Isabelle Grenier Université de Paris Cité & AIM CEA Saclay

∮ermi

How fast do GeV-TeV cosmic rays travel?

cosmic-ray feedback on galaxy evolution

push winds

> added pressure

against cloud collapse

push fountains

more compressibility

alter gas accretion

ermi

delayed+displaced energy transfer

diffuse-dense gas circulation

> ionisation & chemistry

> > self or interstellar confinement? diffusion coeff $\kappa(E)$? how uneven **k**(E)? halo extent?

AIM

how uneven is diffusion?

Η

diffusion on self-excited or ISM-cascade Alfven waves

 $\kappa(GeV/n) \approx 10^{28-29} \text{ cm}^2/s, \quad l_{scat} \approx 1 \text{ pc}$ $R_{gyr} = 0.08 \text{ au or } 0.4 \,\mu\text{pc} \,\left(\frac{R}{1 \, GV}\right) \left(\frac{B}{5 \,\mu G}\right)^{-1}$

ᅌ halo HIM

- non-linear Landau damping (ion resonance with beat waves between Alfven wave couples) Xu & Lazarian 22
- \bullet V_{stream} \approx V_A
- $\sim \kappa(E) \propto E^{0.7}$

Blasi+12

Lee & Völk 73, Kulsrud 78

- WIM 1.8 kpc-thick layer
 - turbulent damping (interactions between self-excited waves & ISM waves)
 - $\kappa \propto \kappa_0(M_A) (E/E_0)^{1.1}$

Xu & Lazarian 22

- neutral gas
 - ion-neutral damping
 - $v_{stream} \sim 30 v_{A,ion} \gg v_A$
 - diffusion via B line random wandering ? if $M_A > 1$: $\kappa \propto L_{inj} M_A^{-3} E^{1.6}$

environmental changes in κ(E) value & slope, with M_A & ionisation rate. self-confinement < 100 GeV?

how uneven is diffusion?

how anisotropic is diffusion?

^O CR transport
$$\frac{\partial f}{\partial t} = \overrightarrow{\nabla} \cdot \left[\left(\overrightarrow{u}_{gas} + v_{A,ion} \frac{\overrightarrow{B}}{|\overrightarrow{B}|} \right) f \right]$$
 in MHD turbulence,

assuming strong coupling with Alfvén waves

gas-rich dwarf galaxies

- \bigcirc 10¹¹ M \odot total mass, forming 1 M \odot /yr of stars
- Multiphasic gas down to 9-pc resolution, ideal MHD with RAMSES

10²⁹ cm²/s

gas-rich dwarf galaxies

- \bigcirc 10¹¹ M \odot total mass, forming 1 M \odot /yr of stars
- Multiphasic gas down to 9-pc resolution, ideal MHD with RAMSES

3 10²⁸ cm²/s 10²⁹ cm²/s

gas-rich dwarf galaxies

- \bigcirc 10¹¹ M \odot total mass, forming 1 M \odot /yr of stars
- Multiphasic gas down to 9-pc resolution, ideal MHD with RAMSES

$310^{27} \text{ cm}^2/\text{s}$ $310^{28} \text{ cm}^2/\text{s}$ $10^{29} \text{ cm}^2/\text{s}$

gas-rich dwarf galaxies

gas-rich dwarf galaxies

gas-rich dwarf galaxies

			_
			_
			-
			_
2	kpc	-	_
			_
			_
	60		
2	kpc		

radial pressure gradients

Global radial CR gradients steeper than in the Milky Way, but only slightly sensitive to κ value or degree of anisotropy (shallower if isotropic)
Magnetic field still growing in the simulations

cosmic-ray radial gradient

- few-GeV to TeV CR nuclei flux: Galactic profile at variance with transport models. importance of B₀ and Alfvenic Mach number M_A
 - increased δ B/B in spiral arms => smaller D_{//} and larger D₁? large amount of dark gas?

spiral arm contrast

 \bigcirc fewer gas spurs if **k** increases, even fewer if isotropic diffusion More elongated/blobby CR spurs if anisotropic/isotropic, along star formation activity

3 10²⁷ cm²/s

3 10²⁸ cm²/s

10²⁹ cm²/s

no clear contrast with SFR

yet same average spectrum ...

penetration of few-GeV-TeV cosmic rays inside clouds

∮ermi

∮ermi

cosmic-ray vertical gradient

- $\mathbf{S} \mathbf{Y}$ -ray measurements of the local CR flux with height

cosmic-ray calorimeters

- CR activity scales with star-formation activity
 - traced by the FIR luminosity
- \bigcirc calorimetric limit: $\tau_{residence} \approx \tau_{pp}$
 - starburst galaxies = good calorimeters
 - Milky Way = leaking calorimeter

harder starburst galaxies but no spectral change over 2 decades in SFR

cosmic-ray calorimeters

- CR activity scales with star-formation activity traced by the FIR luminosity
- \bigcirc calorimetric limit: $\tau_{residence} \approx \tau_{pp}$
 - starburst galaxies = good calorimeters
 - Milky Way = leaking calorimeter

small dependence on SN feedback

diffusion impact on Ly-SFR relation?

need for much faster diffusion than estimated in the Milky Way or

no need to speed up cosmic rays

- \bigcirc diffusion impact on γ -ray luminosity \perp observation plane
- \bigcirc anisotropic 10^{27.5-29} or isotropic < 3 10²⁸ cm²/s ok
- unlikely association for NGC 7059 in 4FGL

Nunez-Castineyra+2022

🤒 all E_{inj,CR} / E_{SN} = 10% per SN

[-(10⁴⁰]) $\gamma 19$ iso 3e2. C19 aniso 3e28 -100 GeV/SFR [erg s-W21 aniso 1e28 SMC⊥ M33 **●** LMC C19 iso 3e29 $rac{10^{38}}{10^{38}}$ Aniso 3 10^{27} cm²/s Iso $3 \ 10^{27} \ {\rm cm}^2/{\rm s}$ \diamond 10^{-2}

???

cosmic-ray suppression of star formation

- \Re R > 2 kpc : increased P_{CR} pressure => SFR suppressed by < 50%
- not SN-induced turbulence, but role of increased fountains? gal. wind?

cosmic-ray suppression of star formation suppressed SFR if slow/ anisotropic CR diffusion 10^{-13} 10^{-12} 10^{-11} 10^{-1} $M_{\odot}/kpc^2/yr$ Ŗ ∕<́ 2 kpc 0.1% $\lesssim 10^{-10}$ Aniso 3 $10^{27} \text{ cm}^2/\text{s}$ Iso $3 \ 10^{27} \ \mathrm{cm}^2/\mathrm{s}$ Aniso 3 $10^{28} \text{ cm}^2/\text{s}$ Iso $3 \ 10^{28} \ \mathrm{cm}^2/\mathrm{s}$ Aniso $10^{29} \text{ cm}^2/\text{s}$ Iso $10^{29} \text{ cm}^2/\text{s}$ 10^{-4} 10^{0} 10^{1} $\Sigma_{\rm gas} \left[{\rm M}_{\odot} / {\rm pc}^2 \right]$

ermi

 $D \propto E_{CR}^{0.3-0.6}$ (B/C) to $E_{CR}^{0.34-0.36}$ (Galprop)

how fast do GeV-TeV cosmic rays travel?

SNR envt escape? superbubble escape?

level of superbubble/SNR re-acceleration? diffusive ISM re-accel?

self-generated or ISM-induced confinement? where? D(E)? D(SFR)?

level of flux & spectral variations across spiral arms & B valleys? hidden grammage?

Gal. wind impact? local Chimney impact?

