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Cosmic ray energy spectrum
Broken power-law with three ‘main’ features:

● ‘knee’: softening at ~1015.4 eV
● ‘ankle’: hardening at ~1018.7 eV
● high-energy cut-off  beyond ~1019.6 eV 

Further more subtle features:
● ‘low-energy ankle’ at ~1016.7 eV
● ‘2nd knee’: softening at ~1017.(0...4) eV
● ‘toe’: softening at ~1019.1 eV

Galactic cosmic rays (GCRs) for diffusive shock 
acceleration (DSA) in supernova remnants 
(SNR) dominate below ‘knee’ energies.
Extragalactic cosmic rays (EGCRs) dominate 
at energies above ‘ankle’.
Transition region (= ‘shin’) unexplained:

● unaccounted for flux
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Cosmic ray composition
Composition highly energy-
dependent:

● heavier beyond the ‘knee’
● maximum before ‘2nd knee’
● minimum just before ‘ankle’
● increasing mean mass at 

high-energy cut-off
Increasing mean mass 
→ rigidity-dependent change in:

● source properties (maximum 
acceleration energy)

● propagation regimes in 
magnetic fields

see also: Thoudam, Astron.Astrophys. 595 (2016) A33

heavier
heavier

lighter
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Anisotropies
Dipole anisotropy:

● amplitude increases with energy
● no significant dipole between 

~1016.5 eV –1019 eV
● phase roughly constant in both 

energy ranges but shifts away from 
Galactic centre (GC) for highest 
energies
→ extragalactic origin likely

Small-scale anisotropies:
● amplitude and direction indicate 

strength of diffusion vs. advection: 
correlation with source direction
↔ strength of Galactic wind

see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98
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“All” data in one look
Composition:

● What explains ‘2nd knee’ if 
maximum mean mass is reached 
well before?

● Why does the composition become 
lighter up to the ‘ankle’?

Spectrum:
● How could GCRs be accelerated up 

to energies beyond the ‘knee’?
● What constraints are there on 

low-energy contribution of EGCRs?
● How are observables affected by 

the propagation in the Galactic 
magnetic field (GMF)?

Spectrum
   M

ean m
a ss     D

ipole a nisotropy
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Galactic magnetic field (GMF)
GMF model: JF12 (ApJ 757 14x) with three 
components:

● Large-scale regular
● Large-scale random (striated)
● (Small-scale) random

GMF has three regions of differing field 
strength:

● Galactic plane (GP): ~ 1 – 10 µG
● Halo: ~ 0.1 – 1 µG 
● Edge of Galaxy: 10 – 100 nG

Gyroradius rg: 

Transition region = change in propagation 
regimes

● diffusive → ballistic propagation

,    R = E/Ze

x-z projection of JF12 field
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Change of gyroradius with rigidity plus
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requirements
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Simulation software: CRPropa 3
Modular structure of CRPropa 3

CRPropa 3: Monte-Carlo based 
software for simulation of CR 
propagation:

● Modular structure:
– Modules modify properties of 

candidate at each step of 
simulation

– Source, interaction, deflection, 
observer, boundary, output

● Contain all atomic 
nuclei,photonuclear interactions, 
magnetic field models, 
propagation algorithms, ...

9
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Ballistic propagation
Solve equation of motion:

● tracking of single particles (microscopic view)
● best suited when rg  is large
● applicable for arbitrary fields  

→ more fundamental and precise*
● particle trajectories are tracked

→ possibility of anisotropy studies
● Implemented in CRPropa via Cash-Karp and 

Boris-Push

BUT:
● below                   , computation times start to 

diverge
● *: precision dependent on grid size      

10
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Change of computation time per particle
with rigidity for propagation in GMFSolve equation of motion:
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→ more fundamental and precise*
● particle trajectories are tracked

→ possibility of anisotropy studies
● Implemented in CRPropa via Cash-Karp and 
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BUT:
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diverge
● *: precision dependent on grid size      

Ballistic propagation
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Diffusive propagation
Solve transport equation:

multi-particle approach:
– change of momentum density (macroscopic 

view)
● best suited when rg  is small & turbulent B-

field component dominant
● generally shorter computation times

NOTE:
● CRPropa 3 has implement diffusive 

propagation module via SDEs
(JCAP 06 (2017) 046)

● For a full description of the transition region 
both propagation methods must be applied

Trajectories of diffusively propagating GCRs
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Procedure: Ballistic propagation with CRPropa3
Forward tracking: 

● particle tracked from source to observer
● highly inefficient (1:10²⁸ for observer the size of Earth)

→ increase observer size, BUT: this introduces artefacts!

Only propagation effects (i.e. only deflections/no interactions):
● propagation of one nuclear species: proton 

→ results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:
● JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around 
Galactic centre)

Source properties:
● R-1 injection spectrum, lg(R/V) = 16.0 – 20.0 ( lg(RFe(@knee)/V) = 15.4 - lg(26) = 14 !)

12
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● propagation of one nuclear species: proton 

→ results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:
● JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around 
Galactic centre)

Source properties:
● R-1 injection spectrum, lg(R/V) = 16.0 – 20.0 ( lg(RFe(@knee)/V) = 15.4 - lg(26) = 14 !)

Procedure: Ballistic propagation with CRPropa3

12
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Galactic volume with GMF

13
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Sources:
● GCRs:

● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

GCR source distribution
Sources and observers

13
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Sources:
● GCRs:

● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

EGCR source distribution
Sources and observers

13
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Sources:
● GCRs:

● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● Isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Observer types: Earth and GP
Sources and observers

13
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Change in propagation regimes: Deflection angle

θ = π/2 for lg(R/V) ≤ 18 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth

15
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θ = π/2 for lg(R/V) ≤ 18 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth

diffusive propagation

Change in propagation regimes: Deflection angle

15
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θ = π/2 for lg(R/V) ≤ 18 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth
Change in propagation regimes: Deflection angle

ballistic propagation

15

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1607.01645


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              45

Propagation effects: Galactic residence time

NOTE: Lowest-rigidity particles have residence times up to 100 Myr.

GCRs EGCRs reaching the GP

high R low R high R low R

confinement

confinement

shielding

16
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Effect on observables: GCRs – Flux suppression

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Rigidity spectrum (sigmoid fit)

17
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Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Mean logarithm of mass number (sigmoid fit)

NOTE: Only propagation effects in GMF!

Effect on observables: GCRs – Heavier composition

17
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Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Arrival direction distribution above 0.1 EV

Effect on observables: GCRs – Anisotropy towards GP

17
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Effect on observables: Isotropic EGCRs – Flux conservation
Rigidity spectrum

Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction

sm
aller o bserver  size

18
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Arrival direction distribution
Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction

NOTE: Structures not significant

Effect on observables: Isotropic EGCRs – No anisotropy

18
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Effect on observables: Anisotropic EGCRs – Galactic opacity

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction distribution of observed EGCRs
(lg(R/V) = 19-20)

19
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● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction distribution of observed EGCRs
(lg(R/V) = 18-19)

Effect on observables: Anisotropic EGCRs – Galactic opacity

19
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● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction distribution of observed EGCRs
(lg(R/V) = 17-18)

Effect on observables: Anisotropic EGCRs – Galactic opacity

19

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              54

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction distribution of observed EGCRs
(lg(R/V) = 16-17)

Effect on observables: Anisotropic EGCRs – Galactic opacity

19

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              55

Injected flux Flux at Earth

Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure dipole

Effect on observables: Anisotropic EGCRs – Galactic lensing
Arrival direction at Earth

20
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Rigidity spectrum at 
Earth → possible flux 
modification

Injection direction 
distribution:
Pure single-point 
source (Cen A)

Injected flux Flux at Earth

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Effect on observables: Anisotropic EGCRs – Galactic lensing
Arrival direction at Earth

20
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Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (Galactic 
anti-centre)

Injected flux Flux at EarthArrival direction at Earth

Effect on observables: Anisotropic EGCRs – Galactic lensing

20
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Summary (1)
 

Propagation effects:
● Propagation in GMF for R = 10¹⁶ ²⁰⁻  V: change in propagation regimes from 

diffusive to ballistic
● Inflection point at a few EV (rg ~ width of GP) for all observed quantities

Effect on observables:
● GCRs: 

– Flux suppression towards higher rigidities; heavier mixed composition 
towards ‘ankle’

– Correlation with direction of GP for rigidities above 0.1 EV
● EGCRs: 

– Isotropic injection: No flux suppression and isotropic arrival direction
– Anisotropic injection: Dipole and single point source → arrival direction isotropic 

below 1 EV, possible flux modification

21
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Summary (2)
 

Implications for transition region:
● GCRs: 

– Propagation in GMF leads to ‘knee’-like feature; flux 
suppression due to maximum energy of Galactic sources 
shifts towards lower energies

– Significant contribution of GCRs originating from GP 
disfavoured at highest energies of ‘shin’ region

● EGCRs: 
– Part of ‘ankle’ may be a propagation effect in GMF

22
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Cosmic ray energy spectrum
Broken power-law with three ‘main’ features:

● ‘knee’: softening at ~1015.4 eV
● ‘ankle’: hardening at ~1018.7 eV
● high-energy cut-off  beyond ~1019.6 eV 

Further more subtle features:
● ‘low-energy ankle’ at ~1016.7 eV
● ‘2nd knee’: softening at ~1017.(0...4) eV
● ‘toe’: softening at ~1019.1 eV

Galactic cosmic rays (GCRs) for diffusive shock 
acceleration (DSA) in supernova remnants 
(SNR) dominate below ‘knee’ energies.
Extragalactic cosmic rays (EGCRs) dominate 
at energies above ‘ankle’.
Transition region (= ‘shin’) unexplained:

● unaccounted for flux

knee

ankle

2nd knee

extragalactic
flux

Knee:
● Maximum rigidity of

 Galactic sources
● Propagation effect

(leakage from Galaxy)

→ Rigidity:

B1
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Cosmic ray composition
Composition highly energy-
dependent:

● heavier beyond the ‘knee’
● maximum before ‘2nd knee’
● minimum just before ‘ankle’
● increasing mean mass at 

high-energy cut-off
Increasing mean mass 
→ rigidity-dependent change in:

● source properties (maximum 
acceleration energy)

● propagation regimes in 
magnetic fields

see also: Thoudam, Astron.Astrophys. 595 (2016) A33
At ultra-high energies, cosmic ray composition is measured 
via:

Ai: nuclear mass number of nucleus i = H, He, …, Fe

fi: fraction of nucleus i to total flux 

● Measure of mean mass of flux

Interlude:

B2
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Anisotropies
Dipole anisotropy:

● amplitude increases with energy
● no significant dipole between 

~1016.5 eV –1019 eV
● phase roughly constant in both 

energy ranges but shifts away from 
Galactic centre (GC) for highest 
energies
→ extragalactic origin likely

Small-scale anisotropies:
● amplitude and direction indicate 

strength of diffusion vs. advection: 
correlation with source direction
↔ strength of Galactic wind

see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98
Arrival direction distribution measured via multipole 
expansion:

  : right ascension

  : declination

Ylm: spherical harmonics

● l = 1: dipole anisotropy

Interlude:

α

δ

B3
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Major challenge: GMF model
x-y and x-z projections of coherent field

 for various GMF models
Jaffe13JF12Sun08

GMF not well known:
● field strength inferred indirectly via 

observables:
– Faraday rotation (for      )
– synchrotron emission (for      )
– thermal dust emission/

polarised starlight (for      )
→ uncertainty in quantities, 
contamination from other sources
of radiation

● ad hoc assumptions necessary 
(simplifications):
– morphological features
– field components (regular, 

turbulent etc.)    
B4
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Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

B5
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Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

ballistic propagation

B5
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Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

diffusive propagation

B5
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● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding

On the modification of EGCR energy spectrum

B6
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On the modification of EGCR energy spectrum

● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding

B6
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Propagation effects: GCRs – Confinement in GP
Galactic trajectories (lg(R/V) = 15 – 16.5) Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

diffusive propagation
16 18 20
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Propagation effects: GCRs – Confinement in GP
Relative time spent in GPGalactic trajectories (lg(R/V) = 16 – 18.5)

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

transition region
16 18 20
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Propagation effects: GCRs – Confinement in GP
Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Galactic trajectories (lg(R/V) = 18 – 20)

Decreasing confinement in GP with 
rigidity.

ballistic propagation
16 18 20
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Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.

Relative time spent in GPCR count reaching GPGalactic trajectories
(lg(R/V) = 15 – 16.5)

CR count decreases for 
smaller rigidities; 
inflection point at 
a few EV. 

Decreasing shielding 
from and confinement in 
GP with rigidity.

diffusive propagation
16 18 20
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Propagation effects: EGCRs – Shielding from vs. confinement in GP
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Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.

Relative time spent in GPCR count reaching GPGalactic trajectories
(lg(R/V) = 16 – 18.5)

CR count decreases for 
smaller rigidities; 
inflection point at 
a few EV. 

Decreasing shielding 
from and confinement in 
GP with rigidity.

transition region
16 18 20
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Propagation effects: EGCRs – Shielding from vs. confinement in GP
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Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.

Relative time spent in GPCR count reaching GPGalactic trajectories
(lg(R/V) = 18 – 20)

CR count decreases for 
smaller rigidities; 
inflection point at 
a few EV. 

Decreasing shielding 
from and confinement in 
GP with rigidity.

ballistic propagation
16 18 20
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Propagation effects: EGCRs – Shielding from vs. confinement in GP
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Effect on observables: GCRs – Flux suppression

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

All-particle energy spectrum (sigmoid fit)

B9
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Injection direction of observed EGCRs
forward tracking

Galactic lensing – time reversibility

Injection direction distributions of backtracked and forward tracked protons match

Injection direction of observed EGCRs
backtracking

B10
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Propagation in GMF can be quantified via 
lens
– distance of EG source to observer >> size of 

Galaxy
→ only injection direction relevant

Procedure:
1 track N particles between Earth and edge of Galaxy and store 

injection direction at edge and arrival direction at Earth
2 discretise solid angle range and ascribe numbers n and m 

to corresponding injection and arrival directions

Effect on observables: Anisotropic EGCRs – Galactic lensing

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work
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3 count occurrence o of each injection/arrival direction 
pair (n,m)

● spans matrix L (lnm = o)
● L signifies distribution of arrival directions m at the observer point for each 

injection direction n

4 matrix weighted by its 1-norm
(= number of backtracked particles N) defines lens

→ calculate arrival direction distribution for any 
injection direction distribution:

B11

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work

Effect on observables: Anisotropic EGCRs – Galactic lensing
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Spectrum of lensed isotropic
injection distribution

Galactic lensing – testing lens

Lensed arrival direction distribution and spectrum of isotropic injection distribution is as 
expected.

Arrival direction of lensed isotropic
injection distribution

B12
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

Distribution of harmonic 
moments of arrival direction 
distribution above 1 EV 
→  strong isotropisation 
by GMF

Injection direction 
distribution:
Pure dipole

Injected flux Flux at EarthDistribution of moments above 1 EV

B13
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Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (minimum 
Galactic transparency; 
Galactic centre)

Injected flux Flux at Earth

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

Flux at Earth

B13
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Goal: Incorporate propagation effects
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Galactocentric distribution of SNRs
Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
B14
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data

Rigidity spectrum before correction

Goal: Incorporate propagation effects

B14
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data

Rigidity spectrum after correction

Goal: Incorporate propagation effects

B14
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Flux with or without leakage/cut-off

Goal: Incorporate propagation effects
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Flux with or without leakage/cut-off

cut-off

lg(RCut /V) = 16.0

lg(RCut /V) = 15.0

Goal: Incorporate propagation effects
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Flux with or without leakage/cut-off

cut-off leakage

lg(RCut /V) = 16.0

lg(RCut /V) = 15.0

Goal: Incorporate propagation effects
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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cut-off leakage

combined effect
lg(RCut /V) = 15.0

lg(RCut /V) = 16.0

Goal: Incorporate propagation effects
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Injection direction distribution of EGCRs
Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data

more particlesfewer particles

Goal: Incorporate propagation effects

B14
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Injection direction distribution of EGCRs
Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data

more particlesfewer particles

Goal: Incorporate propagation effects

B14
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Rigidity spectrum of lensed EGCRs flux
Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data

Goal: Incorporate propagation effects

B14
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Energy spectrum of GCRs with leakage 
and cutoff (lg(RCut /V) = 16.5)

H
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Goal: Incorporate propagation effects
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Energy spectrum of EGCRs with spectral
break and cutoff (lg(RCut /V) = 19.25)

H

spectral data

He

simulated
all-particle flux,
leakage+cut-off

Goal: Incorporate propagation effects
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Prepare simulated data:
● GCRs:

● employ realistic source distribution
● include maximum rigidity cut-off of Galactic sources

→ rigidity spectrum
● EGCRs:

● apply Galactic lens to realistic injection 
direction distribution

● point sources from “Auger Starbust” paper: 
APJ.Lett. 853 (2018) 2, L29

● rigidity- and distance-dependent smearing
→ rigidity spectrum

● Scale rigidity spectra to different nuclei 
→ energy spectra

● Find suitable injection spectra:
● 4-component composition: H, He, O, Fe
● GCR component to energies around “knee”
● EGCR component to post-“ankle” energies

→ all-particle spectra that reproduce data
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Total combined energy spectrum

spectral data

total predicted flux 
(GCR+ EGCR)

“missing” flux

Goal: Incorporate propagation effects
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Liouville’s Theorem
● Objection to flux modification of 

EGCRs: Liouville’s Theorem
– If phase space density is 

conserved, so is flux
– BUT: If Liouville holds, then 

other quantities are 
conserved, i.a. first adiabtic 
invariant 
~ classical magnetic moment 
(APJ 842:54, APJ 830:19):
 

       = const.                        small⇒

B15
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

B16
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

B16
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

B16
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

B16
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Summary
 

Propagation effects in the GMF need to be considered in the transition region!
● GCRs: flux suppression towards higher rigidities due to leakage from Galaxy
● EGCRs: flux modifications depending on nature & direction of injected anisotropy

Incorporate propagation effects into the total flux
● GCRs: leakage leads to earlier onset of suppression; degree dependent on RCut

● EGCRs: injected flux from SBG/AGN leads to “ankle”-like spectral break

Outlook
● incorporate realistic injection composition for EGCRs
● fit resulting all-particle energy spectra to flux data
● comparison with composition & anisotropy data

B17
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