∑

m=1

G(km)*km

)−1

. (10.4)
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the

Isotropic, Gaussian Turbulence



Example Results for the Diffusion Coefficient23 Page 104 of 134 A. Shalchi

Fig. 16 Diffusion coefficients and distribution functions for pure slab turbulence, a magnetic rigidity of
R = 0.1, and a magnetic field ratio of δB2

slab/B2
0 = 1. The used parameters T , R, K‖, and D‖ are defined in

Eq. (4.83). In the upper left panel the solid line represents the test-particle simulations and the dotted line the
analytical formula (4.84) for K‖ = 0.043. In the upper right panel the solid line represents the test-particle
simulations and the dotted line the analytical formula (7.45) corresponding to time-dependent UNLT the-
ory. The bottom panels show parallel and perpendicular distribution functions for the different times T = 0,
T = 2500, and T = 5000. Shown are the simulations (solid lines) and Gaussian overlays (dashed lines).
Reprinted with permission from Springer—Arendt and Shalchi (2018)

In the numerical solution of Eqs. (10.12) and (10.13), one needs to specify several pa-
rameters as well. The initial time is usually set to zero but there is also a final time tmax.
This has to be chosen so that one finds the stable regime which is often the time where
the particles have reached diffusive behavior. In Figs. 16 and 17, for instance, the choice
was "tmax = 5000. Furthermore, the constant step size in the symplectic solver was set to
"#t = 10−3 meaning that the total number of time steps in such runs was 5 × 106.

The procedure explained so far has to be performed for a huge amount of particles to
obtain results with a high accuracy and in order to reduce the noise in the running diffusion
coefficients as much as possible. Often the number of particles is a few thousands but the
results visualized in Figs. 16 and 17 were created by using 12000 particles. That is the
point where parallel computing becomes a required tool so that the different particles can be
distributed among the different processors.

If particle trajectories are obtained numerically, the remaining step is the calculation of
the diffusion coefficients via mean square displacements. To do this, a diffusion coefficient
is preferably defined as the ratio of the corresponding mean square displacement and time
(see, e.g., Eq. (4.80) of this review) rather than the time-derivative (see, e.g., Eq. (5.27)).
This is entirely done with the purpose of reducing noise in the diffusion coefficient. If one is
more interested in the late-time limit and assuming that one indeed finds diffusive transport,
there is no difference between dividing by time and computing the time-derivative. However,
special care is required for anomalous transport where these two definitions do not yield the

Shalchi 2020
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ABSTRACT
The transport of energetic particles in a mean magnetic field and the presence of anisotropic magnetic turbulence

are studied numerically, for parameter values relevant to the solar wind. A numerical realization of magnetic
turbulence is set up in which we can vary the type of anisotropy by changing the correlation lengths , , .l l lx y z

We find that for , transport can be non-Gaussian, with superdiffusion along the average magnetic fieldl , l k lx y z

and subdiffusion perpendicular to it. Decreasing the ratio down to !0.3, Gaussian diffusion is obtained,l /lx z

showing that the transport regime depends on the turbulence anisotropy. Implications for energetic particle
propagation in the solar wind and for diffusive shock acceleration are discussed.
Subject headings: diffusion— plasmas— solar wind— turbulence

1. INTRODUCTION

Many studies have addressed the transport of energetic par-
ticles in the heliosphere in the presence of magnetic turbulence,
both from the theoretical (Jokipii 1966; Jokipii & Parker 1969;
Giacalone & Jokipii 1999; Teufel & Schlickeiser 2002; Mat-
thaeus et al. 2003; Shalchi et al. 2004) and from the obser-
vational point of view (Reames 1999; Mazur et al. 2000; Dalla
et al. 2003; Zhang et al. 2003; McKibben 2005), but a full
understanding is still lacking. For instance, the computed values
of the perpendicular diffusion coefficient are 1–2 orders ofk⊥
magnitude smaller than those inferred from the observations
of solar energetic particles (SEPs) at widely separated space-
craft (Ruffolo et al. 2003; McKibben 2005). On the other hand,
large values of are in seeming contrast to the observationsk⊥
of particle dropouts in the 10 keV–1 MeV particle fluxes in
impulsive SEP events (Mazur et al. 2000) and with the finding
of sharp composition boundaries in Ulysses data (Zurbuchen
et al. 2000), which indicate a small cross-field transport. Also,
a parallel mean free path of the order of 0.1–0.2 AU is oftenlk

assumed for 10 MeV protons (Bieber et al. 1994), but the time
of arrival of solar particles at 1 AU has often been found to
be consistent with scatter-free propagation (Reames 1999; Dalla
et al. 2003; Zhang et al. 2003), corresponding to AUl ∼ 1k

or more.
These puzzling observational data call for new ideas and

new theoretical tools, like anomalous transport (Zimbardo &
Veltri 1995), non-Markovian phenomena (Kóta & Jokipii 2000;
Qin et al. 2002a), different transport regimes inside and in
between coherent magnetic flux tubes (Ruffolo et al. 2003),
and the non-Gaussian nature of turbulent transport (Zimbardo
et al. 2004), in order to be able to reconcile theory and ob-
servations. As a step in this direction, here we explore nu-
merically the influence of turbulence anisotropy on transport
regimes. Solar wind magnetic turbulence is known to be an-
isotropic (Dobrowolny et al. 1980; Matthaeus et al. 1996), but
the kind of anisotropy is not easily determined by single space-
craft observations. Turbulence models range from one-dimen-
sional, or slab (Jokipii 1966; Teufel & Schlickeiser 2002), with
the wavevectors aligned along the background magnetic field
, to two-dimensional (Bieber et al. 1996), with the wave-B0

vectors perpendicular to , to fully three-dimensional (Car-B0
bone et al. 1995; Matthaeus et al. 1996). Knowledge of the
spectral distribution of magnetic fluctuations in -space is fun-k

damental to foresee the effect of magnetic turbulence on par-
ticle transport; indeed, wave-particle interactions sensitively
depend on the wavevector distribution.

2. NUMERICAL STUDY

We set up a fully three-dimensional realization of magnetic
turbulence with wavevectors forming any angle with the back-
ground magnetic field and with a fine sampling ofˆB p B e0 0 z

the Fourier space in order to avoid discretization problems
(Pommois et al. 1998). The magnetic field is realized in a
parallelepipedal simulation box (see Pommois et al. 1998,
1999), , where is the sum of staticB(r) p B ! dB(r) dB(r)0
magnetic perturbations

(j) (j)dB(r) p dB(k)e (k) exp i(k · r! f ), (1)! k
k, j

where are random phases and are the two polari-(j) (j)f e (k)k
zation unit vectors. Here we consider parameters relevant to
the propagation of 1 MeV protons in the solar wind turbulence.
For such particles, the velocity is km s"1. Consid-v " 14,000
ering that the magnetic perturbations in the solar wind prop-
agate with the Alfvén velocity km s"1, the assumptionV ∼ 40A
of static perturbations is well satisfied. Also, in the solar wind
rest frame, we can neglect the electric field. The Fourier spectral
shape is characterized by the turbulence correlation lengths ,lx
, and and is given byl ly z

C
dB(k) p , (2)2 2 2 2 2 2 a/4!1/2(k l ! k l ! k l )x x y y z z

where we take the same spectral amplitude for both polar-
izations, and is close to the spectral index observeda p 5/3
in the solar wind. Above, C is a normalization constant
that is related to the level of fluctuations dB/B p0

. In this model the turbulence anisotropy can2 2 1/2[AdB (r)S/B ]0
be changed gradually from the isotropic case ( )l p l p lx y z

to either the quasi–two-dimensional case ( ) or thel p l K lx y z

quasi-slab case ( ), and nonaxisymmetric casesl p l k lx y z

( ) may be treated as well. The constant-amplitude sur-l ( lx y

faces in Fourier space are ellipsoids, and the wavevectors
are chosen as . The spectrumk p (2p/N ) (n /l , n /l , n /l )min x x y y z z

has cutoffs for both the short and the long wavelengths (band
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Fig. 1.—Anomalous transport exponents (top panels) and flatnesses (bottom panels) are plotted as a function of time for ,g F dB/B p 0.5 r/l p 3.2#i i 0

, and . Magnetic turbulence is axisymmetric, and the ratio of correlation lengths varies from (far left) to 3, 1, 0.33, and 0.1!3 !210 r/l p 1.28# 10 l /l p 10min x z

(far right). Results for the x-, y-, and z-directions are indicated by solid, dashed, and dotted lines, respectively.

spectrum) with . In this way, the2 2 2 2 2N ≤ n " n " n ≤ Nmin x y z max
correlation lengths , , and correspond to the largestl l lx y z

wavelengths (in the respective directions) in the numerical
model. For most of the runs presented here, , andN ! 4min

. The simulation box sides are given byN p 16 L pmax i

( ), so that at least four correlation lengthsN l i p x, y, zmin i

have to be traveled before the same magnetic configuration
is found again. This effectively eliminates the periodicity
effects (Pommois et al. 1998). We note that the need to have
a fully three-dimensional spectrum leads to a shorter spectral
extension than that found in the solar wind; the lack of short
wavelengths may lead to an underestimate of wave-particle
interactions, and especially of pitch-angle scattering, which
depends on the gyroresonant interaction. To investigate the
effects of the spectral extension, a few runs with N pmax
and were also done.32 N p 48max
In the solar wind, a turbulence correlation length l is ob-

tained from data in the radial direction. We assume that the
radial correlation length l is related to the turbulence corre-
lation lengths of the numerical model by 2 2 2l p l cos w "z

(Zimbardo et al. 2004), where is along the spiral2 2l sin w ly z

and is in the plane formed by the average magnetic field andly
the solar wind speed. In the simulation, test particles are in-
jected in the above magnetic configuration, and the trajectories
are integrated with a high-precision fifth-order Runge-Kutta
scheme with an adaptive step. Time is measured in units of
the inverse of the proton gyrofrequency, . As typ-Q p eB /mci 0
ical values, we can assume nT and AU. ForB p 10 l ∼ 0.030
1 MeV protons, this corresponds to . In order!3r/l ! 3.2# 10
to determine quantitatively the transport properties, we compute
the variances , where , as a function of2 (0)ADx S Dx p x ! xi i i i

time t. Then we make a fit of with the anomalous trans-2ADx Si
port law and determine and when t is large2 giADx S p 2k t g ki i i i

enough. The results presented here were obtained with t p
; in physical units, this corresponds to more than 106 !110 Qi

days for nT. Here the exponent characterizes theB p 10 g0 i

transport law: in the diffusive regime (Gaussian randomg p 1i

walk); in the case of a subdiffusive regime; andg ! 1 1 !i

in the case of superdiffusive regime (Lévy random walk)g ! 2i

(Klafter et al. 1987; Bouchaud & Georges 1990; Zaslavsky et
al. 1993). In the case of Lévy random walk and of subdiffusion,
the probability distribution function of particle positions can

have long non-Gaussian tails. The importance of these tails can
be measured by the flatnesses , whose Gaus-4 2 2F p ADx S/ADx Si i i

sian value is 3.
Figure 1 shows the anomalous diffusion exponents , ob-gi

tained by a running fit of the anomalous transport law, and the
flatnesses as a function of time, for and!3F r/l p 3.2# 10i

for , which is typical of the solar wind magneticdB/B p 0.50
turbulence. The anisotropy is changed gradually from the quasi-
slab case ( ) to the isotropic ( ) andl p l p 10l l p l p lx y z x y z

then to the quasi–two-dimensional case ( ). It canl p l p 0.1lx y z

be seen that anomalous transport regimes, , are obtainedg ( 1i

for the cases going from quasi-slab to isotropic; in particular,
we find subdiffusion for transport perpendicular to ,B0

, and superdiffusion for transport parallel to ,g , g ! 1 Bx y 0
. The non-Gaussian nature of these transport regimes isg 1 1z

confirmed by the plots of the flatnesses, which show values
much larger than 3 when transport is anomalous. On the other
hand, for quasi–two-dimensional anisotropy, normal diffusion,

, and Gaussian statistics, , are obtained. Therefore,g ! 1 F ! 3i i

the results reported in Figure 1 show that the possibility of
having anomalous, non-Gaussian transport sensitively depends
on the turbulence anisotropy. We also performed simulations
in the nonaxisymmetric case, , and the results arel 1 l ! lx y z

shown in Figure 2. By assuming the same fluctuation level
( ) and the same as for Figure 1, we can seedB/B p 0.5 r/l0
that non-Gaussian regimes, i.e., superdiffusion along andB0
subdiffusion perpendicular to , are obtained as well. FromB0
both Figures 1 and 2 we can see that anomalous transport is
obtained when (quasi-slab spectra), while normal dif-l ! 3lx z

fusion in all directions is recovered for (quasi–two-l " 0.3lx z

dimensional spectra).
Considering one of the cases for which parallel superdif-

fusion is found, , , and , reportedl /l p 3 l /l p 1 dB/B p 0.5x z y z 0
in the right panels of Figure 2, we performed other runs by
increasing the particle Larmor radius and varying the spectral
extension. The left panels of Figure 3 report the simulation
results for (corresponding to a proton en-!2r/l p 1.02# 10
ergy of 10 MeV). It can be seen that is close to 1 for all ofgi
the x-, y-, z-directions. Also, the flatnesses reach, in the long
time limit, the Gaussian value . In a similar way, nearlyF p 3i

normal diffusion is obtained for the other two anisotropies in
Figure 2 when the Larmor radius is increased to r/l p
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walk); in the case of a subdiffusive regime; andg ! 1 1 !i

in the case of superdiffusive regime (Lévy random walk)g ! 2i

(Klafter et al. 1987; Bouchaud & Georges 1990; Zaslavsky et
al. 1993). In the case of Lévy random walk and of subdiffusion,
the probability distribution function of particle positions can

have long non-Gaussian tails. The importance of these tails can
be measured by the flatnesses , whose Gaus-4 2 2F p ADx S/ADx Si i i

sian value is 3.
Figure 1 shows the anomalous diffusion exponents , ob-gi

tained by a running fit of the anomalous transport law, and the
flatnesses as a function of time, for and!3F r/l p 3.2# 10i

for , which is typical of the solar wind magneticdB/B p 0.50
turbulence. The anisotropy is changed gradually from the quasi-
slab case ( ) to the isotropic ( ) andl p l p 10l l p l p lx y z x y z

then to the quasi–two-dimensional case ( ). It canl p l p 0.1lx y z

be seen that anomalous transport regimes, , are obtainedg ( 1i

for the cases going from quasi-slab to isotropic; in particular,
we find subdiffusion for transport perpendicular to ,B0

, and superdiffusion for transport parallel to ,g , g ! 1 Bx y 0
. The non-Gaussian nature of these transport regimes isg 1 1z

confirmed by the plots of the flatnesses, which show values
much larger than 3 when transport is anomalous. On the other
hand, for quasi–two-dimensional anisotropy, normal diffusion,

, and Gaussian statistics, , are obtained. Therefore,g ! 1 F ! 3i i

the results reported in Figure 1 show that the possibility of
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on the turbulence anisotropy. We also performed simulations
in the nonaxisymmetric case, , and the results arel 1 l ! lx y z

shown in Figure 2. By assuming the same fluctuation level
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that non-Gaussian regimes, i.e., superdiffusion along andB0
subdiffusion perpendicular to , are obtained as well. FromB0
both Figures 1 and 2 we can see that anomalous transport is
obtained when (quasi-slab spectra), while normal dif-l ! 3lx z

fusion in all directions is recovered for (quasi–two-l " 0.3lx z

dimensional spectra).
Considering one of the cases for which parallel superdif-

fusion is found, , , and , reportedl /l p 3 l /l p 1 dB/B p 0.5x z y z 0
in the right panels of Figure 2, we performed other runs by
increasing the particle Larmor radius and varying the spectral
extension. The left panels of Figure 3 report the simulation
results for (corresponding to a proton en-!2r/l p 1.02# 10
ergy of 10 MeV). It can be seen that is close to 1 for all ofgi
the x-, y-, z-directions. Also, the flatnesses reach, in the long
time limit, the Gaussian value . In a similar way, nearlyF p 3i

normal diffusion is obtained for the other two anisotropies in
Figure 2 when the Larmor radius is increased to r/l p
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Abstract

The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the
charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense
magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray
propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using
test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields.
The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra.
The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle
energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

Key words: cosmic rays – diffusion – dynamo – magnetic fields

1. Introduction

Cosmic rays are charged relativistic particles (mostly
protons) scattered, as they propagate, by random magnetic
fields (Berezinskii et al. 1990). Over sufficiently long time and
length scales, their propagation is diffusive (Cesarsky 1980).
Assuming an interstellar magnetic field of strength 5 GN , the
Larmor radius rL of a cosmic-ray proton of energy 5 GeV is of
the order of 10 cm12 , much smaller than the correlation length
of interstellar MHD turbulence ( 10 cm20_ ). Thus, cosmic rays
closely follow field lines (for a significant time), and so the
geometry and statistical properties of magnetic fields control
their propagation. The dominant contribution to particle
scattering is from magnetic irregularities at a scale comparable
to rL. In this Letter, we mostly discuss cosmic rays that
propagate diffusively.

With some exceptions that are discussed below (see also
Alouani-Bibi & le Roux 2014; Pucci et al. 2016), studies of
cosmic-ray propagation employ random magnetic fields with
Gaussian statistics that are completely described by the two-
point correlation function or the power spectrum (e.g., Michalek
& Ostrowski 1997; Giacalone & Jokipii 1999; Casse et al. 2002;
Candia & Roulet 2004; Parizot 2004; DeMarco et al. 2007;
Globus et al. 2008; Plotnikov et al. 2011; Harari et al. 2014;
Snodin et al. 2016; Subedi et al. 2017). However, the interstellar
and intergalactic magnetic fields have a more complicated
structure. The fluctuation (small-scale) dynamo (Zeldovich
et al. 1990; Wilkin et al. 2007) and random shock waves
(Bykov & Toptygin 1987) produce highly intermittent, strongly
non-Gaussian, essentially three-dimensional magnetic fields with
random magnetic filaments and ribbons surrounded by weaker
fluctuations. Filamentary and planar structures in the interstellar
medium, consistent with the notion of spatial intermittency, have
been detected in the radio (Section 5.2 in Haverkorn &
Spangler 2013) and submillimeter (Zaroubi et al. 2015) ranges
as well as in the neutral hydrogen distribution (Heiles &
Troland 2005). In such a magnetic field, the propagation of
charged particles is controlled not only by its power spectrum,
but also by the size and separation of the magnetic structures.
The influence of such a complex magnetic field upon cosmic-ray
propagation is poorly understood. Existing theories, using the

quasilinear approach (Jokipii 1966; Berezinskii et al. 1990;
Schlickeiser 2002), or its nonlinear extensions and alternative
ideas (e.g., Vlad et al. 1998; Yan & Lazarian 2002; Matthaeus
et al. 2003; Shalchi 2009), do not consider intermittency, or use
the Corrsin hypothesis (Corrsin 1959), which assumes Gaussian
statistics for the magnetic field. Recent test particle simulations
used magnetic fields obtained from simulations of MHD
turbulence (e.g., Dmitruk et al. 2004; Reville et al. 2008;
Beresnyak et al. 2011; Lynn et al. 2012; Weidl et al. 2015; Cohet
& Marcowith 2016) (see also Roh et al. 2016). These models are
free from the assumption of Gaussian statistics, but they do not
consider any effects of magnetic structures even if those were
present. There have been no systematic attempts to examine the
significance of realistic, physically realizable magnetic inter-
mittency in 3D; this is our goal here. In intermittent magnetic
fields, particle trapping can be important even in 3D. We note
that the Kubo number, often used to delineate different transport
regimes, depends only on second-order correlations and is
therefore insensitive to intermittency.
We use test particle simulations (Giacalone & Jokipii 1999;

Casse et al. 2002; Desiati & Zweibel 2014; Snodin et al. 2016),
integrating the equation of motion for a large number of
particles in a statistically isotropic, prescribed magnetic field, in
the regime where cosmic-ray pressure is too low to excite
significant MHD waves. The magnetic field is obtained as a
solution of the induction equation with a prescribed velocity
field that drives the fluctuation dynamo. This produces a
realistic, intermittent magnetic field. The degree of intermit-
tency depends on the magnetic Reynolds number Rm. As Rm
increases, the magnetic structures occupy a smaller proportion
of the volume. The intermittency introduces two distinct
particle propagation regimes, one within a magnetic structure
and another between them. Cosmic-ray particles are strongly
scattered by the magnetic structures and move relatively freely
between them. By comparing particle diffusion in an
intermittent field with that in a magnetic field lacking structure,
but with an identical power spectrum, we demonstrate that
intermittency can significantly enhance diffusion, and so
diffusion cannot be described in terms of the power spectrum
alone.
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2. Magnetic Field Produced by Dynamo Action

We generate intermittent, statistically isotropic, fully three-
dimensional random magnetic fields b by solving the induction
equation with a prescribed velocity field u:

b
u b b b

t
R , 0, 1m

1 2s
s

� � q q � � � ��( ) · ( )

with periodic boundary conditions in a cubic domain of width
L 2Q� and 2563 or 5123 mesh points. Equation (1) is written in
a dimensionless form, expressing length in the units of the flow
scale l0 and time in the units of l u0 0, where u0 is the rms flow
speed. Here, R l um 0 0 I� is the magnetic Reynolds number3

and η is the magnetic diffusivity, assumed to be constant. In a
generic, three-dimensional, random flow, dynamo action occurs
(i.e., the mean magnetic energy density grows exponentially with
t) provided R Rm m,c� , where Rm,c is the critical magnetic
Reynolds number (Zeldovich et al. 1990). Depending on the
nature of the velocity field, typically R 10m,c � –100, and the
magnetic field decays for R Rm m,c� (Brandenburg & Sub-
ramanian 2005). As Rm l d, the magnetic structures produced
by the dynamo become progressively more filamentary in nature,
with the thickness of each filament of the order of d l R0 m

1 2� �

and a characteristic filament length (radius of curvature) of the
order of l0 (Zeldovich et al. 1990; Wilkin et al. 2007). The
magnetic field used in our simulations is an eigenfunction
obtained by renormalizing the exponentially growing solution of
Equation (1) to have a constant rms field strength b0. We expect
the magnetic structure of the corresponding nonlinear dynamo
to be similar to that of the marginal eigenfunction obtained
at R Rm m,cx (Subramanian 1999). However, we consider a
wider range of Rm to explore the effects of a variable degree
of intermittency: it increases with Rm. To isolate robust features
of cosmic-ray propagation independent of the particular form of
intermittent magnetic field, we use two types of incompressible
flow to drive the dynamo, both chaotic, but one of a single scale
and the other multi-scale with a controlled power spectrum. The
first flow (Willis 2012), henceforth referred to as flow W, is
stationary:

u x y z z x x y2 3 sin cos , sin cos , sin cos . 2�( ) ( )( ) ( )
It is a very efficient dynamo with R 11m,c x , producing
regularly spaced magnetic structures in the form of ellipsoids of
identical size that become thinner as Rm increases and whose
positions are determined solely by the flow geometry (so are
independent of Rm). The second flow (KS) is time-dependent
and multi-scale; it was employed for dynamo simulations
(Wilkin et al. 2007) and as a Lagrangian model of turbulence
(Fung et al. 1992):

u x C Dt, cos sin , 3
n

N

n n n n
0

1

� G G� �
�

�

( ) ( ) ( )

where k x tn n nG X� �· , with kn a randomly oriented wave
vector (of magnitude kn) and nX a frequency specified below.
The random vectors, Cn and Dn, are chosen to be orthogonal to
kn to ensure u 0� �· . We select N=40 distinct wave

vectors, with magnitudes between k L20 Q� and k k8N 1 0x� ,
so that the flow is periodic with the outer scale l L0 � . The
amplitudes of Cn and Dn are selected to produce an energy

spectrum E k k 5 3r �( ) with E k dk u 2
k

k
0
2N

0

1

¨ �� ( ) . We take

k E kn n n
3 1 2X � [ ( )] , which introduces a scale-dependent time

variation. The dynamo in this flow has R 1000m,c x (Wilkin
et al. 2007). The flow produces transient magnetic structures,
consisting of filaments of various sizes, as illustrated in the
leftmost panel of Figure 1.
To identify the effects of magnetic intermittency on cosmic-

ray diffusion, we also consider random magnetic fields where
the structures have been destroyed but the magnetic energy
spectrum remains unchanged (Snodin et al. 2013). This is
achieved by taking the spatial Fourier transform of b x( ) from
Equation (1) and then multiplying each complex Fourier mode
by kiexp Z[ ( )], with kZ ( ) a random phase selected indepen-
dently for each k. The inverse Fourier transform of the result
produces a magnetic field with an unchanged spectrum but with
little remaining structure, as demonstrated in the second from
left panel of Figure 1. As shown in the second from right panel
of Figure 1, the probability density functions (PDFs) of the
field components for the intermittent fields produced by each
flow (W and KS) have long, heavy tails, while the phase
randomization produces nearly Gaussian random fields.
Another aspect of this difference is also illustrated in the
rightmost panel of Figure 1 where the fractional volume
occupied by magnetic structures with b b0 O� is shown as a
function of ν: an intermittent magnetic field has more strong,
localized structures with 1.42O than a Gaussian field with an
identical power spectrum.
To explore the effects of a mean magnetic field, we also

consider particle propagation in a magnetic field given by
B b B0� � , where B0 is an imposed uniform magnetic field.
In such cases, the rms magnetic field b0˜ quoted below includes
the mean part, b B b0

2
0
2

0
2� �˜ .

3. Cosmic-ray Propagation

Using magnetic field realizations generated from
Equation (1), or the corresponding randomized magnetic fields,
we obtain an ensemble of cosmic-ray trajectories ( 1000. in
number) by solving numerically the dimensionless equation of
motion for the particle trajectories x t( ),

x x B x¨ , 4B� q˙ ( ) ( )
with ql b mcv0 0 0B H� ˜ ( ), q the particle charge, m its rest mass,
b0˜ the total rms field strength, γ the Lorentz factor, v0 the
particle speed, and c the speed of light. As in most cosmic-ray
propagation models (Berezinskii et al. 1990; Schlickeiser 2002;
Shalchi 2009), we neglect electric fields in Equation (4): they
are negligible at the scales of interest ( 1 kpc� in galaxies and

10 kpc� in galaxy clusters). Hence, the particle speed v0
remains constant. Each particle is given a random initial
position and propagation direction, but the same initial speed.
The characteristic dimensionless Larmor radius, based on the
rms magnetic field strength, is r l ;L 0

1B� � we use this ratio to
characterize the particle properties. When B 00 � , we calculate
the isotropic diffusion coefficient x t tlim 6t

2L � � % §ld ∣ ( )∣ ( ),
where x t% ( ) is the particle displacement, and the angular
brackets denote averaging over particle displacements. In the

3 Some authors define Rm in terms of the wavenumber k0, resulting in Rm
values a factor of 2Q smaller.
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presence of a mean magnetic field directed along the z-axis, we
introduce similarly defined parallel and perpendicular diffusion
coefficients, which are given by z t tlim 2t

2L � �% §ld& ( ) ( )
and L �? x t y t tlim 4t

2 2� % � % §ld [ ( ) ( ) ] ( ).

4. Cosmic-ray Diffusivity

Figure 2(a) shows the dependence of the cosmic-ray
diffusion coefficient on r lL 0 (proportional to the particle
energy) for B 00 � . For r l 1L 0 � , we recover the asymptotic
scaling rL

2L r (high energy limit) in agreement with earlier
results (Parker 1965; Aloisio & Berezinsky 2004; Parizot 2004;
DeMarco et al. 2007; Globus et al. 2008; Beresnyak et al. 2011;
Plotnikov et al. 2011; Harari et al. 2014; Snodin et al. 2016;
Subedi et al. 2017). At lower energies, the dependence of κ on
particle energy is weaker and is sensitive to magnetic structure.
Magnetic intermittency is expected to be important at those
energies where

r l 1, 5L 0 1 ( )

and the dependence r lL 0L ( ) in Figure 2(a) indeed deviates
from the asymptotic form in this range. The role of magnetic
intermittency is demonstrated in Figure 2(b), showing the ratio
of the diffusivity κ calculated with a dynamo-generated
magnetic field to that in the corresponding randomized field,

RL (B 00 � in panels (a) and (b)). At high energies (large
r lL 0), 1RL L � , suggesting that the magnetic structures play
an insignificant role. However, RL L increases rapidly up to
more than 2.5 at lower energies: magnetic structures enhance
diffusion when inequality(5) is satisfied. We find that the ratio

RL L at fixed r lL 0 increases with Rm for a given flow. At high
values of r lL 0, the diffusivity still depends on Rm via changes
in the magnetic correlation length (Figure 2(a)), but not via the
Rm-dependent intermittency, as suggested by Figure 2(b),
where RL L tends to unity as r lL 0 increases. One might expect
a change in the diffusivity behavior at r l RL 0 m

1 2x � ,
associated with the thickness of magnetic filaments, and this
may explain the variation in slope of κ at low r lL 0 in

Figure 2(a) (or the ratios in Figure 2(b)). However, at present,
the role of this scale is unclear.
Figure 2(c) illustrates the effects of the mean magnetic field,

presenting the ratio of the parallel and perpendicular

Figure 1. Isosurfaces of magnetic field strength b b 2.52
0
2 � (blue) and b b 52

0
2 � (yellow) with b0 the rms magnetic field, for magnetic field generated by the KS

flow (3) at R 1082m � (left) and for the same magnetic field after Fourier phase randomization as described in the text (second from left). Magnetic field generated by
the W flow (2) is similarly affected (not shown). The second from right panel shows the PDFs of a magnetic field component bx for the original (KS, W: solid) and
randomized (KS (R), W (R): dashed) magnetic fields obtained with both velocity fields (only b 0x � is shown as the PDFs are essentially symmetric about bx=0).
The randomized fields have almost perfectly Gaussian statistics, whereas magnetic intermittency leads to heavy tails. The panel on the right shows the fractional
volume within magnetic structures where b b0. O , with b0 the rms field strength, as a function of ν for the intermittent magnetic field produced by the flow (3) (solid
for R 3182m � and dashed for R 1082m � ) and its Gaussian counterpart (dashed–dotted for R 3142m � and 1082) obtained by Fourier phase randomization; the
filling factor of the randomized fields is independent of Rm.

Figure 2. (a) Cosmic-ray diffusion coefficient for the W flow (2) (red,
magenta) and the KS flow (3) (blue, green) as a function of r lL 0 for the values
of Rm given in parenthesis in the legend. The dotted–dashed line shows the
scaling rL

2L r and rLL r , respectively. (b) The ratio of diffusion coefficients
from intermittent, κ, and randomized, RL , magnetic fields for the two flows
(solid lines, KS with R 3182m � , W with R 314m � ). The dashed lines of the
same color show the corresponding CRW model, Equation (7). (c) As in (b),
but in the presence of a mean magnetic field B0, of the relative strength
specified in the legend, for the KS flow with R 3182;m � L& and L? are shown
as solid and dashed lines, respectively.
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Teaser (Parker background field)







Summary, next Steps
• Particle transport in synthetic turbulent fields has been 

studied numerically in the past

• Often issues with limited resolution and energy conservation, 
only periodic boxes

• Almost always relying on random phase approximations -> no 
correlations and intermittency in synthetic turbulence

Next (first) Steps

• Study literature cases for isotropic and anisotropic synthetic 
turbulence as benchmark

• Extend to intermittent fields and study energy dependence of 
diffusion. Non-diffusive regimes?

• Work on embedding in large scale background field, e.g.
Heliospheric Parker spiral field, Galactic field

• Consider embedding in large scale MHD turbulence, connect 
to CRPropa


