SFB 1491 Highlights from the Astro-Theory Projects

Horst Fichtner

SFB 1491 Highlighting the Astro-Theory Projects

Horst Fichtner

A1: Multimessenger signatures of Gal. CR transport

A1: Multimessenger signatures of Gal. CR transport

A2: CR signatures in dwarf galaxies

A1: Multimessenger signatures of Gal. CR transport

A2: CR signatures in dwarf galaxies

A3: CR transport in the transition region from Galactic to extragalactic origin

A1: Multimessenger signatures of Gal. CR transport

A2: CR signatures in dwarf galaxies

A3: CR transport in the transition region from Galactic to extragalactic origin

A4: Magnetohydrodynamical halos of starforming galaxies

A1: Multimessenger signatures of Gal. CR transport

A4: Magnetohydrodynamical halos of starforming galaxies

A3: CR transport in the transition region from Galactic to extragalactic origin

A5: Disentangling cosmicray signatures in AGNstarburst composites

A1: Multimessenger signatures of Gal. CR transport

A4: Magnetohydrodynamical halos of starforming galaxies

A2: CR signatures in dwarf galaxies

A5: Disentangling cosmicray signatures in AGNstarburst composites A3: CR transport in the transition region from Galactic to extragalactic origin

A6: Multimessenger signatures of tidal disruption events

The Astro-Theory Projects

A1: Multimessenger signatures of Gal. CR transport

A4: Magnetohydrodynamical halos of starforming galaxies

A2: CR signatures in dwarf galaxies

A5: Disentangling cosmicray signatures in AGNstarburst composites

A3: CR transport in the transition region from Galactic to extragalactic origin

A7: Density-dependence of the temporal structure in the multimessenger spectrum of blazars

 \uparrow

CR transport in turbulent magnetic fields

CR transport in turbulent magnetic fields

Hadronic interactions in particle physics and astrophysics: CR signatures

CR transport in turbulent magnetic fields

M82: magnetic fields in dynamical halos

Hadronic interactions in particle physics and astrophysics: CR signatures

Dark matter in and around galaxies

CR transport in turbulent magnetic fields

M82: magnetic fields in dynamical halos

Hadronic interactions in particle physics and astrophysics: CR signatures

Outline of the Talk

- Introduction (\checkmark)
- CR transport in turbulent magnetic fields
- Turbulent dynamical halos of galaxies
- Dark matter signatures?

Cosmic Ray Transport in Turbulent Magnetic Fields

The CR transport equation

$$\begin{aligned} \frac{\partial n}{\partial t} &= \nabla \cdot \left[\stackrel{\leftrightarrow}{D} \nabla n - \vec{U}n \right] & \text{spatial diffusion \& advection} \\ &+ \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{n}{p^2} \right) \right] & \text{momentum diffusion} \\ &- \frac{\partial}{\partial p} \left[\left(\frac{dp}{dt} - \frac{p}{3} \left(\nabla \cdot \vec{U} \right) \right) n \right] & \text{momentum loss \& adiab. changes} \\ &- \frac{n}{\tau_f} - \frac{n}{\tau_d} + S & \text{fragmentation \& radioactive decay \& sources} \end{aligned}$$

 $n = n(\vec{r}, p, t), \stackrel{\leftrightarrow}{D} = \stackrel{\leftrightarrow}{D} (\vec{r}, p, t), \vec{U} = \vec{U}(\vec{r}, t), D_{pp} = D_{pp}(\vec{r}, p, t), S = S(\vec{r}, p, t)$

Schlickeiser [2002], Becker-Tjus & Merten et al. [2020]

The CR transport equation

$$\frac{\partial n}{\partial t} = \nabla \cdot \begin{bmatrix} \overleftrightarrow{D} \nabla n - \vec{U}n \end{bmatrix} \qquad A1, A2, A3, A4, A5, A7 + \frac{\partial}{\partial p} \begin{bmatrix} p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{n}{p^2}\right) \end{bmatrix} \qquad A1, A5 - \frac{\partial}{\partial p} \begin{bmatrix} \left(\frac{dp}{dt} - \frac{p}{3} \left(\nabla \cdot \vec{U}\right)\right) n \end{bmatrix} \qquad A1, A2, A3, A5, A7 - \frac{n}{\tau_f} - \frac{n}{\tau_d} + S \qquad A1, A2, A3, A5, A7$$

 $\begin{array}{l} n = n(\vec{r}, p, t), \ \stackrel{\leftrightarrow}{D} = \stackrel{\leftrightarrow}{D} (\vec{r}, p, t), \ \vec{U} = \vec{U}(\vec{r}, t), \ D_{pp} = D_{pp}(\vec{r}, p, t), \\ S = S(\vec{r}, p, t) \end{array}$

Schlickeiser [2002], Becker-Tjus & Merten et al. [2020]

Study of large-scale transport requires transformation of the diffusion tensor from a (field-aligned) local to a global system:

• Which local system is the most 'natural' one?

Study of large-scale transport requires transformation of the diffusion tensor from a (field-aligned) local to a global system:

- Which local system is the most 'natural' one?
- One principal direction aligned with magnetic field.

Study of large-scale transport requires transformation of the diffusion tensor from a (field-aligned) local to a global system:

- Which local system is the most 'natural' one?
- One principal direction aligned with magnetic field.
- The correct choice of the 'perpendicular' directions is important for the case of anisotropic perpendicular diffusion.

Study of large-scale transport requires transformation of the diffusion tensor from a (field-aligned) local to a global system:

- Which local system is the most 'natural' one?
- One principal direction aligned with magnetic field.
- The correct choice of the 'perpendicular' directions is important for the case of anisotropic perpendicular diffusion.
- The most natural directions are defined with the Frenet-Serret trihedron, i.e. by the curvature and torsion of a magnetic field: $\vec{t} = \vec{B}/B$; $\vec{n} = (\vec{t} \cdot \nabla) \vec{t}/k$; $\vec{b} = \vec{t} \times \vec{n}$

The general transformation reads:

(Effenberger et al. [2012b])

 $\stackrel{\leftrightarrow}{D}_{global} = A^T \stackrel{\leftrightarrow}{D}_{local} A$

with
$$A = \begin{pmatrix} n_1 & b_1 & t_1 \\ n_2 & b_2 & t_2 \\ n_3 & b_3 & t_3 \end{pmatrix}$$
 and $\stackrel{\leftrightarrow}{D}_{local} = \begin{pmatrix} D_{\perp 1} & 0 & 0 \\ 0 & D_{\perp 2} & 0 \\ 0 & 0 & D_{\parallel} \end{pmatrix}$

resulting in

$$D_{11} = D_{\perp 1} n_1^2 + D_{\perp 2} b_1^2 + D_{\parallel} t_1^2$$

$$D_{12} = D_{\perp 1} n_1 n_2 + D_{\perp 2} b_1 b_2 + D_{\parallel} t_1 t_2$$

$$D_{13} = D_{\perp 1} n_1 n_3 + D_{\perp 2} b_1 b_3 + D_{\parallel} t_1 t_3$$

$$D_{22} = D_{\perp 1} n_2^2 + D_{\perp 2} b_2^2 + D_{\parallel} t_2^2$$

$$D_{23} = D_{\perp 1} n_2 n_3 + D_{\perp 2} b_2 b_3 + D_{\parallel} t_2 t_3$$

$$D_{33} = D_{\perp 1} n_3^2 + D_{\perp 2} b_3^2 + D_{\parallel} t_3^2$$

Impact of Anisotropic Diffusion on Galactic Propagation

Orbit of the Sun through the spirally structured galactic cosmic ray (proton) distribution:

- stronger intensity variations for anisotropic spatial diffusion
- higher absolute intensities for anisotropic diffusion
 (isotropic: D_{⊥1} = D_{⊥2} = D_⊥ = D_{||}; anisotropic: D_⊥ = 0.01D_{||})

Impact of Anisotropic Diffusion on Galactic Propagation

... and a different local interstellar spectrum:

Effenberger et al. [2012b]

Anisotropic Interstellar Diffusion

Anisotropic spatial diffusion of cosmic ray protons in the interstellar medium...

- ... causes stronger intensity variations;
- ... leads to higher absolute fluxes due to a confinement effect;
- ... influences the local interstellar spectrum

... at the location of the Sun / Heliosphere in the Galaxy.

Dresing et al. [2012]

turbulence is crucial for the transport of energetic particles

but:

turbulence is crucial for the transport of energetic particles

 $\frac{1-comp. model}{\delta B^2}$

Dresing et al. [2012]

transport process	1-comp. model	
parallel diffusion D _∥ perpendicular diffusion D _⊥ drifts D _A momentum diffusion D _{pp}	$ \begin{array}{l} \sim B^2/\delta B^2 \\ \sim \delta B^2/B^2 \\ = D_A \left(\delta B^2/B^2 \right) \\ = D_{pp} \left(\delta B^2/B^2 \right) \end{array} $	

Dresing et al. [2012]

turbulence is crucial for the transport of energetic particles

transport process	1-comp. model	
parallel diffusion D _∥ perpendicular diffusion D _⊥ drifts D _A momentum diffusion D _{pp}	$\sim \frac{B^2/\delta B^2}{\sim \delta B^2/B^2}$ $= D_A \left(\frac{\delta B^2}{B^2} \right)$ $= D_{pp} \left(\frac{\delta B^2}{B^2} \right)$	
drifts D_A momentum diffusion D_{pp}	$= D_A \left(\delta B^2 / B^2 \right)$ $= D_{pp} \left(\delta B^2 / B^2 \right)$	

Dresing et al. [2012]

transport process	1-comp. model	2-comp. model
parallel diffusion D _∥ perpendicular diffusion D _⊥ drifts D _A momentum diffusion D _{pp}	$\sim \frac{B^2/\delta B^2}{\sim \delta B^2/B^2}$ $= D_A \left(\frac{\delta B^2}{B^2} \right)$ $= D_{pp} \left(\frac{\delta B^2}{B^2} \right)$	$\sim B^2/\delta B_{sl}^2$ $\sim \delta B_{2D}^2/B^2$ $= D_A \left(\delta B_{sl}^2/B^2, \delta B_{2D}^2/B^2 \right)$ $= D_{pp} \left(\delta B_{sl}^2/B^2, \delta B_{2D}^2/B^2 \right)$

Idea: The particles are not diffusing normally (= 'Gaussian') but anomalously:

Levy flights ⇒ **power law distributions**

• ballistic motion: equation of motion

• ballistic motion: equation of motion

Fokker Planck eq.

• diffusive motion:

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$$

ballistic motion: equation of motion

(fract.) Fokker Planck eq. 2 c

- o diffusive motion:
- anom. diff. motion:

$$\frac{\partial I}{\partial t} = D \frac{\partial I}{\partial x^2}$$
$$\frac{\partial f}{\partial t} = {}_0 D_t^{1-\alpha} \left(\hat{D}_{\mu} \right)$$

ລເ

$$\frac{\partial t}{\partial t} = {}_0 D_t^{1-lpha} \left(\hat{D}_\mu \frac{\partial^\mu t}{\partial x^\mu} \right)$$

ballistic motion: equation of motion

(fract.) Fokker Planck eq. \Leftrightarrow Stoch. Diff. Eqs. • diffusive motion: $\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} \qquad \Leftrightarrow dX(t) = D^{1/2} dW(t)$ • anom. diff. motion: $\frac{\partial f}{\partial t} = {}_0D_t^{1-\alpha} \left(\hat{D}_\mu \frac{\partial^\mu f}{\partial x^\mu} \right) \qquad \Leftrightarrow dX(\tau) = D^{1/\mu} dL_\mu(\tau)$

■ ballistic motion: equation of motion ✓

(fract.) Fokker Planck eq. \Leftrightarrow Stoch. Diff. Eqs. \checkmark • diffusive motion: $\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2}$ $\Leftrightarrow dX(t) = D^{1/2} dW(t)$ • anom. diff. motion: $\frac{\partial f}{\partial t} = _0 D_t^{1-\alpha} \left(\hat{D}_{\mu} \frac{\partial^{\mu} f}{\partial x^{\mu}} \right) \Leftrightarrow dX(\tau) = D^{1/\mu} dL_{\mu}(\tau)$

Simulation framework **CRPropa** (to be used extensively in the SFB) offers a 'unifying' treatment regarding transport and energy regimes

→ see talks by P. Reichherzer and J. Dörner

Outline CR transport Dynamical Halos Dark Matter Résumé

Turbulent Dynamical Halos

Dynamical Halos

polarized intensity of NGC 4217 stacked images of 28 CHANG-ES galaxies

 \longrightarrow see talk by M. Stein

MHD Description

• large-scale equations:

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho U) &= 0\\ \partial_t (\rho \vec{U}) + \nabla \cdot \left[\rho \vec{U} \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} + p_w \right) \mathbb{1} - \left(1 + \frac{\sigma_D \rho Z^2}{2B^2} \right) \vec{B} \vec{B} \right] &= -\rho \vec{g}\\ \partial_t e + \nabla \cdot \left[e \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} \right) \quad \vec{U} - (\vec{U} \cdot \vec{B}) \vec{B} \right] + \vec{q}_H - \frac{\rho H_c}{2} \vec{V}_A \\ &= -\rho \vec{U} \cdot \vec{g} - \vec{U} \cdot \nabla p_w - (\vec{V}_A \cdot \nabla \rho) \frac{H_c}{2} + \frac{\rho Z^3 f}{2\lambda} \\ &+ \vec{U} \cdot (\vec{B} \cdot \nabla) \left[\frac{\sigma_D \rho Z^2}{2B^2} \vec{B} \right] - \rho \vec{V}_A \cdot \nabla H_c \end{aligned}$$

 $\partial_t \vec{B} + \nabla \cdot (\vec{U}\vec{B} - \vec{B}\vec{U}) = \vec{0}$

MHD Description

• large-scale equations:

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho U) &= 0 \\ \partial_t (\rho \vec{U}) + \nabla \cdot \left[\rho \vec{U} \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} + p_w \right) 1 - \left(1 + \frac{\sigma_D \rho Z^2}{2B^2} \right) \vec{B} \vec{B} \right] &= -\rho \vec{g} \\ \partial_t e + \nabla \cdot \left[e \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} \right) \quad \vec{U} - (\vec{U} \cdot \vec{B}) \vec{B} \right] + \vec{q}_H - \frac{\rho H_c}{2} \vec{V}_A \\ &= -\rho \vec{U} \cdot \vec{g} - \vec{U} \cdot \nabla p_w - (\vec{V}_A \cdot \nabla \rho) \frac{H_c}{2} + \frac{\rho Z^3 f}{2\lambda} \\ &+ \vec{U} \cdot (\vec{B} \cdot \nabla) \left[\frac{\sigma_D \rho Z^2}{2B^2} \vec{B} \right] - \rho \vec{V}_A \cdot \nabla H_c \end{aligned}$$

• small-scale equations:

$$\begin{split} \partial_{t}Z^{2} + \nabla\cdot(\vec{U}Z^{2} + \vec{V}_{A}H_{c}) &= \frac{Z^{2}(1 - \sigma_{D})}{2}\nabla\cdot\vec{U} + 2\vec{V}_{A}\cdot\nabla H_{c} + \frac{Z^{2}\sigma_{D}}{|\vec{B}|^{2}}\vec{B}\cdot(\vec{B}\cdot\nabla)\vec{U} - \frac{\alpha Z^{3}f^{+}}{\lambda} + S\\ \partial_{t}H_{c} + \nabla\cdot(\vec{U}H_{c} + \vec{V}_{A}Z^{2}) &= \frac{H_{c}}{2}\nabla\cdot\vec{U} + 2\vec{V}_{A}\cdot\nabla Z^{2} + Z^{2}\sigma_{D}\nabla\cdot\vec{V}_{A} - \frac{\alpha Z^{3}f^{-}}{\lambda}\\ \partial_{t}(\rho\lambda) + \nabla\cdot(\vec{U}\rho\lambda) &= \rho\beta\left[Zf^{+} - \frac{\lambda}{\alpha Z^{2}}S\right] \end{split}$$

MHD Description

• large-scale equations:

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho \vec{U}) &= 0\\ \partial_t (\rho \vec{U}) + \nabla \cdot \left[\rho \vec{U} \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} + p_{\rm W} \right) \mathbb{1} - \left(1 + \frac{\sigma_D \rho Z^2}{2B^2} \right) \vec{B} \vec{B} \right] &= -\rho \vec{g}\\ \partial_t e + \nabla \cdot \left[e \vec{U} + \left(p + \frac{|\vec{B}|^2}{2} \right) \quad \vec{U} - (\vec{U} \cdot \vec{B}) \vec{B} \right] + \vec{q}_{\rm H} - \frac{\rho H_c}{2} \vec{V}_{\rm A} \\ &= -\rho \vec{U} \cdot \vec{g} - \vec{U} \cdot \nabla p_{\rm W} - (\vec{V}_{\rm A} \cdot \nabla \rho) \frac{H_c}{2} + \frac{\rho Z^3 f}{2\lambda} \\ &+ \vec{U} \cdot (\vec{B} \cdot \nabla) \left[\frac{\sigma_D \rho Z^2}{2B^2} \vec{B} \right] - \rho \vec{V}_{\rm A} \cdot \nabla H_c \end{split}$$

• small-scale equations:

$$p_{w} = \delta B^{2} = (1 + \sigma_{D})\rho Z^{2}/4 \Rightarrow \stackrel{\leftrightarrow}{D}$$

$$\partial_{t} z^{2} + \nabla \cdot (\vec{u} z^{2} + \vec{v}_{A} H_{c}) = \frac{Z^{2}(1 - \sigma_{D})}{2} \nabla \cdot \vec{u} + 2\vec{v}_{A} \cdot \nabla H_{c} + \frac{Z^{2} \sigma_{D}}{|\vec{B}|^{2}} \vec{B} \cdot (\vec{B} \cdot \nabla)\vec{u} - \frac{\alpha Z^{3} f^{+}}{\lambda} + S$$

$$\partial_{t} H_{c} + \nabla \cdot (\vec{U} H_{c} + \vec{v}_{A} Z^{2}) = \frac{H_{c}}{2} \nabla \cdot \vec{U} + 2\vec{v}_{A} \cdot \nabla Z^{2} + Z^{2} \sigma_{D} \nabla \cdot \vec{v}_{A} - \frac{\alpha Z^{3} f^{-}}{\lambda}$$

$$\partial_{t} (\rho \lambda) + \nabla \cdot (\vec{U} \rho \lambda) = \rho \beta \left[Zf^{+} - \frac{\lambda}{\alpha Z^{2}} S \right]$$

MHD Simulation Output

- \bullet large-scale eqs: velocity field, magnetic field, ... \rightarrow A1, A2
- small-scale eqs: turbulence... \rightarrow F1 \rightarrow (modified) diffusion tensor

 \longrightarrow see talk by F. Effenberger

MHD Simulation Output

- \bullet large-scale eqs: velocity field, magnetic field, ... \rightarrow A1, A2
- small-scale eqs: turbulence... \rightarrow F1 \rightarrow (modified) diffusion tensor

 \longrightarrow see talk by F. Effenberger

assume intergalactic medium

 \longrightarrow bow shock as a consequence of a galactic wind \rightarrow A3

 \longrightarrow see talk by A. Kääpä

Jokipii & Morfill [1985], Völk & Ziraqashvili [2003], Merten et al. [2018]

MHD Simulation Output

- large-scale eqs: velocity field, magnetic field, ... \rightarrow A1, A2
- small-scale eqs: turbulence... \rightarrow F1 \rightarrow (modified) diffusion tensor

 \longrightarrow see talk by F. Effenberger

assume intergalactic medium

 \longrightarrow bow shock as a consequence of a galactic wind \rightarrow A3

 \longrightarrow see talk by A. Kääpä

Jokipii & Morfill [1985], Völk & Ziraqashvili [2003], Merten et al. [2018]

In the MHD code **Cronos** the large- and small-scale equations are implemented already (originally for heliospheric applications)

Outline CR transport Dynamical Halos Dark Matter Résumé

Dark Matter

Consequences of Dark Matter

- A1: Dark matter signature from Galactic center?
- A2: Dark matter signatures from dwarf galaxies?
- A4: Impact on halo dynamics?

 \longrightarrow global winds, partial winds, fountains, ... ?

Völk et al. [1989]

Consequences of Dark Matter

Adding a (spherical/axisymmetric/triaxial) dark halo potential (determined in F6) may also result in *breeze solutions*:

Fichtner & Vormbrock [1997], Taylor & Giacinti [2017]

Consequences of Dark Matter

Adding a (spherical/axisymmetric/triaxial) dark halo potential (determined in F6) may also result in *breeze solutions*:

Fichtner & Vormbrock [1997], Taylor & Giacinti [2017]

Outline CR transport Dynamical Halos Dark Matter Résumé

Résumé

Well... instead of a Résumé: Check the next Annual Meeting ③

A1: Multimessenger signatures of Gal. CR transport

A4: Magnetohydrodynamical halos of starforming galaxies

A2: CR signatures in dwarf galaxies

A5: Disentangling cosmicray signatures in AGNstarburst composites

A3: CR transport in the transition region from Galactic to extragalactic origin

A7: Density-dependence of the temporal structure in the multimessenger spectrum of blazars

Well... instead of a Résumé: Check the next Annual Meeting 🙂

Well... instead of a Résumé: Check the next Annual Meeting 😊

