## **Cosmic rays in the transition region between the knee and the ankle**

## Alex Kääpä

### Kick-Off Meeting SFB 1491 A3 $2^{nd}$ June 2022



## BERGISCHE UNIVERSITÄT WUPPERTAL

SPONSORED BY THE

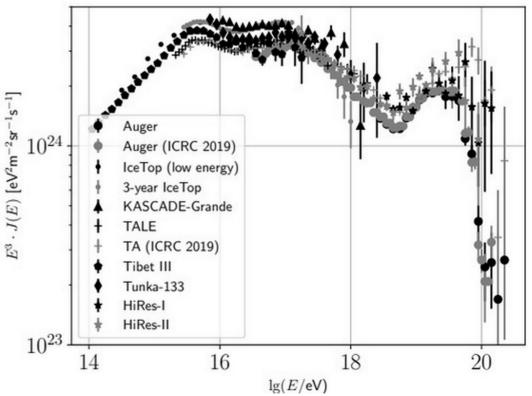


Federal Ministry of Education and Research Status quo in data

Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

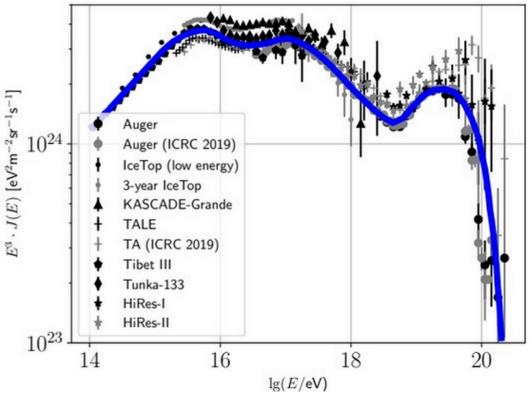
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

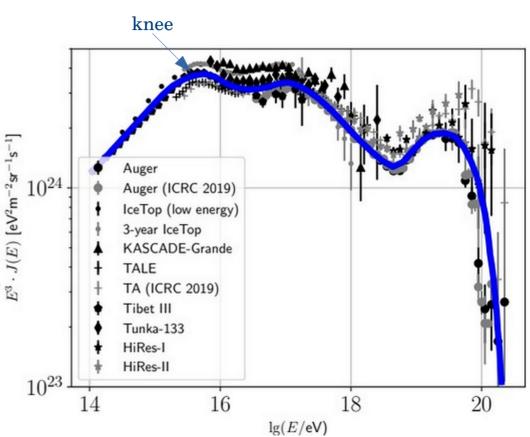
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

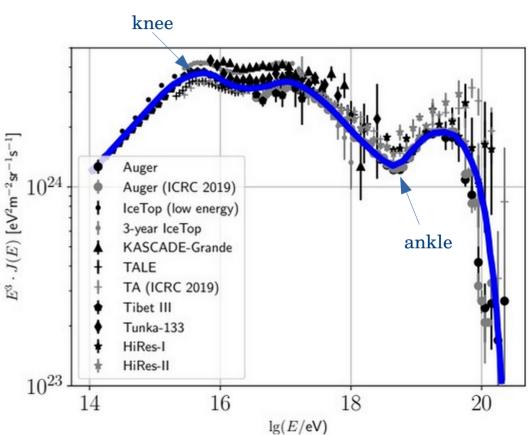
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

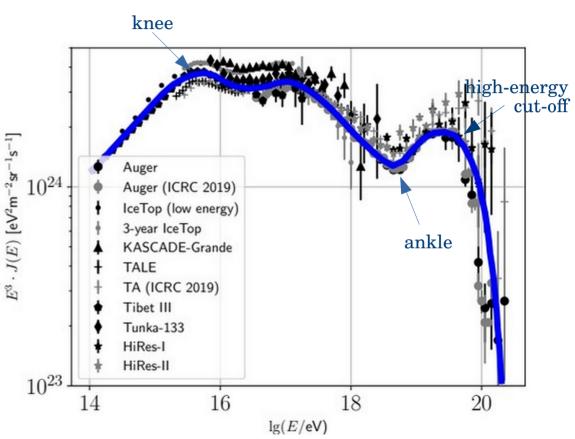
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

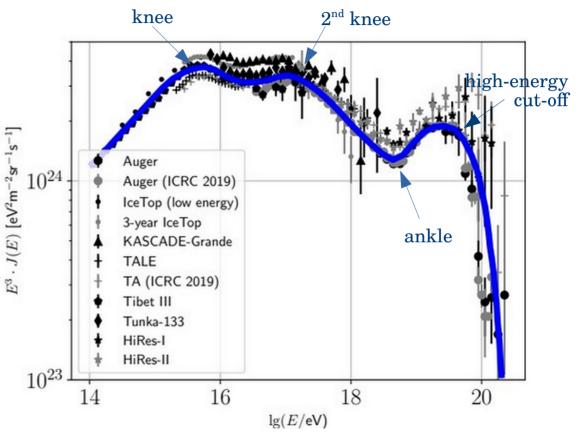
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

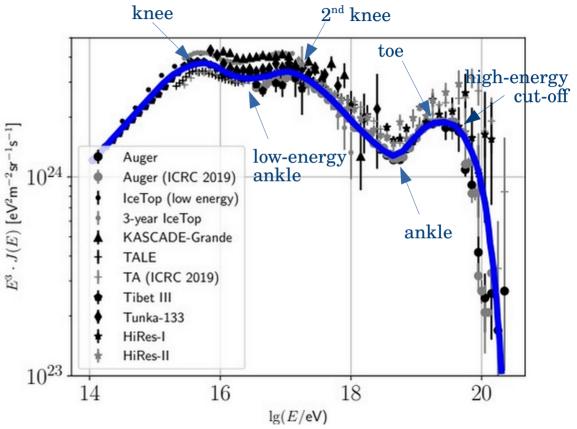
• unaccounted for flux

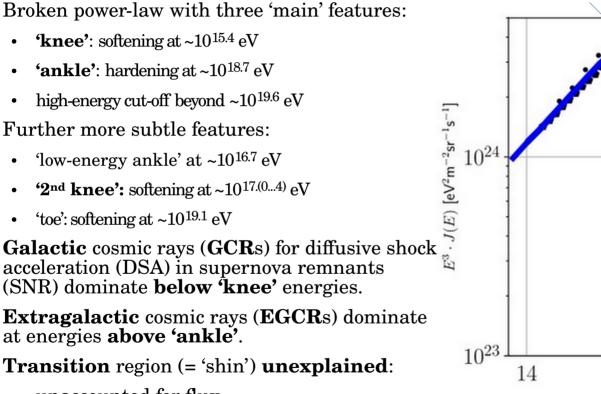


Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$


**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

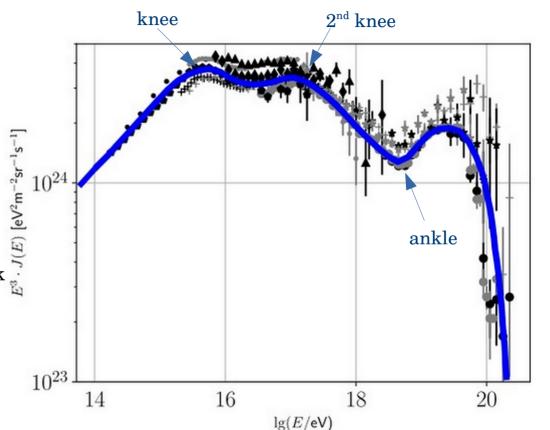
**Transition** region (= 'shin') **unexplained**:

• unaccounted for flux





unaccounted for flux •


•

•

•

•

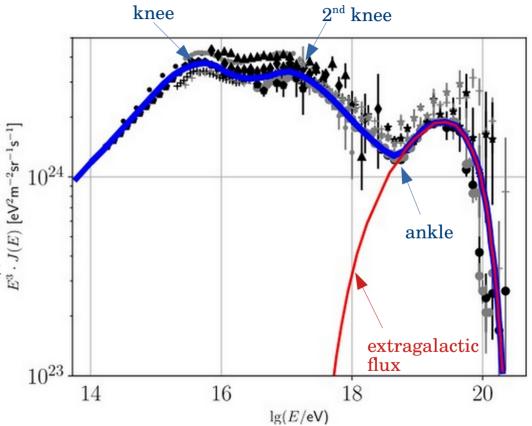
•



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

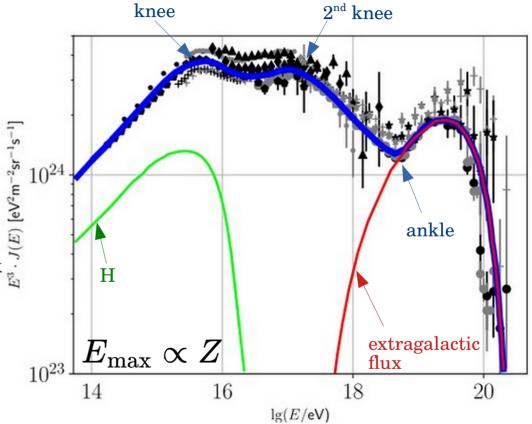
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

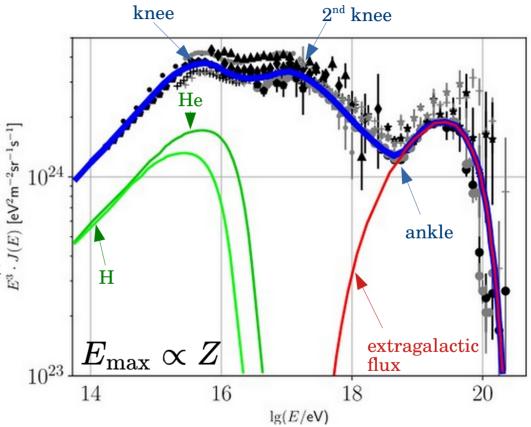
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

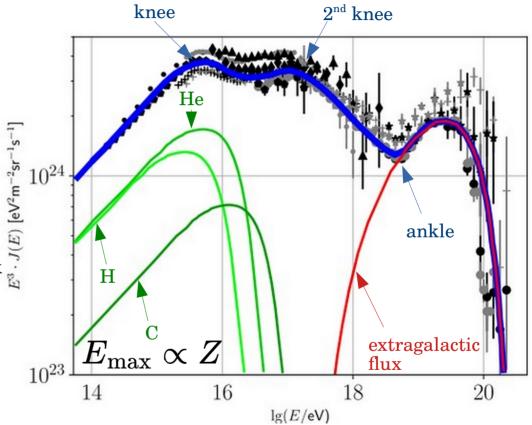
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- **'ankle'**: hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

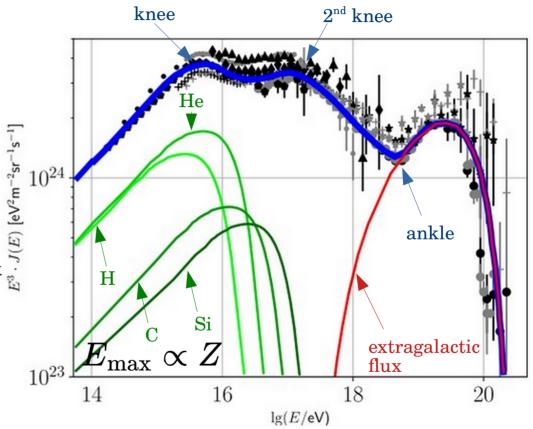
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

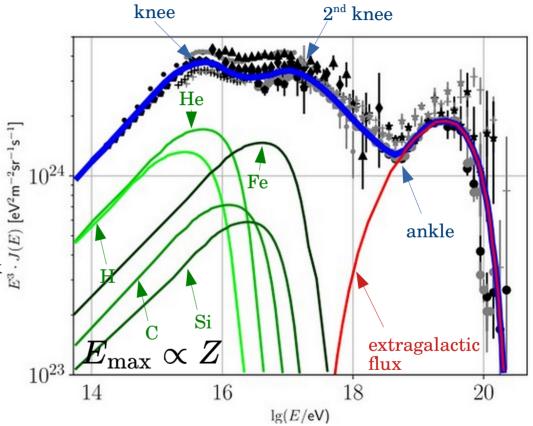
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \text{ eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

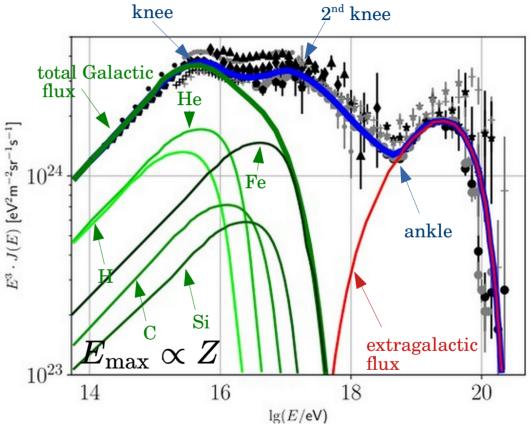
• unaccounted for flux



Broken power-law with three 'main' features:

- **'knee'**: softening at  $\sim 10^{15.4} \text{ eV}$
- **'ankle'**: hardening at  $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond  $\sim 10^{19.6} \,\mathrm{eV}$

Further more subtle features:


- 'low-energy ankle' at  ${\sim}10^{16.7}\,{\rm eV}$
- '2<sup>nd</sup> knee': softening at ~ $10^{17.(0...4)}$  eV
- 'toe': softening at  $\sim 10^{19.1} \text{ eV}$

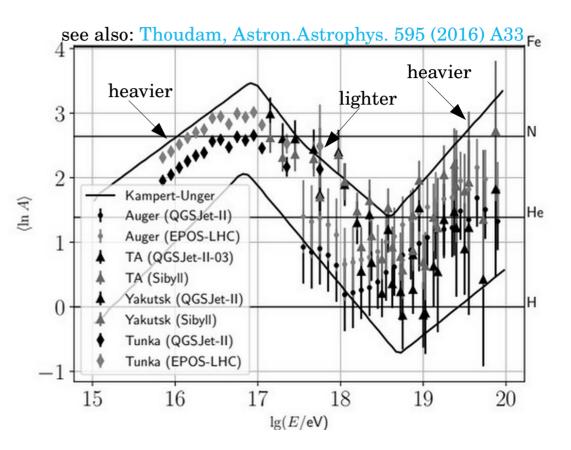
**Galactic** cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

**Extragalactic** cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

**Transition** region (= 'shin') **unexplained**:

• unaccounted for flux




# Cosmic ray composition

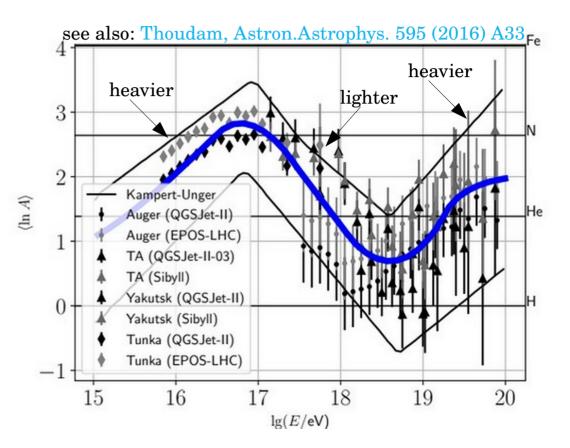
Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2<sup>nd</sup> knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → **rigidity-dependent** change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields




# Cosmic ray composition

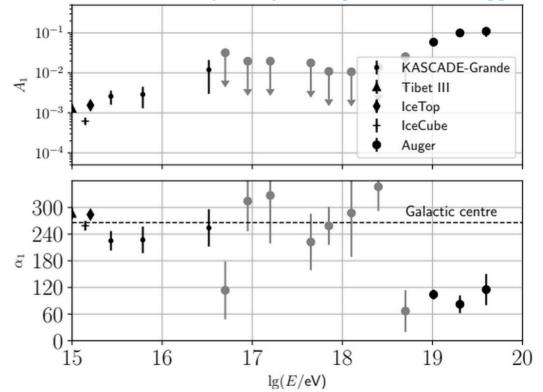
Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2<sup>nd</sup> knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → **rigidity-dependent** change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields




# Anisotropies

Dipole anisotropy:

- amplitude increases with energy
- no significant dipole between  $\sim 10^{16.5} \text{ eV} 10^{19} \text{ eV}$
- phase roughly constant in both energy ranges but shifts away from Galactic centre (GC) for highest energies
  - → **extragalactic** origin likely

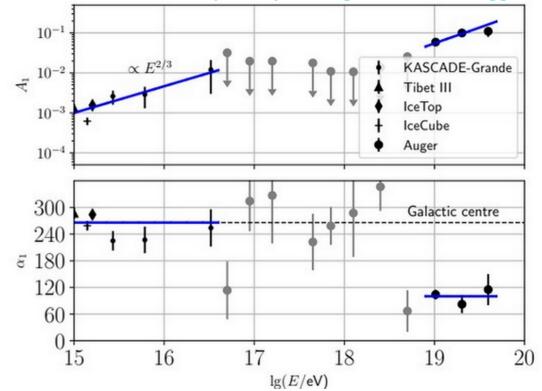
Small-scale anisotropies:

 amplitude and direction indicate strength of diffusion vs. advection: correlation with source direction
 ⇔ strength of Galactic wind



#### see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98

Alex Kääpä a.kaeaepae@uni-wuppertal.de


# Anisotropies

Dipole anisotropy:

- amplitude increases with energy
- no significant dipole between  $\sim 10^{16.5} \text{ eV} 10^{19} \text{ eV}$
- phase roughly constant in both energy ranges but shifts away from Galactic centre (GC) for highest energies
  - → **extragalactic** origin likely

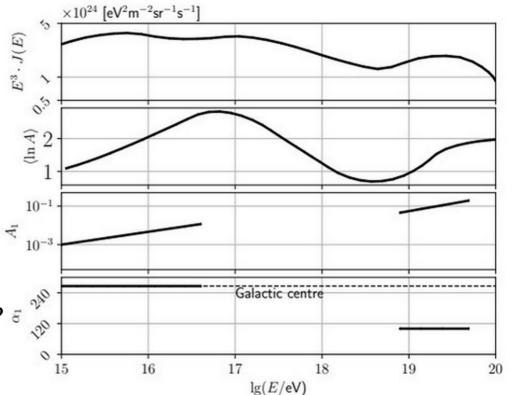
Small-scale anisotropies:

 amplitude and direction indicate strength of diffusion vs. advection: correlation with source direction
 strength of Galactic wind



#### see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98

Alex Kääpä a.kaeaepae@uni-wuppertal.de


## "All" data in one look

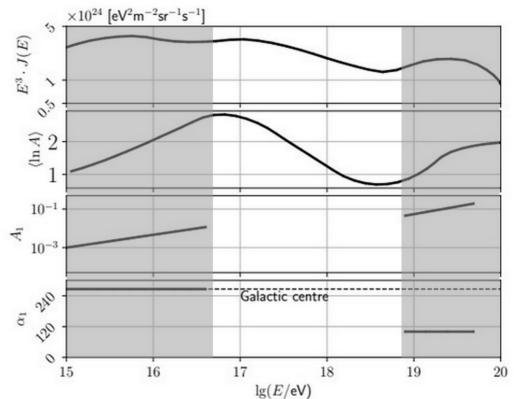
Composition:

- What **explains '2<sup>nd</sup> knee'** if maximum mean mass is reached well before?
- Why does the composition become **lighter up to the 'ankle'**?

Spectrum:

- How could **GCRs** be accelerated up to energies **beyond the 'knee'**?
- What **constraints** are there on **low-energy** contribution of **EGCRs**? *ĕ*
- How are observables affected by the propagation in the Galactic magnetic field (GMF)?




## "All" data in one look

Composition:

- What **explains '2<sup>nd</sup> knee'** if maximum mean mass is reached well before?
- Why does the composition become **lighter up to the 'ankle'**?

Spectrum:

- How could **GCRs** be accelerated up to energies **beyond the 'knee'**?
- What **constraints** are there on **low-energy** contribution of **EGCRs**
- How are observables affected by the propagation in the Galactic magnetic field (GMF)?



# Galactic magnetic field (GMF)

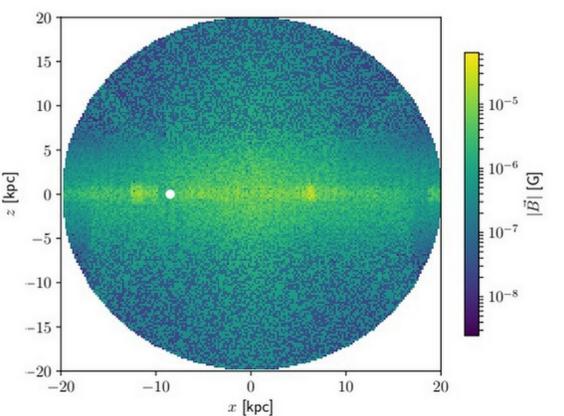
x-z projection of JF12 field

**GMF model: JF12** (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~  $0.1 1 \mu G$
- Edge of Galaxy: 10 100 nG


**Gyroradius**  $r_{g}$ :

$$r_{\rm g}[{\rm pc}] \approx 11 \cdot \frac{R \,[{\rm PV}] \cdot v_{\perp}/c}{B \,[\mu {\rm G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de



# Galactic magnetic field (GMF)

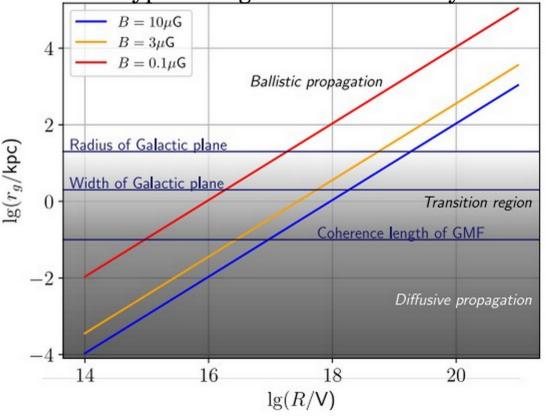
**GMF model: JF12** (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

#### **Gyroradius** $r_{g}$ :


$$r_{\rm g}[{
m pc}] \approx 11 \cdot \frac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Change of gyroradius with rigidity plus typical length scales of Galaxy



# Galactic magnetic field (GMF)

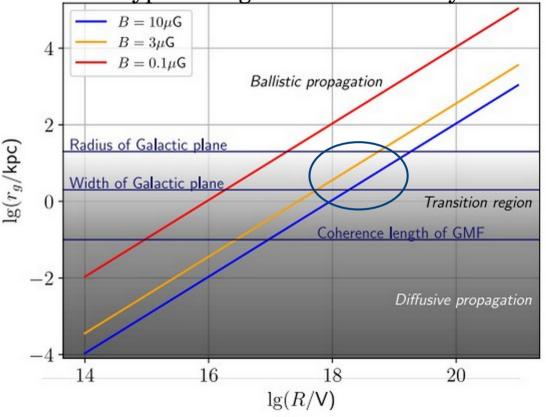
**GMF model: JF12** (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

#### **Gyroradius** $r_{g}$ :


$$r_{\rm g}[{
m pc}] \approx 11 \cdot \frac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

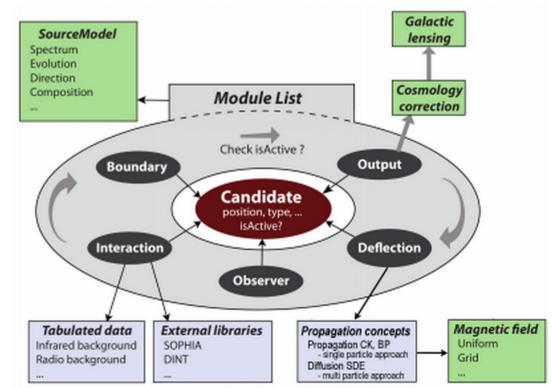
Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

### Change of gyroradius with rigidity plus typical length scales of Galaxy



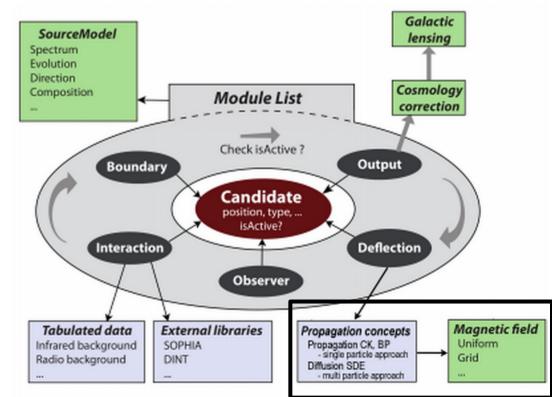

Simulation software, computational challenges and requirements

# Simulation software: CRPropa 3

**CRPropa 3**: Monte-Carlo based software for simulation of CR propagation:

- Modular structure:
  - Modules modify properties of candidate at each step of simulation
  - Source, interaction, deflection, observer, boundary, output
- Contain all atomic nuclei,photonuclear interactions, magnetic field models, propagation algorithms, ...

#### Modular structure of CRPropa 3




# Simulation software: CRPropa 3

**CRPropa 3**: Monte-Carlo based software for simulation of CR propagation:

- Modular structure:
  - Modules modify properties of candidate at each step of simulation
  - Source, interaction, deflection, observer, boundary, output
- Contain all atomic nuclei,photonuclear interactions, magnetic field models, propagation algorithms, ...

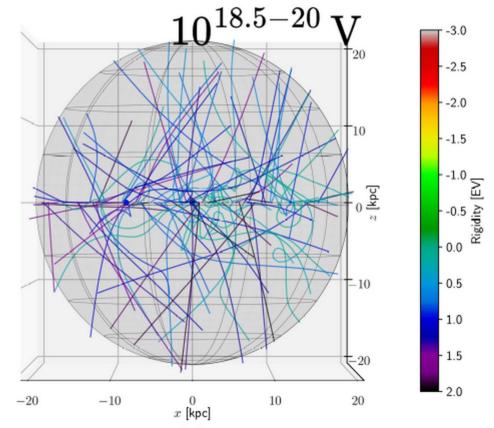
#### Modular structure of CRPropa 3



# **Ballistic propagation**

Solve equation of motion:

$$\ddot{\vec{r}} = \frac{q}{E/c^2} \left( \vec{v} \times \vec{B} \right)$$


- tracking of single particles (microscopic view)
- best suited when  $r_g$  is large
- applicable for arbitrary fields
   → more fundamental and precise\*
- particle trajectories are tracked
  - $\rightarrow$  possibility of anisotropy studies
- Implemented in CRPropa via Cash-Karp and Boris-Push

#### BUT:

- below  $\approx 10^{17}$  V, computation times start to diverge
- \*: precision dependent on grid size

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

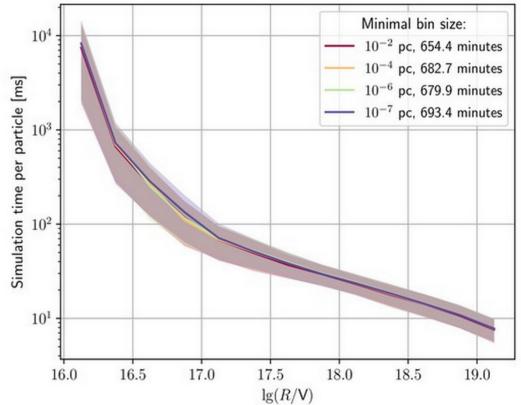
Trajectories of ballistically propagating GCRs



# **Ballistic propagation**

Solve equation of motion:

$$\ddot{\vec{r}} = \frac{q}{E/c^2} \, \left( \vec{v} \times \vec{B} \right)$$


- tracking of single particles (microscopic view)
- best suited when  $r_g$  is large
- applicable for arbitrary fields
   → more fundamental and precise\*
- particle trajectories are tracked
  - $\rightarrow$  possibility of anisotropy studies
- Implemented in CRPropa via Cash-Karp and Boris-Push

#### BUT:

- below  $\approx 10^{17}$  V, computation times start to diverge
- \*: precision dependent on grid size

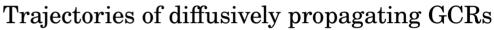
#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

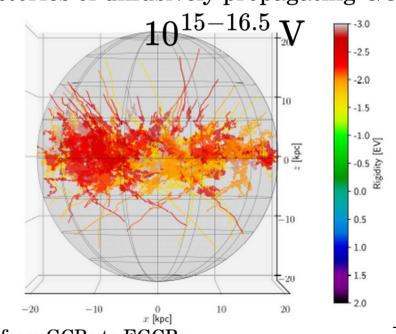
#### Change of computation time per particle with rigidity for propagation in GMF



# Diffusive propagation

Solve transport equation:


$$egin{aligned} &rac{\partial n}{\partial t} = oldsymbol{
aligned} \cdot ig( Doldsymbol{
aligned} n - ec{u}n ig) - rac{n}{ au_f} - rac{n}{ au_d} + Q \ &+ rac{\partial}{\partial p} ig( p^2 D_{pp} rac{\partial}{\partial p} rac{n}{p^2} - ig( \dot{p} - rac{p}{3} oldsymbol{
aligned} \cdot ec{u} ig) n ig) \end{aligned}$$


multi-particle approach:

- change of momentum density (macroscopic view)
- best suited when  $r_g$  is small & turbulent B-field component dominant
- generally shorter computation times

NOTE:

- CRPropa 3 has implement diffusive propagation module via SDEs (JCAP 06 (2017) 046)
- For a full description of the transition region both propagation methods must be applied





Alex Kääpä a.kaeaepae@uni-wuppertal.de

### Forward tracking:

- particle tracked **from source to observer**
- highly **inefficient** (1:10<sup>28</sup> for observer the size of Earth)
  - → increase observer size, BUT: this introduces **artefacts**!

## **Only propagation** effects (i.e. only deflections/no interactions):

propagation of **one nuclear species: proton** → results can be scaled to all nuclei (important for composition)

### Galactic magnetic field model:

• JF12 (including regular, random and striated components)

 $\rightarrow$  edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around Galactic centre)

### Source properties:

•  $R^{-1}$  injection spectrum,  $\lg(R/V) = 16.0 - 20.0$  ( $\lg(R_{Fe}(@knee)/V) = 15.4 - \lg(26) = 14$ !)

Forward tracking:

- particle tracked **from source to observer**
- highly **inefficient** (1:10<sup>28</sup> for observer the size of Earth)
  - → increase observer size, BUT: this introduces **artefacts**!

## **Only propagation** effects (i.e. only deflections/no interactions):

#### • propagation of **one nuclear species: proton**

 $\rightarrow$  results can be scaled to all nuclei (important for composition)

### Galactic magnetic field model:

• **JF12** (including regular, random and striated components)

 $\rightarrow$  edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around Galactic centre)

### Source properties:

•  $R^{-1}$  injection spectrum,  $\lg(R/V) = 16.0 - 20.0$  ( $\lg(R_{Fe}(@knee)/V) = 15.4 - \lg(26) = 14$ !)

Forward tracking:

- particle tracked **from source to observer**
- highly **inefficient** (1:10<sup>28</sup> for observer the size of Earth)
  - → increase observer size, BUT: this introduces **artefacts**!

**Only propagation** effects (i.e. only deflections/no interactions):

propagation of one nuclear species: proton
 → results can be scaled to all nuclei (important for composition)

## Galactic magnetic field model:

• JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around Galactic centre)

Source properties:

•  $R^{-1}$  injection spectrum,  $\lg(R/V) = 16.0 - 20.0$  ( $\lg(R_{Fe}(@knee)/V) = 15.4 - \lg(26) = 14$ !)

### Forward tracking:

- particle tracked **from source to observer**
- highly **inefficient** (1:10<sup>28</sup> for observer the size of Earth)
  - → increase observer size, BUT: this introduces **artefacts**!

## **Only propagation** effects (i.e. only deflections/no interactions):

## propagation of **one nuclear species: proton** → results can be scaled to all nuclei (important for composition)

## Galactic magnetic field model:

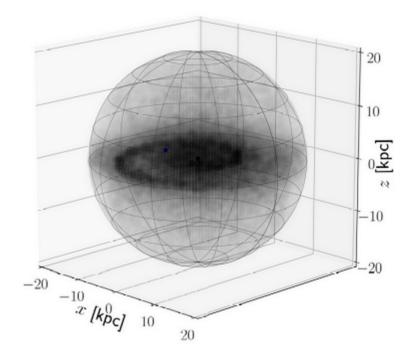
• **JF12** (including regular, random and striated components)

 $\rightarrow$  edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere around Galactic centre)

### Source properties:

•  $R^{-1}$  injection spectrum,  $\lg(R/V) = 16.0 - 20.0$  ( $\lg(R_{Fe}(@knee)/V) = 15.4 - \lg(26) = 14$ !)

Sources:


- GCRs:
  - homogeneously distributed in GP
  - isotropic injection direction distribution
- EGCRs:
  - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

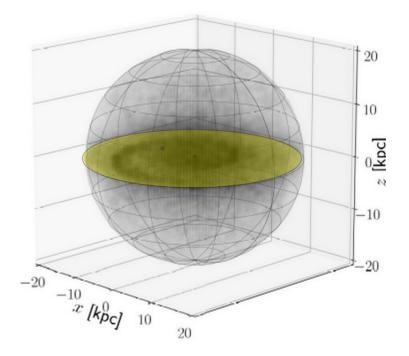
- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Galactic volume with GMF



Sources:


#### GCR source distribution

- GCRs:
  - homogeneously distributed in GP
  - isotropic injection direction distribution
- EGCRs:
  - isotropic injection: Lambertian injection direction distribution from Galactic shell

**Observers**:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

a.kaeaepae@uni-wuppertal.de Alex Kääpä



#### Sources:

- EGCR source distribution
- 20 10 [kpc] 65 -1020-20 $\frac{-10}{x}$  [k\_p\_c] 10 20

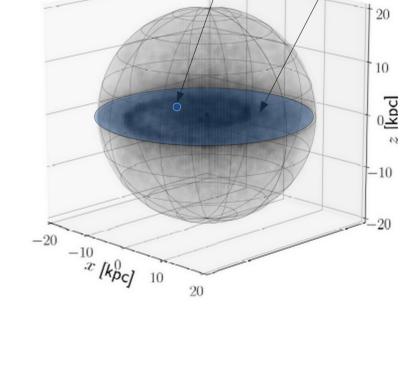


- homogeneously distributed in GP
- isotropic injection direction distribution
- EGCRs:
  - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

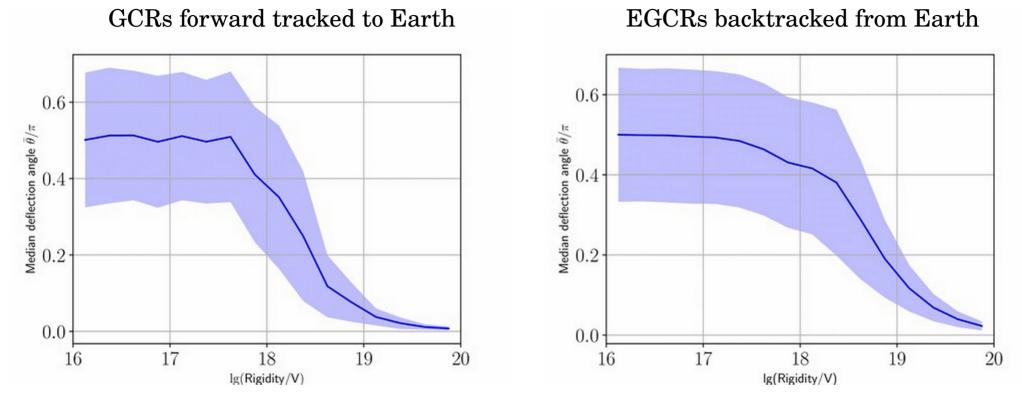
Alex Kääpä a.kaeaepae@uni-wuppertal.de


Sources:

- GCRs:
  - homogeneously distributed in GP
  - isotropic injection direction distribution
- EGCRs:
  - **Isotropic injection:** Lambertian injection direction distribution from Galactic shell

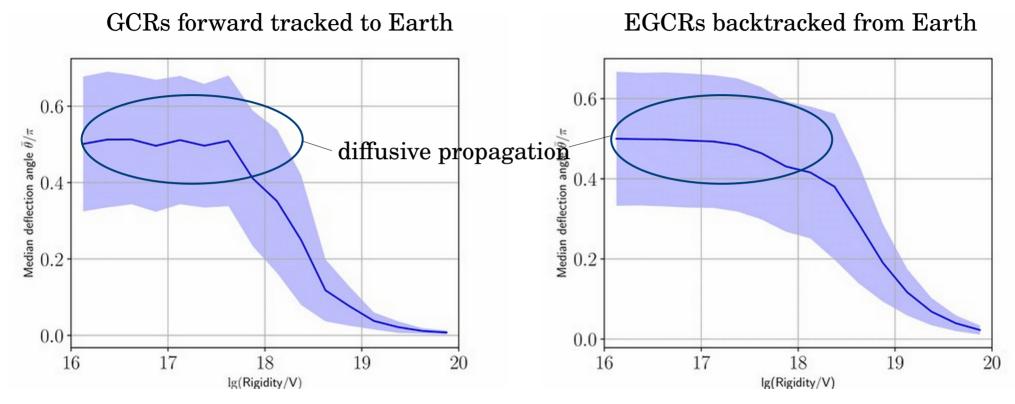
Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)


Alex Kääpä a.kaeaepae@uni-wuppertal.de



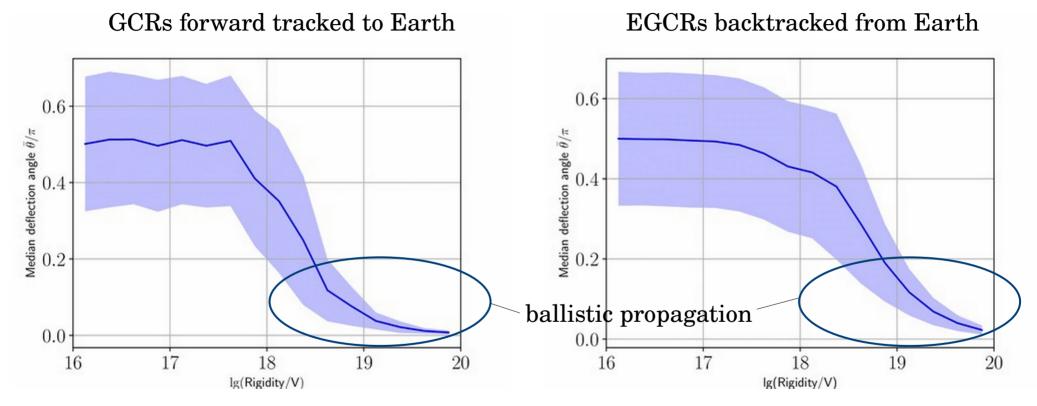
Observer types: Earth and GP


## Propagation effects in the GMF

## Change in propagation regimes: Deflection angle

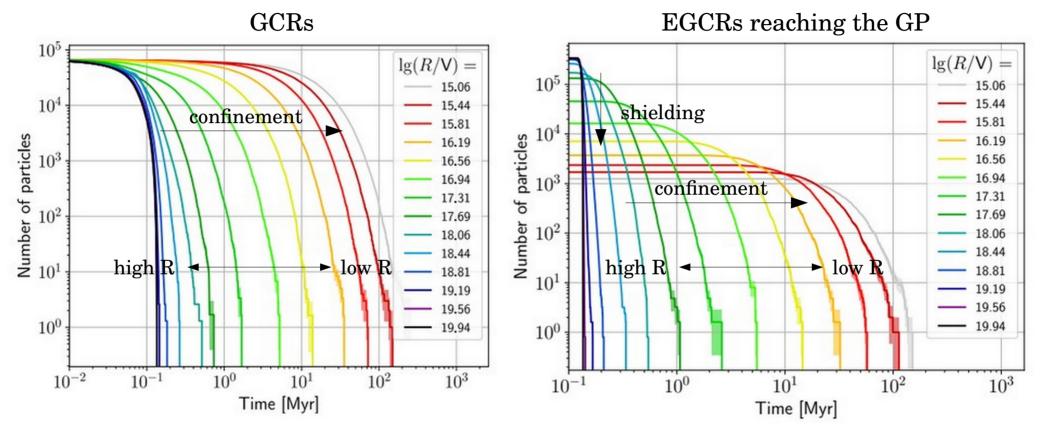


 $\theta = \pi/2$  for  $\lg(R/V) \le 18 \Rightarrow$  diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs


## Change in propagation regimes: Deflection angle



 $\theta = \pi/2$  for  $\lg(R/V) \le 18 \Rightarrow$  diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs


15

## Change in propagation regimes: Deflection angle

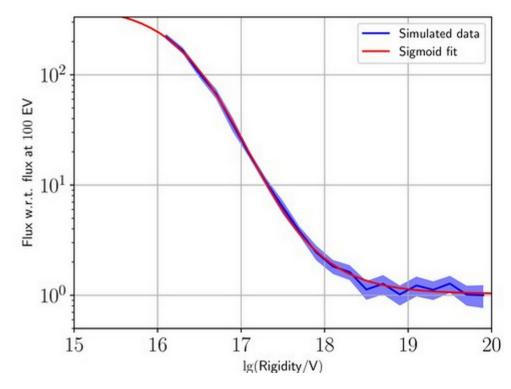


 $\theta = \pi/2$  for  $\lg(R/V) \le 18 \Rightarrow$  diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs

## **Propagation effects: Galactic residence time**



NOTE: Lowest-rigidity particles have residence times up to 100 Myr.


### Effect on observables: GCRs - Flux suppression

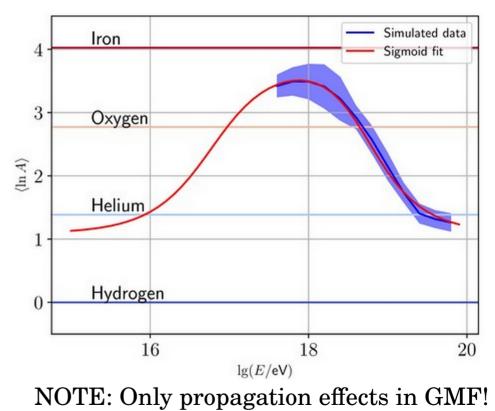
Rigidity spectrum (sigmoid fit)

#### Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV



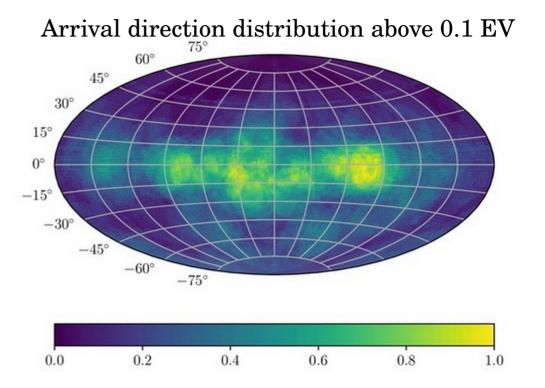

### Effect on observables: GCRs – Heavier composition

Mean logarithm of mass number (sigmoid fit)

Decreasing confinement → **flux reduction** 

## Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV



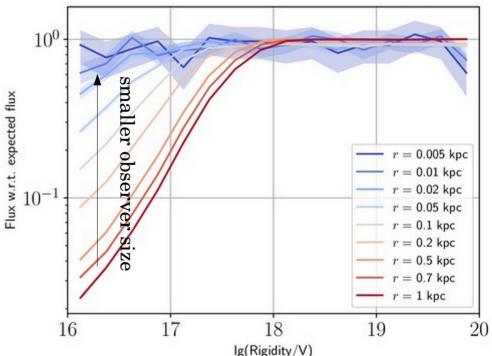

### Effect on observables: GCRs – Anisotropy towards GP

Decreasing confinement → **flux reduction** 

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV




### Effect on observables: Isotropic EGCRs – Flux conservation

Apparent flux suppression for large observer sphere sizes; effect vanishes as  $r \rightarrow 0$ .

#### Increased confinement in GP compensates increased shielding:

 $\rightarrow$  flux conservation

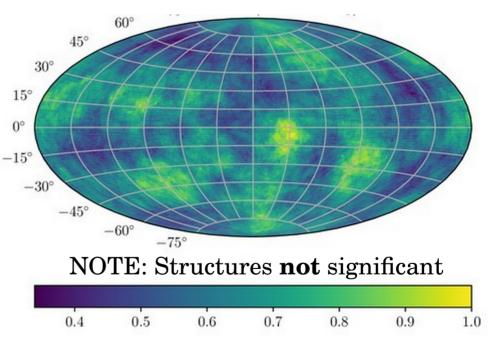
**Isotropic arrival direction** 



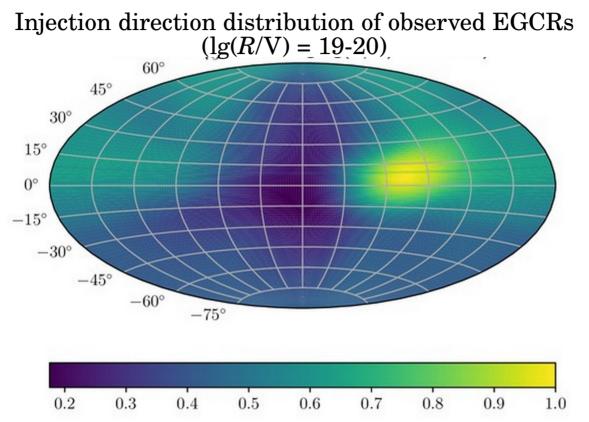
Rigidity spectrum

Alex Kääpä a.kaeaepae@uni-wuppertal.de

### Effect on observables: Isotropic EGCRs – No anisotropy


Apparent flux suppression for large observer sphere sizes; effect vanishes as  $r \rightarrow 0$ .

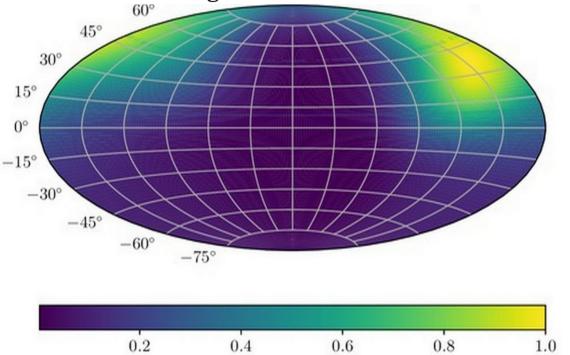
Increased confinement in GP compensates increased shielding:


→ flux conservation

**Isotropic arrival direction** 

#### Arrival direction distribution

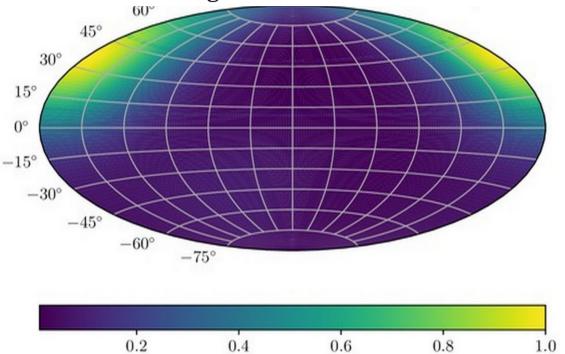



Alex Kääpä a.kaeaepae@uni-wuppertal.de



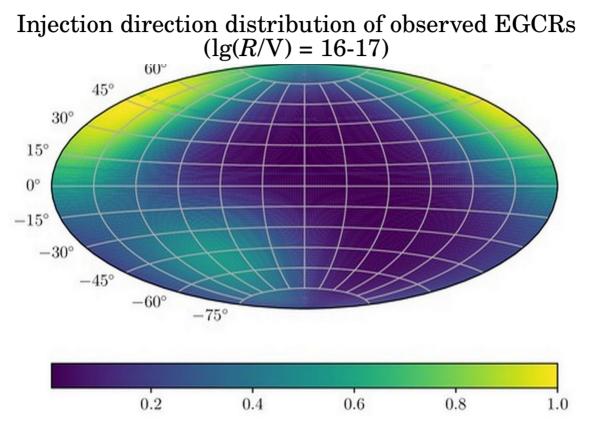
• Regions of enhanced/suppressed transparency **shift with rigidity** 

Alex Kääpä a.kaeaepae@uni-wuppertal.de


Injection direction distribution of observed EGCRs  $(\lg(R/V) = 18-19)$ 



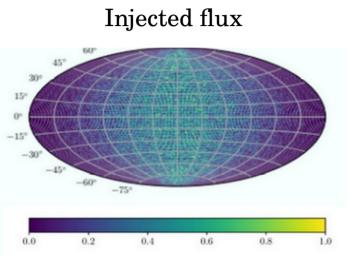
• Regions of enhanced/suppressed transparency **shift with rigidity** 

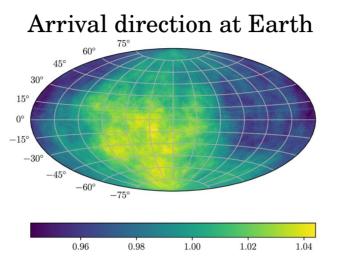

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Injection direction distribution of observed EGCRs  $(\lg(R/V) = 17-18)$ 

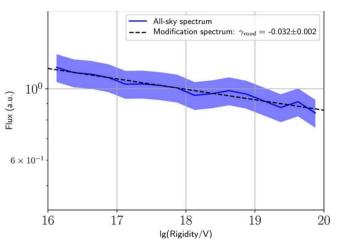


• Regions of enhanced/suppressed transparency **shift with rigidity** 


Alex Kääpä a.kaeaepae@uni-wuppertal.de




• Regions of enhanced/suppressed transparency **shift with rigidity** 

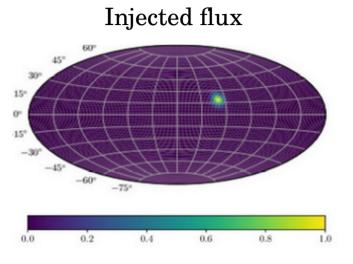

Alex Kääpä a.kaeaepae@uni-wuppertal.de

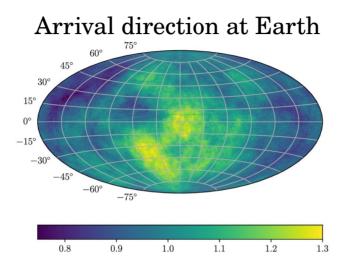
### Effect on observables: Anisotropic EGCRs – Galactic lensing



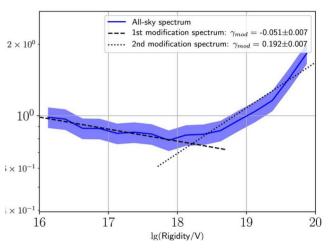


Flux at Earth





Injection direction distribution: **Pure dipole** 

- surviving dipole in arrival direction distribution above 1 EV
- strong isotropisation by GMF at lower energies

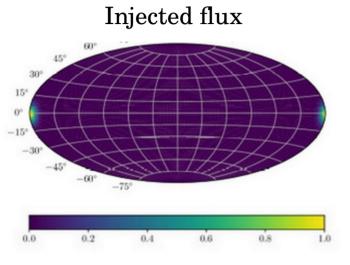

#### Rigidity spectrum at Earth → **possible flux modification**

### Effect on observables: Anisotropic EGCRs – Galactic lensing



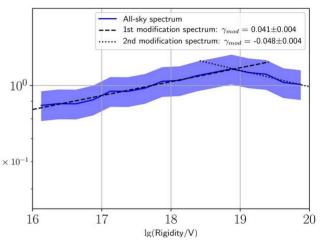


Flux at Earth




Injection direction distribution: **Pure single-point source** (Cen A) surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies


#### Rigidity spectrum at Earth → **possible flux modification**

### Effect on observables: Anisotropic EGCRs – Galactic lensing



Arrival direction at Earth

Flux at Earth



Injection direction distribution: **Pure single-point source** (Galactic anti-centre) surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

#### Rigidity spectrum at Earth → **possible flux modification**

Alex Kääpä a.kaeaepae@uni-wuppertal.de

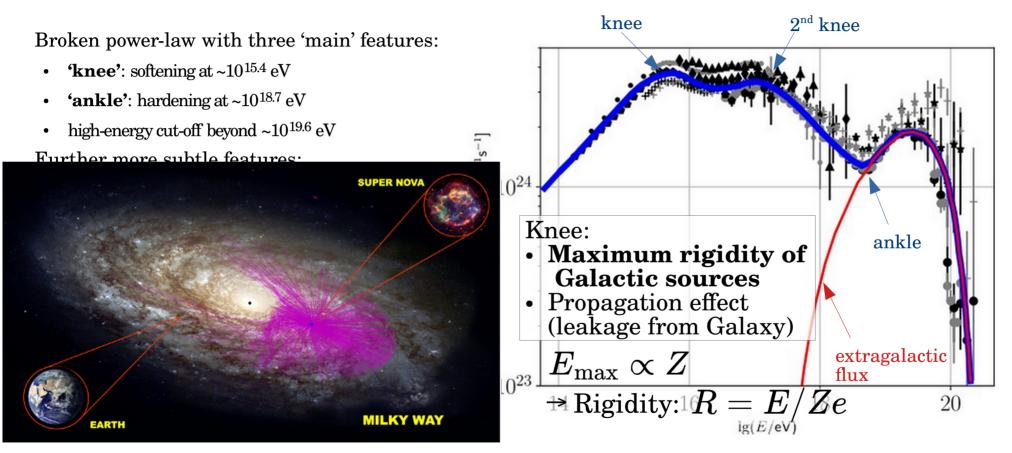
## Summary (1)

Propagation effects:

- Propagation in GMF for  $R = 10^{16-20}$  V: change in propagation regimes from diffusive to ballistic
- Inflection point at a few EV ( $r_g \sim$  width of GP) for all observed quantities

Effect on observables:

- GCRs:
  - **Flux suppression** towards higher rigidities; **heavier mixed composition** towards 'ankle'
  - Correlation with direction of GP for rigidities above 0.1 EV
- EGCRs:
  - Isotropic injection: No flux suppression and isotropic arrival direction
  - Anisotropic injection: Dipole and single point source → arrival direction isotropic below 1 EV, possible flux modification


## Summary (2)

Implications for transition region:

- GCRs:
  - Propagation in GMF leads to 'knee'-like feature; flux suppression due to maximum energy of Galactic sources shifts towards lower energies
  - Significant contribution of **GCRs originating from GP disfavoured** at highest energies of 'shin' region
- EGCRs:
  - Part of 'ankle' may be a propagation effect in GMF

## Thank you for your attention!

## Cosmic ray energy spectrum



#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

# Interlude:

Composition dependent:

At ultra-high energies, cosmic ray composition is measured via:

 $\langle \ln A \rangle = \sum f_i \cdot \ln A_i$ 

- heavier k
- maximur
- minimun
- increasi high-ene

 $A_i$ : nuclear mass number of nucleus i = H, He, ..., Fe

Increasing  $f_i$ : fraction of nucleus *i* to total flux

- source pr accelera
- Measure of mean mass of flux
- propaga magnetic .....

#### Aniantunion

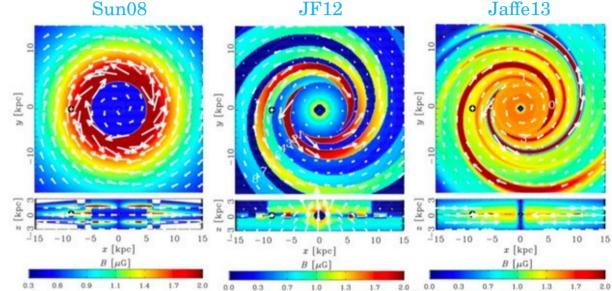
## Interlude:

Dipole anisot

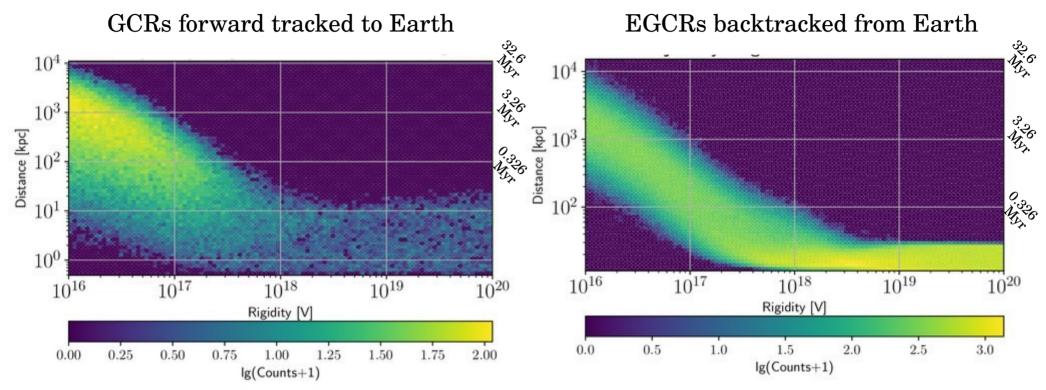
Arrival direction distribution measured via multipole amplitud . expansion: no signi • phase represented  $I(lpha,\delta)=1+\sum_{l>1}\sum_{m=1}^{r}a_{lm}Y_{lm}(\pi/2-\delta,lpha)$ energies  $\rightarrow$  extrag  $\alpha$ : right ascension Small-scale a  $\delta$ : declination amplitud  $Y_{lm}$ : spherical harmonics • strength correlatic ⇔ streng • *l* = 1: dipole anisotropy

(2020) pp.1-98




## Major challenge: GMF model

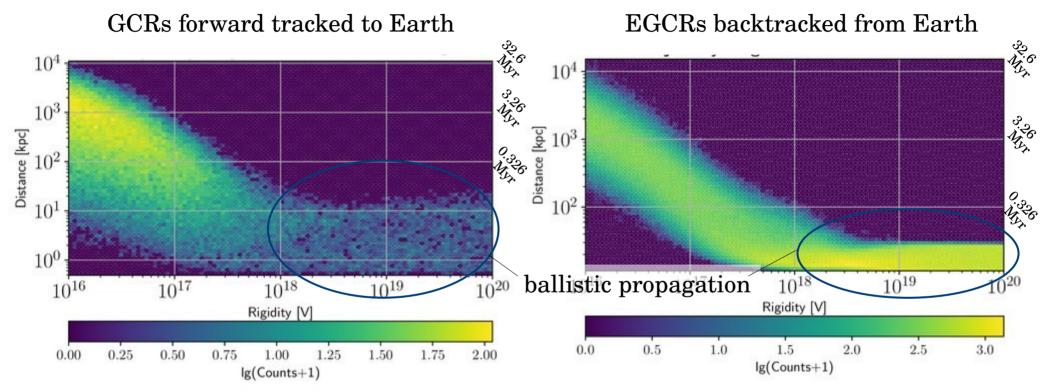
GMF not well known:


- field strength inferred indirectly via observables:
  - Faraday rotation (for B)
  - synchrotron emission (for B)
  - thermal dust emission/ polarised starlight (for <u>B)</u>
  - → uncertainty in quantities, contamination from other sources of radiation
- ad hoc assumptions necessary (simplifications):
  - morphological features
  - field components (regular, turbulent etc.)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### x-y and x-z projections of coherent field for various GMF models

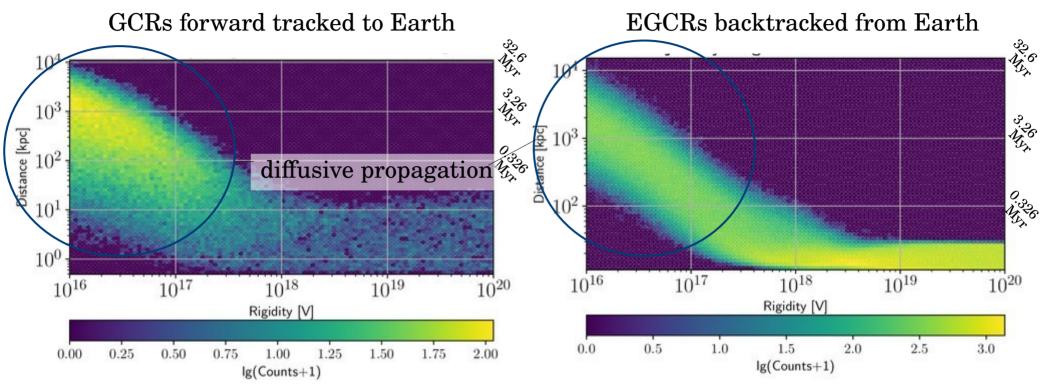



## Change in propagation regimes: Propagation time



Propagation time increases below rigidities of a few EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

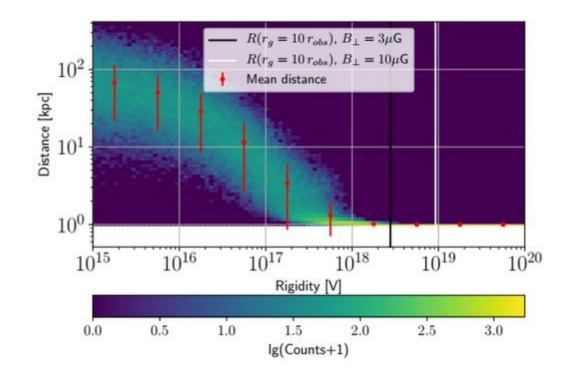

## Change in propagation regimes: Propagation time



Propagation time increases below rigidities of a few EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

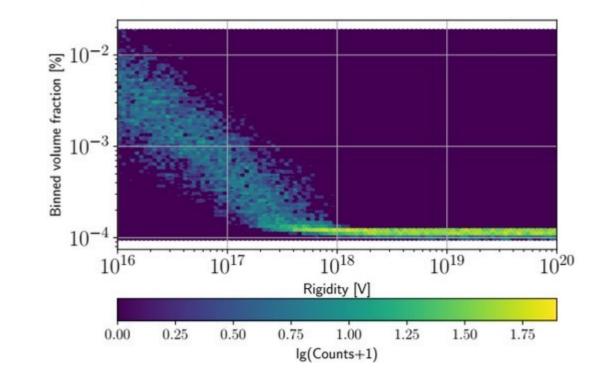
## Change in propagation regimes: Propagation time




Propagation time increases below rigidities of a few EV.

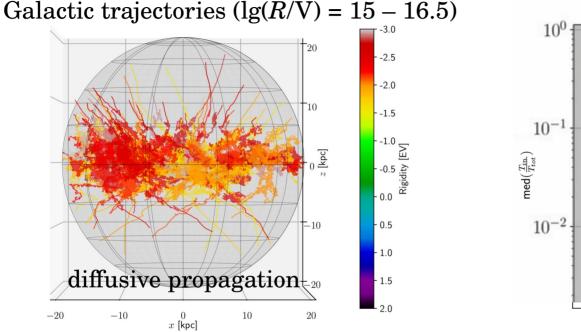
Alex Kääpä a.kaeaepae@uni-wuppertal.de

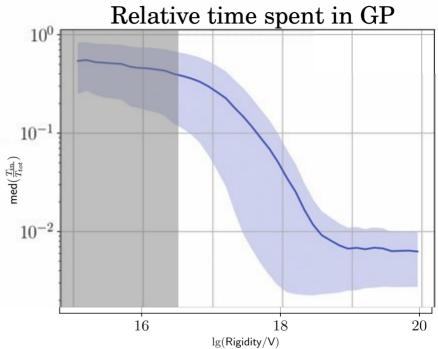
## On the modification of EGCR energy spectrum


• **Propagation time** and **fraction of space traversed** increases to **compensate shielding** 



Alex Kääpä a.kaeaepae@uni-wuppertal.de

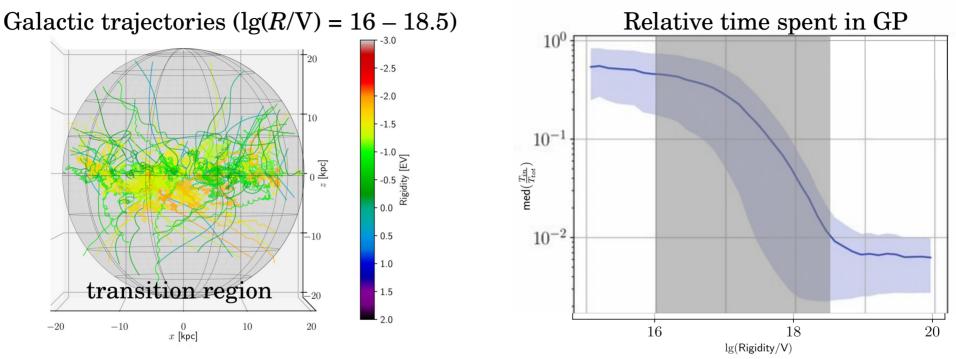

## On the modification of EGCR energy spectrum


• **Propagation time** and **fraction of space traversed** increases to **compensate shielding** 



#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

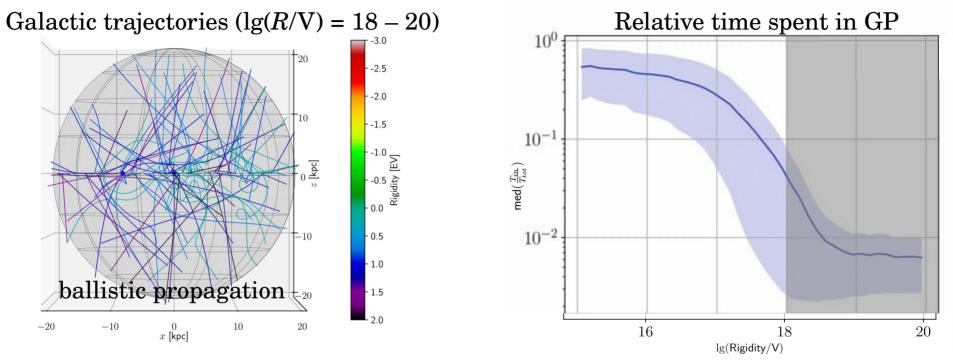
## Propagation effects: GCRs – Confinement in GP






## **Decreasing confinement** in GP with rigidity.

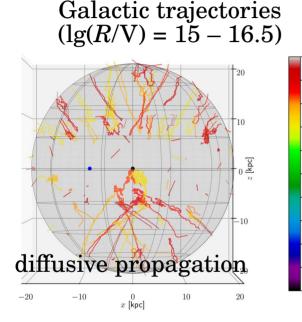
Relative time spent in GP decreases with rigidity; **inflection point at a few EV.** 


## Propagation effects: GCRs – Confinement in GP



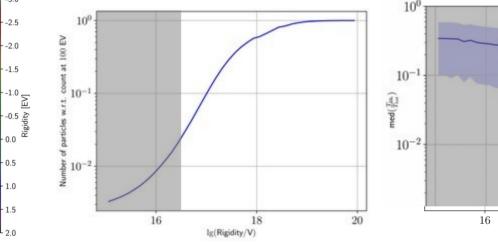
## **Decreasing confinement** in GP with rigidity.

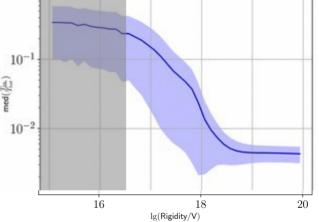
Relative time spent in GP decreases with rigidity; **inflection point at a few EV.** 


## Propagation effects: GCRs – Confinement in GP



## **Decreasing confinement** in GP with rigidity.


Relative time spent in GP decreases with rigidity; **inflection point at a few EV.** 


### Propagation effects: EGCRs – Shielding from vs. confinement in GP



CR count reaching GP

Relative time spent in GP



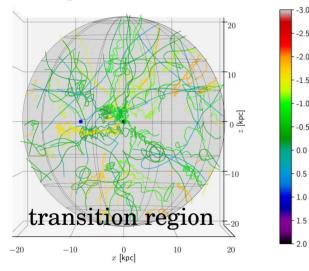


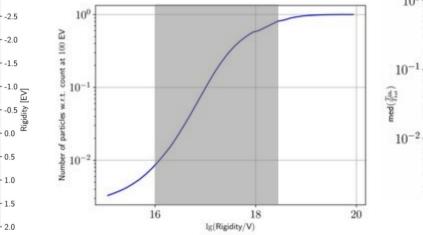
Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

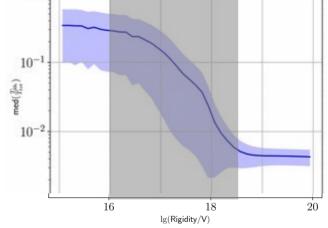
### Propagation effects: EGCRs – Shielding from vs. confinement in GP

Galactic trajectories  $(\lg(R/V) = 16 - 18.5)$ 

-2.5


-2.0 -1.5


0.0


20

CR count reaching GP

Relative time spent in GP







**Decreasing shielding** from and confinement in GP with rigidity.

CR count decreases for smaller rigidities; inflection point at a few EV.

Relative time spent in GP decreases with rigidity; inflection point at a few EV.

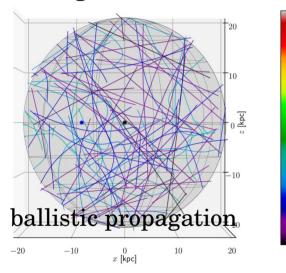
### Propagation effects: EGCRs – Shielding from vs. confinement in GP

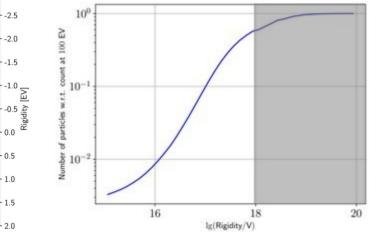
Galactic trajectories  $(\lg(R/V) = 18 - 20)$ 

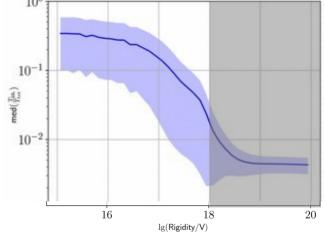
-2.5

-2.0 -1.5

- 0.5


- 1.0


- 1.5


20

CR count reaching GP

Relative time spent in GP

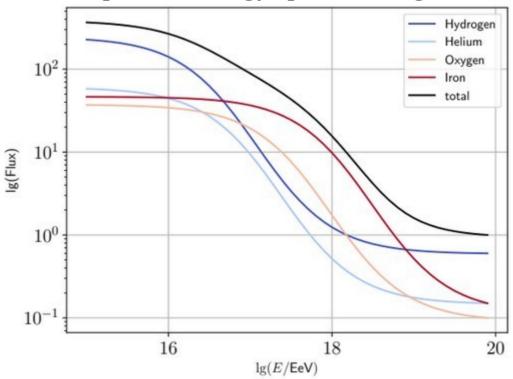






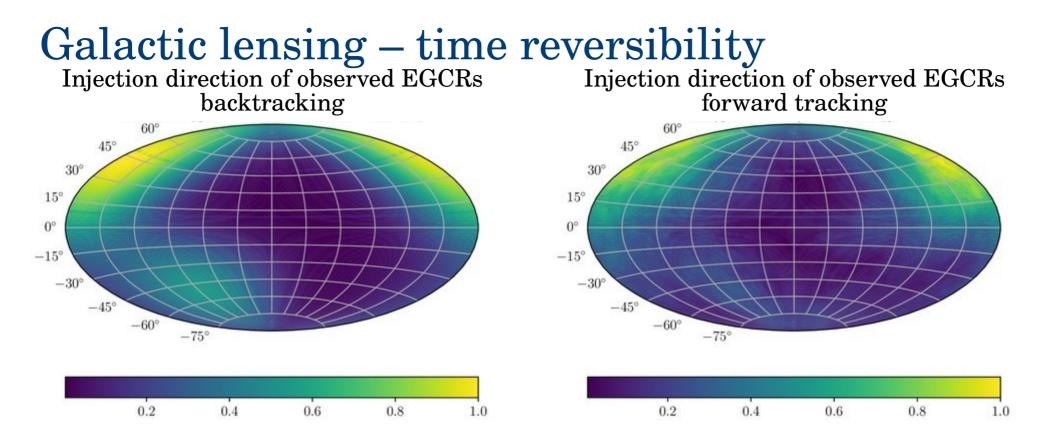
**Decreasing shielding** from and confinement in GP with rigidity.

CR count decreases for smaller rigidities; inflection point at a few EV.


Relative time spent in GP decreases with rigidity; inflection point at a few EV.

## Effect on observables: GCRs – Flux suppression

Decreasing confinement → **flux reduction** 


## Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV



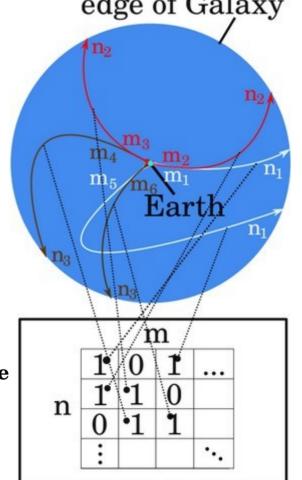
#### All-particle energy spectrum (sigmoid fit)

Alex Kääpä a.kaeaepae@uni-wuppertal.de



Injection distributions of backtracked and forward tracked protons match

# Effect on observables: Anisotropic EGCRs – Galactic lensing edge of Galaxy


see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04(2020)047 for parallel work

# Propagation in GMF can be quantified via lens

- distance of EG source to observer >> size of Galaxy
  - $\rightarrow$  only injection **direction** relevant

Procedure:

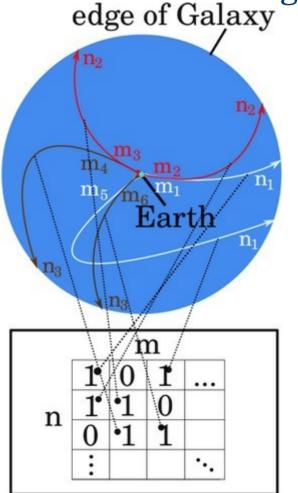
- **1 track** *N* **particles** between Earth and edge of Galaxy and **store injection direction** at edge and **arrival direction** at Earth
- **2 discretise solid angle** range and **ascribe numbers** *n* and *m* to corresponding **injection and arrival directions**

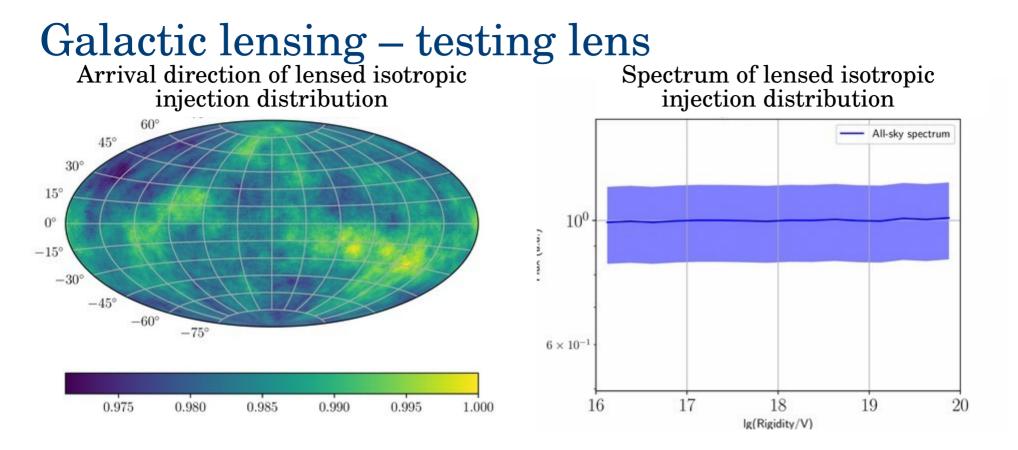


### Effect on observables: Anisotropic EGCRs – Galactic lensing edge of Galaxy

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04(2020)047 for parallel work

## **3 count occurrence** *o* **of each** injection/arrival direction **pair** (*n*,*m*)

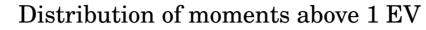

- spans matrix  $L(l_{nm} = o)$
- L signifies **distribution of arrival directions** m at the observer point for each **injection direction** n


#### 4 matrix weighted by its 1-norm

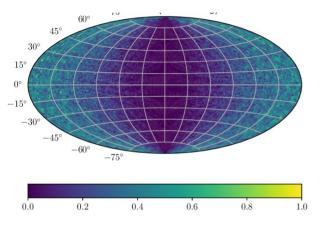
(= number of backtracked particles N) **defines lens** 

 $\rightarrow$  calculate arrival direction distribution for any injection direction distribution:

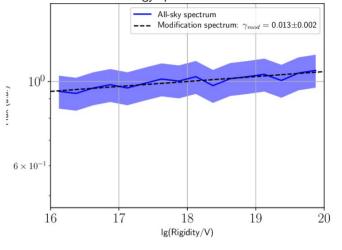
$$\vec{A} = \vec{I} \cdot \mathcal{L}$$







Lensed arrival direction distribution and spectrum of isotropic injection distribution is as expected.

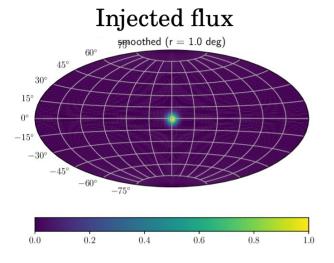
## Anisotropic EGCRs – Galactic lensing


#### Injected flux

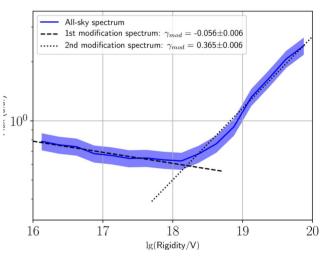


Flux at Earth




10<sup>-2</sup> 10<sup>-3</sup> 10<sup>-3</sup> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Harmonic moment *l* 




Injection direction distribution: **Pure dipole** 

Distribution of harmonic moments of arrival direction distribution above 1 EV → strong isotropisation by GMF Rigidity spectrum at Earth  $\rightarrow$  **possible flux modification** 

## Effect on observables: Anisotropic EGCRs – Galactic lensing



Flux at Earth

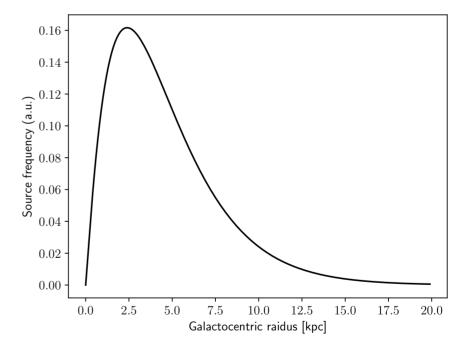


Injection direction distribution: **Pure single-point source** (minimum Galactic transparency; Galactic centre) surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

#### Rigidity spectrum at Earth → **possible flux modification**

Transition from GCRs to EGCRs

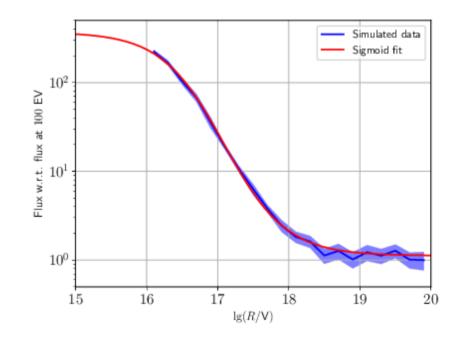

Alex Kääpä a.kaeaepae@uni-wuppertal.de

### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to post-"ankle" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Galactocentric distribution of SNRs




## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Rigidity spectrum before correction

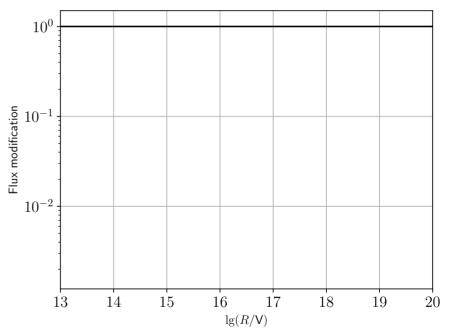


## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Rigidity spectrum after correction

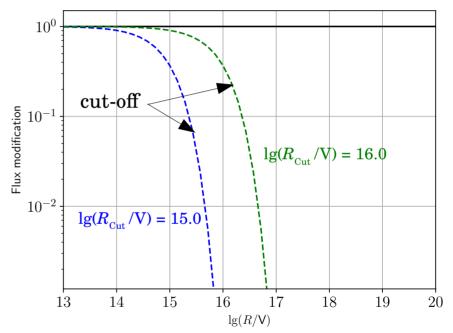



## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include  ${\color{black} \textbf{maximum rigidity cut-off}}$  of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Flux with or without leakage/cut-off

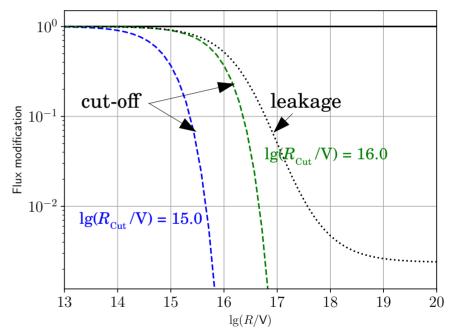



### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include  ${\color{black} \textbf{maximum rigidity cut-off}}$  of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Flux with or without leakage/cut-off

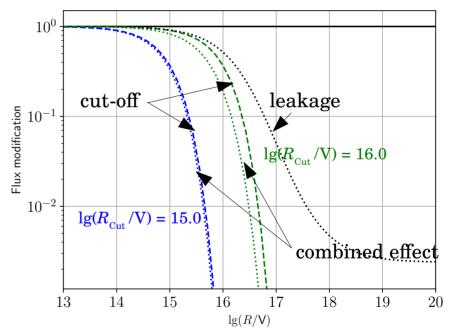



### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include  ${\color{black} \textbf{maximum rigidity cut-off}}$  of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Flux with or without leakage/cut-off

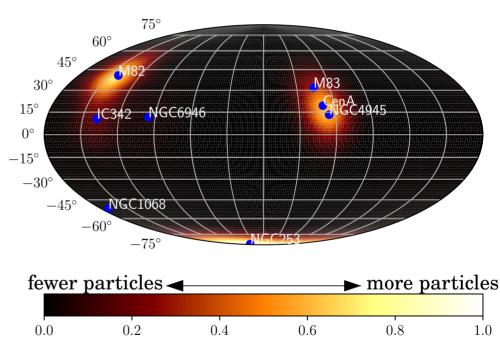



## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include  ${\color{black} \textbf{maximum rigidity cut-off}}$  of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Flux with or without leakage/cut-off

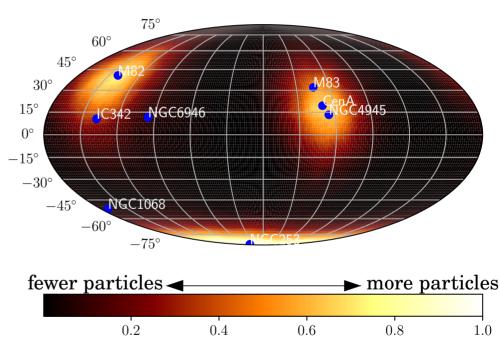



### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - point sources from "Auger Starbust" paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle"** energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Injection direction distribution of EGCRs

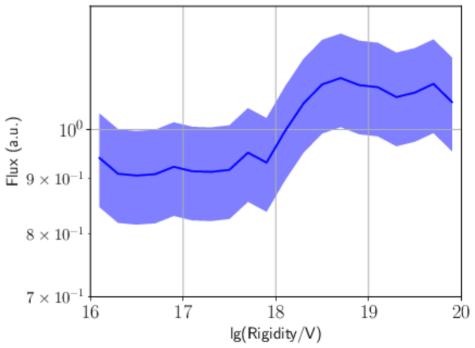



## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include  $\ensuremath{\textbf{maximum rigidity cut-off}}$  of Galactic sources
  - → rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to **different nuclei** → **energy spectra**
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle"** energies
  - $\rightarrow$  all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Injection direction distribution of EGCRs



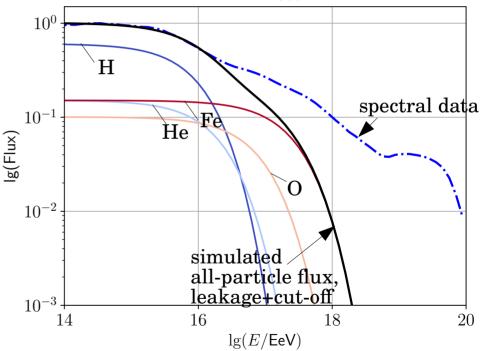

## Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - point sources from "Auger Starbust" paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - $\rightarrow$  rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

#### Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Rigidity spectrum of lensed EGCRs flux



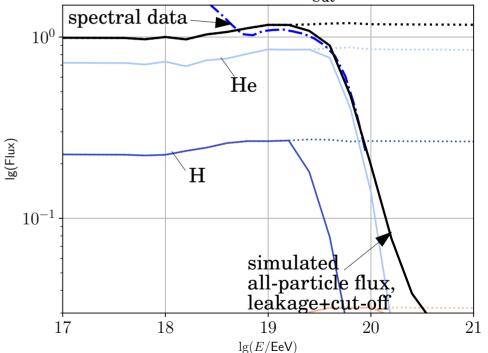

### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to **post-"ankle**" energies
  - → all-particle spectra that reproduce data

Alex Kääpä a.kaeaepae@uni-wuppertal.de

#### Energy spectrum of GCRs with leakage

and cutoff (lg( $R_{Cut}$ /V) = 16.5)

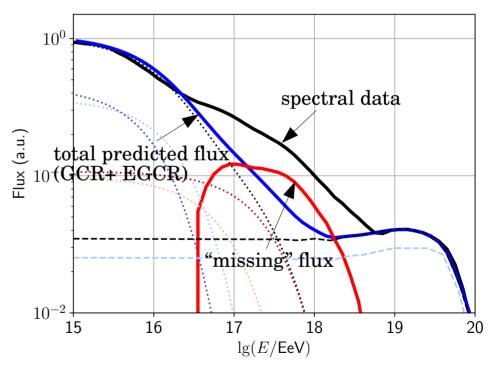



### Prepare simulated data:

- GCRs:
  - employ realistic source distribution
  - include **maximum rigidity cut-off** of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - **point sources from "Auger Starbust"** paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - → rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to post-"ankle" energies
  - → all-particle spectra that reproduce data
- Alex Kääpä a.kaeaepae@uni-wuppertal.de

Energy spectrum of EGCRs with spectral

break and cutoff (lg( $R_{Cut}$ /V) = 19.25)

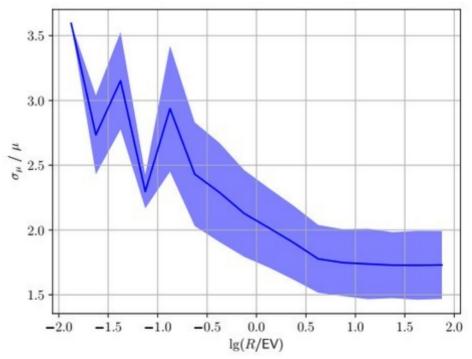



### Prepare simulated data:

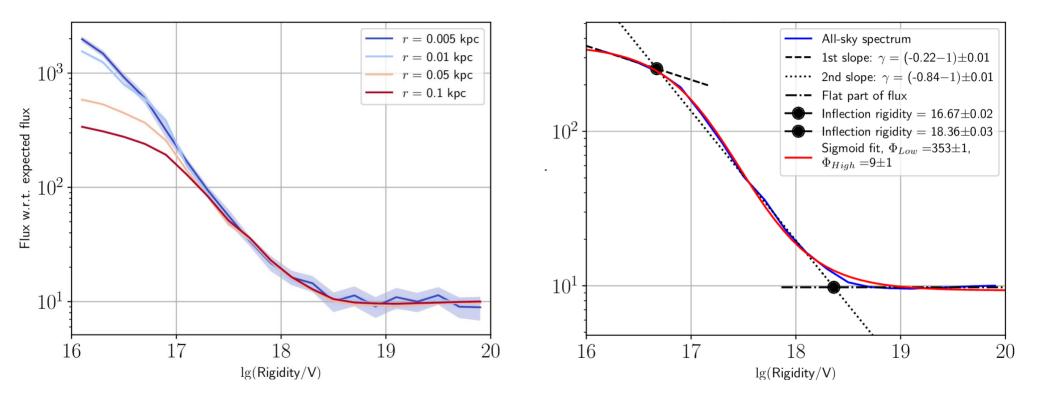
- GCRs:
  - employ realistic source distribution
  - include  ${\color{black} \textbf{maximum rigidity cut-off}}$  of Galactic sources
  - $\rightarrow$  rigidity spectrum
- EGCRs:
  - apply Galactic lens to realistic injection direction distribution
    - point sources from "Auger Starbust" paper: APJ.Lett. 853 (2018) 2, L29
    - rigidity- and distance-dependent **smearing**
  - $\rightarrow$  rigidity spectrum
- Scale rigidity spectra to different nuclei
   → energy spectra
- Find suitable injection spectra:
  - 4-component composition: H, He, O, Fe
  - GCR component to energies around "knee"
  - EGCR component to post-"ankle" energies
  - $\rightarrow$  all-particle spectra that reproduce data

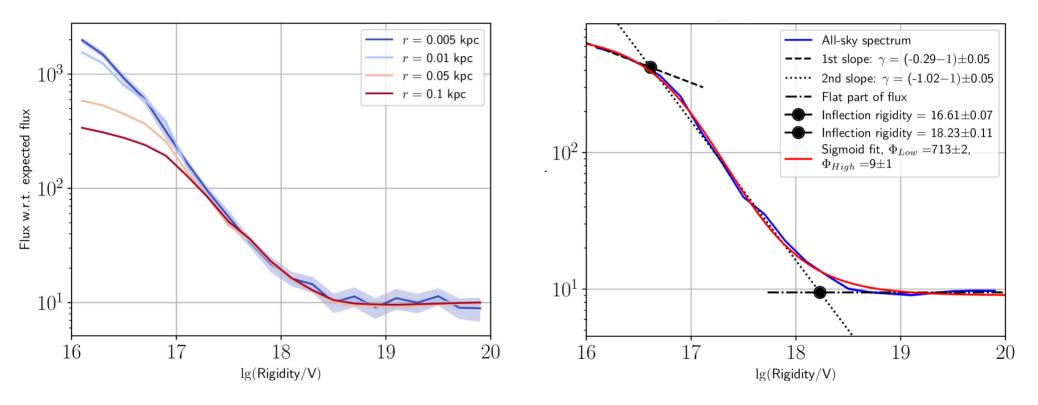
Alex Kääpä a.kaeaepae@uni-wuppertal.de

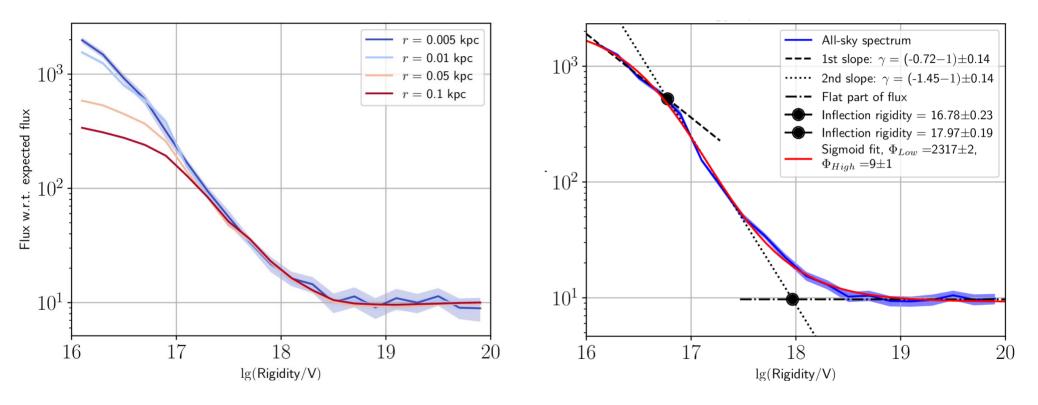
### Total combined energy spectrum

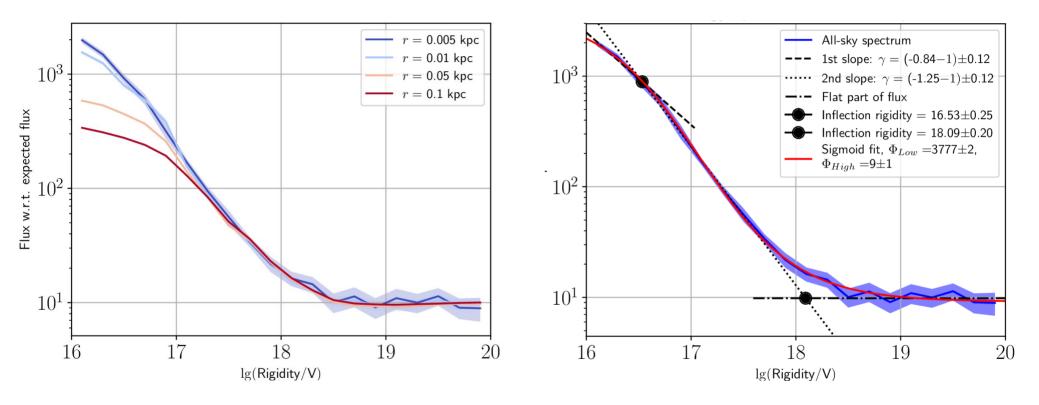



## Liouville's Theorem


- Objection to flux modification of EGCRs: Liouville's Theorem
  - If phase space density is conserved, so is flux
  - BUT: If Liouville holds, then other quantities are conserved, i.a. first adiabtic invariant


~ classical magnetic moment (APJ 842:54, APJ 830:19):


$$\mu = \frac{e}{2 \, m \pi \, c} \cdot I = \text{const.} \Rightarrow r_{\mu} = \frac{\sigma_{\mu}}{\langle \mu \rangle} \text{ small}$$




#### Alex Kääpä a.kaeaepae@uni-wuppertal.de









## Summary

Propagation effects in the GMF need to be considered in the transition region!

- GCRs: flux suppression towards higher rigidities due to leakage from Galaxy
- EGCRs: flux modifications depending on nature & direction of injected anisotropy

**Incorporate propagation effects** into the total flux

- GCRs: leakage leads to earlier onset of suppression; degree dependent on  $R_{
  m Cut}$
- EGCRs: injected flux from SBG/AGN leads to "ankle"-like spectral break

## Outlook

- incorporate **realistic injection composition** for EGCRs
- fit resulting all-particle energy spectra to flux data
- comparison with composition & anisotropy data