## Probing feedback with the shear-, magnitude-, and colourposition correlation functions Project F6, SFB1491

Angus H Wright, 02-06-22







DFG Deutsche Forschungsgemeinschaft

## **CIM Research Questions**

**Research question (3):** What are the connections between the cosmic signatures of baryonic and dark matter, moving down to the lowest halo masses and out to large galactocentric distances?

### Project F6: Dark Matter & Gas in Galaxies The Work Plan

- i) Perform a base-line study of the 100 largest edge-on galaxies (in terms of angular extent on-sky) in existing imaging data from KiDS to determine the profile and extent of dust in low-redshift galaxy halos. [Standard-Crayons]
- ii) Improve the Ménard et al. (2010) experiment with photometrically selected background galaxies, allowing for better spatial resolution and for us to split the foreground galaxies by star-formation properties, thereby allowing investigation into the origin and transport mechanism of the dust [Correlation Functions]
- iii) Determine the ratio of dark to visible matter in low-mass, strongly star-forming, and post-starburst galaxies, and how this ratio evolves as a function of redshift and intrinsic galaxy properties such as stellar mass [Mass-to-Light Ratios]
- iv) Measure the asphericity of dark-matter halos compared to the galaxy light and satellite galaxy distribution by GGL in comparison to the extent and projected shape of gaseous halos of galaxies [Axially Asymmetric Galaxy-Galaxy Lensing]



## Dust is a tracer of ejected halo baryons



Credit: Paddy Gilliland 2016

## Dust is a tracer of ejected halo baryons



## **Measuring Feedback with Galaxy Surveys**

### **Using 3 cross-correlation functions**

The goal is to measure the distribution of dust in the halo of dwarf galaxies, as a proxy for the overall baryonic mass distribution of the halo.

To do this, we need to know:

- 1. the total (i.e. dark + baryonic) mass of the galaxies, and
- 2. the distribution function of baryons and dark matter (i.e. the profiles)

#### **Shear-Position Correlation:**

Sensitive to Total Mass

#### **Magnitude-Position Correlation:**

Sensitive to Total Mass & Dust

#### **Colour-Position Correlation:**

Sensitive to Dust

Multi-probe analyses can help to break degeneracies and constrain parameters further/better.





## The [Something]-Position Correlation Function

### **Calculating joint variation in observables**

- In statistics, the X-Y correlation describes the amount of mutual information contained in the two variables X and Y
- In astronomy, the X-Y correlation function describes the change in the X-Y correlation as a function of spatial separation (either angular or physical)
- Auto-correlations are very powerful tools (i.e. X-X correlation functions) Shear-Shear correlation function ("cosmic shear") Position-Position correlation function ("galaxy clustering") Magnitude-Magnitude correlation function Colour-Colour correlation function

## The [Something]-Position Correlation Function

### **Calculating joint variation in observables**

- In statistics, the X-Y correlation describes the amount of mutual information contained in the two variables X and Y
- In astronomy, the X-Y correlation function describes the change in the X-Y correlation as a function of spatial separation (either angular or physical)
- Auto-correlations are very powerful tools (i.e. X-X correlation functions)
- But for this talk we're exclusively going to focus on 3 cross-correlations: The Shear-Position correlation function ("galaxy-galaxy lensing") The Magnitude-Position correlation function The Colour-Position correlation function

### A simple example

- Consider a totally hypothetical concert, given by a totally hypothetical artist
- In this concert, we can use the audience to calculate the:

**Enjoyment-Position Correlation Function** 





#### The Enjoyment-Position Correlation Function A simple example Shearun Concert Ned Consider a totally hypothetical Y & J concert, given by a totally STAGE hypothetical artist • In this concert, we can use the audience to calculate the: **Enjoyment-Position** Enjoy **Correlation Function** • There is a strong signal, and we could use this signal to infer details about the concert Distance



### A simple example

 Taking the analogy further: Consider another totally hypothetical concert, given by another totally hypothetical artist





### A simple example

- Taking the analogy further: Consider another totally hypothetical concert, given by another totally hypothetical artist
- This artist has a much weaker influence on their audience





### A simple example

- Taking the analogy further: Consider another totally hypothetical concert, given by another totally hypothetical artist
- This artist has a much weaker influence on their audience
- To determine a signal, we would need:
- ➡ a much larger audience, or









### A simple example

- Taking the analogy further: Consider another totally hypothetical concert, given by another totally hypothetical artist
- This artist has a much weaker influence on their audience
- To determine a signal, we would need:
- ➡ a much larger audience, or
- analyse multiple concerts at the same time (with assumptions)

Dustin Jeiber Concert









Large, Red Target Sources show a strong signal, detectable with one/few sources



Small, Blue Target Sources show a weak signal, but one that is detectable with large samples





#### Large, Red Target Sources show a strong signal, detectable with one/few sources

#### Small, Blue Target Sources show a weak signal, but one that is detectable with large samples







## The [Something]-Position Correlation Function

### **Now onto Galaxies**

- Let's now take exactly the same approach to explore the 3 cross-correlations: The Shear-Position correlation function ("galaxy-galaxy lensing") The Magnitude-Position correlation function The Colour-Position correlation function

### **The Shear-Position Correlation Function** Without Gravitational Lensing

**Shear-Position Correlation Function** 





Ø Foregroud galaxy

Background goloxies



### **The Shear-Position Correlation Function** With Gravitational Lensing

#### **Shear-Position Correlation Function**





Ø Foregroud galaxy

Background galoxies



### The Magnitude-Position Correlation Function Without Halo Dust Obscuration

**Magnitude-Position Correlation Function** 





B Foregroud galaxy

Background galaxies



### The Magnitude-Position Correlation Function With Halo Dust Obscuration

**Magnitude-Position Correlation Function** 



Radius

m = -2.5\*log10(flux) + ZP



B Foregroud galaxy Background galaxies Foreground Dust



### **The Colour-Position Correlation Function** Without Halo Dust Extinction

**Colour-Position Correlation Function** 





B Foregroud galaxy Background galaxies Foreground Dust

![](_page_21_Picture_7.jpeg)

### **The Colour-Position Correlation Function** With Halo Dust Extinction

#### **Colour-Position Correlation Function**

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_5.jpeg)

B Foregroud galaxy Background galaxies J Foreground Dust

![](_page_22_Picture_8.jpeg)

### The Magnitude-Position Correlation Function (again) Without Gravitational Magnification

**Magnitude-Position Correlation Function** 

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_5.jpeg)

B Foregroud galaxy Background galaxies J Foreground Dust

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

![](_page_23_Picture_14.jpeg)

![](_page_23_Picture_15.jpeg)

![](_page_23_Picture_16.jpeg)

![](_page_23_Picture_17.jpeg)

![](_page_23_Picture_18.jpeg)

![](_page_23_Picture_19.jpeg)

![](_page_23_Picture_20.jpeg)

![](_page_23_Picture_21.jpeg)

![](_page_23_Picture_22.jpeg)

![](_page_23_Picture_23.jpeg)

![](_page_23_Picture_24.jpeg)

## The Magnitude-Position Correlation Function (again) With Gravitational Magnification

**Magnitude-Position Correlation Function** 

![](_page_24_Figure_2.jpeg)

Radius

(Extinction dominated)

![](_page_24_Picture_6.jpeg)

B Foregroud galaxy Background galaxies Foreground Dust

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_24_Picture_16.jpeg)

![](_page_24_Picture_17.jpeg)

![](_page_24_Picture_18.jpeg)

![](_page_24_Picture_19.jpeg)

![](_page_24_Picture_20.jpeg)

![](_page_24_Picture_21.jpeg)

![](_page_24_Picture_22.jpeg)

![](_page_24_Picture_23.jpeg)

![](_page_24_Picture_24.jpeg)

![](_page_24_Picture_25.jpeg)

## The Magnitude-Position Correlation Function (again) With Gravitational Magnification

**Magnitude-Position Correlation Function** 

![](_page_25_Figure_2.jpeg)

Radius

(Magnification dominated)

![](_page_25_Picture_6.jpeg)

B Foregroud galaxy Background galaxies Foreground Dust

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_12.jpeg)

![](_page_25_Picture_13.jpeg)

![](_page_25_Picture_14.jpeg)

![](_page_25_Picture_15.jpeg)

![](_page_25_Picture_16.jpeg)

![](_page_25_Picture_17.jpeg)

![](_page_25_Picture_18.jpeg)

![](_page_25_Picture_19.jpeg)

![](_page_25_Picture_20.jpeg)

![](_page_25_Picture_21.jpeg)

![](_page_25_Picture_22.jpeg)

![](_page_25_Picture_23.jpeg)

![](_page_25_Picture_24.jpeg)

![](_page_25_Picture_25.jpeg)

![](_page_26_Figure_1.jpeg)

Radius

### **Shear-Position** Sensitive to Mass

**Magnitude-Position** Sensitive to Mass & Dust

## **Our 3** [Something]-Position Correlation Functions

Radius

Radius

### **Colour-Position** Sensitive to Dust

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_13.jpeg)

![](_page_27_Figure_1.jpeg)

### How will we improve on this? What have we already done?

- Using wide-area surveys for target (lens) definition allows us to read much lower masses, and create finer bins [Demonstrated]
- Using background galaxy samples (not QSOs) gives a significant improvement in statistical power per-target, but adds complications [Demonstrated]
- Performing detailed mock analyses will allow us to better understand the systematic limitations of this analysis [Planned]
- Using the same sample of galaxies for all measurements allows degeneracy breaking multi-probe analyses [Planned]

### **Shear-Position** Sensitive to Mass

#### **Magnitude-Position**

Sensitive to Mass & Dust

### **Colour-Position** Sensitive to Dust

![](_page_28_Picture_10.jpeg)

### **Direct Measurement of Dust in SMC/LMC** Demonstration of the "Standard Crayon" concept with galaxies

![](_page_29_Figure_1.jpeg)

Bell, Cioni, Wright, et al (2021)

### **Shear-Position Correlation Functions for low-mass galaxies**

### Significant detections of extremely low-mass starburst sources

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

Masters work by Anna Enders (RUB)

![](_page_30_Picture_6.jpeg)

### **Shear-Position Correlation Functions for low-mass galaxies** Stellar and Halo Mass Estimates from "Halo Modelling"...

![](_page_31_Figure_1.jpeg)

Masters work by Anna Enders (RUB)

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_5.jpeg)

### **Shear-Position Correlation Functions for low-mass galaxies** ... allows us to check whether these sources follow expected trends!

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_3.jpeg)

## **Project F6: Dark Matter & Gas in Galaxies** The Work Plan

- i) Perform a base-line study of the 100 largest edge-on galaxies (in terms of angular extent on-sky) in existing imaging data from KiDS to determine the profile and extent of dust in low-redshift galaxy halos. [Standard-Crayons]
- ii) Improve the Ménard et al. (2010) experiment with photometrically selected background galaxies, allowing for better spatial resolution and for us to split the foreground galaxies by star-formation properties, thereby allowing investigation into the origin and transport mechanism of the dust [Correlation Functions]
- iii) Determine the ratio of dark to visible matter in low-mass, strongly star- forming, and post-starburst galaxies, and how this ratio evolves as a function of redshift and intrinsic galaxy properties such as stellar mass [Mass-to-Light Ratios]
- iv) Measure the asphericity compared to the galaxy light and satellite galaxy distribution of dark-matter halos by GGL in comparison to the extent and projected shape of gaseous halos of galaxies [Axially Asymmetric Galaxy-Galaxy Lensing]