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Structure-preserving numerics: What and why? M

m Simulations in physics are extremely complex and closed solutions are unknown. Physics
cross multiple scales that cannot all be resolved at the same time.

m How do we know that our solution is reliable? — We can check certain known physical
properties, like conservation laws.

m Structure-preserving numerics: Design numerical methods that mimic the conservation
properties of the physical system.

m Gain: Robust and reliable nhumerical methods.

Kormann | GEMPIC | May 31, 2022



RUHR-UNIVERSITAT BOCHUM

Why structure preserving?

explicit Euler, h = 10 implicit Euler, 7 = 10

m A classical example: N-body problem of
motion of five planets around the sun

[from Haier, Lubich, Wanner, Springer B \

2005] e

m Grid heating as example for instability in
plasma simulations: Tendency of °F ERistRC orc .
non-energy conserving codes to heat or RSy g i e T
cool. Heating creates extra free energy ;
that can cause numerical instabilities. >
[Visulation from Markidis & Lapenta,

J. Compt. Phys., 2011]

symplectic Euler, h = 100 Stémer—Verlet, h = 200
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Long-time simulations
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Relativistic Vlasov—Maxwell system M

Vlasov equation for a species with charge gs and mass mj:
Oefs(t, x,p) + v - Vxfs(t, x,p) + qs(E(t, x) + v x B(t, x)) - Vpfs(t,x,p) = 0

p = ymsv with Lorentz factor v = /1 + Ll

m2c2
Maxwell equations:

1
zatE(t, x) = curl B(t, x) — pod(t, x)

0¢B(t,x) = —curl E(t, x)
div E(t,x) = ,o(t x)/eo
divB(t,x) =
x) = Z T /]R3 fs(t,x, v)dp, J(t,x) = Z gs /R3 vis(t,x, v)dp.

s
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Structure of the Vlasov—Maxwell system M

m Energy, momentum, and charge conservation.

m Ampére's equation and Faraday’s law have a unique solution by themselves (provided
adequate initial and boundary conditions). The divergence constraints remain satisfied

over time.
m Equations of motion can be derived from a action or an Hamiltonian principle.
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Structure of the Maxwell’s equation

m Electromagnetic quantities

quantity symbol unit differential form
scalar electric potential ¢ %4 0-form
electric field intensity E % 1-form
magnetic flux density B % 2-form
charge density P % 3-form

m Spaces of electromagnetics form a de Rham complex

rad
H(Q) g curl

H(curl, Q) ——— H(div, Q)

div

L2(9)

with ¢ € HY(Q), E, A € H(curl,Q), B,J € H(div,Q), and p € L?(Q).
m Complex property: div curl = 0, curl grad = 0.
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Compatible finite elements for Maxwell’s equation M

m computing diagram operators:
grad M% = N! grad, curl N = N2 curl,
div 2 = N3 div.

m continuous field: B € V!, E, J € V?

m discrete Maxwell’s equations:

functional de Rham structure

V0 grad i curl V2 div -
?W_Curl B = —poll (J)a nol nlJ nzl nal
B d .
o+ curly E =0, ve B e Y
|—|3
divEj, = (p),
€0
diVW Bh = (0,
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GEMPIC framework M

m Discretisation: Conforming finite elements for fields (discrete deRham complex),
Particle-In—Cell for distribution functions.
m Semi-discrete electric field: Ex(x,t) = ZN‘ (()A?(x).
m Semi-discrete magnetic field: Bp(x,t) = ZNZ bi(t)A}(x).
m Particle distribution function

Np

fa(x, v, t) = Z w, S(x — X(t)) 6(u—U(t)), u=p/m

e=il
m Derivation of the semi-discrete equations based on discrete Poisson bracket or discrete
action principle.

m Temporal discretisations: Hamiltonian splitting and (semi)-implicit methods based on
discrete gradient methods.
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Variational principle

Principle of least action: The path taken by a system is the one for which the action is
stationary to the first order.

Equations of motion can be derived from the Euler—Lagrange equations:
doL oL
dtdg — oq

Lagrangian of the Vlasov—Maxwell system

L(X,X,P,A A )=

Z/fs(to,xo,po) ((P+aeA(t, X)) - X = (7 = )mec® + qe@(t, X)) ) dxodvg

. 1
+’3°/ \grad¢(t,x)+A(t,x)\2dx—/ |curl A(t, )2 dx.
2 Ja 240 Jo

where E = —0;A — grad ¢ and B = curl A.
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Semi-discrete Lagrangian M

= EN: Wp ((PP + quS(XP)) 'Xp - ((7 - 1)’"552 + qS¢S(XP)))

/\grad bn(x) + An(x)Pdx — /|cur| An(x)|* dx.

A, € V2, ¢ € VP and Xp(t), Vp(t), w, the particle trajectories and weights

3
= azlea/ﬂ (A - M(caSx,)) dx,
¢5(Xp) = /Q <¢hn3(5xp)) dx

where Sx (x) = S(x — X ;) denotes the shape function centered on a particle.
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Variational equations of motion

Faraday and Ampére

1
— —O:Epp + curl By, = poM?J3
{ @ toh TSR = RSN it

0¢Bp, +curl, E;, =0
Particle equations

v

dt P
du, _ T2 (ES(X,) + Vp x BS(X,))
dt mp

where U = P/ms with coupling fields defined by

3
E3(Xp) = Z /E,, M?(eaSx,),
Gauss' laws

div E, = M3p3
{ W Eh Pi/%0 with

divy, B, =0
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NI = > q?(VpSx,)
p=1---N

forp=1,....N

5
B>(X,) = Zea/QBhJ'Il(eaSXp).
a=1

N
= Z S,
n=1
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Conservation properties

m conservation of Gauss law:

¢ (div Ep) = —po div?d = —MPdivJ = 0, (M?p)

Ot (div Bp) = —div(curl Ep) =0

m conservation of energy:

2 — </|E,,\ + | By ) / - (curl By — M*J) — By, - curl E,,:—/E,,-I'IzJ

1d
EaZmep’chz :prvp- (v,, x Bj(xp) + Ei( x,, Zw,,/ (vpS(x — x,)) - En(x)
P I3
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Semi-discrete Poisson system M

m Dynamic variables: Z = (X, U, e, b)"
m Discrete Hamiltonian: H(U, e, b) = zz’zl myw,c2y, + e M?e + b'M'b

m Poisson matrix:

0 Wy /pm 0 0
_Wl/m Wq/mB(Xa b)Wl/m Wq/msz(x) 0

j(X7b) - 0 _S2(X)qu/m 0 C(Ml)_l
0 0 —(vvytcT 0

m S? . M2 coupling of pth particle with DoF k
m B(X, B), ,: magnetic rotation of pth trajectory with M* coupling

m Semi-discrete equations of motion: % = JDzH with Dz = (0,W,,V,M'e, M?b) "
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Derivation of structure-preserving propagators M

System of the form Z = J(Z)DzH(Z) with 7T = —7 and Dz#(Z) linear.

m Variational integrator: Splitting of the Hamiltonian and explicit solution of the
subsystems (or symplectic integration).

m Energy conserving discrete gradient methods (for quadratic Hamiltonian):

Zn+1 _ Zn _ Zn+1 4+ Zn
= = _ Zn+1 Zn D = =
At j( 9 ) ZH ( 9 >

with antisymmetric 7(Z" 1, Z").
Nonlinearity can be reduced by antisymmetric splitting of 7(Z"", Z").
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Semi-implicit scheme

Antisymmetric splitting of the Poisson matrix

0 Wy /m 0 0

Wiy WeymBY(X D)Wy W, mSE(X) 0
JXE =1 Z52()TW, 0

0 0 0

Resulting subsystems:

X=V.

U=W,,B(X b)V.

U=W,,S?(X)e, & =—S%(X)"W,V.
Implicit steps: 3. and 4.
Step 3: Implicit part could be confined to the field part in the absence of . Now there is a
nonlinear dependence on the velocity but violation of the energy conservation might be
tolerable for weakly relativistic plasmas.
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Implicit scheme

Antisymmetric splitting of the Poisson matrix

0 Wi/m 0 0

W, 1x 2
gy = | M Wq/gigf‘,xy:m W/ nS2(X) 0
0 0 0
Resulting subsystems:
U=W,,B(X,b)V.
. : 5 _ ot
X=V,U=W,,5(X)e, é=—-S*(X) W,V.

Step 2: Exact integration of the current can be implemented. Picard iteration to resolve the
implicit character in X, U and e.
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Some very first results with the relativistic version

Test case: Landau damping type problem from Crouseilles et al., Computer Physics
Communications 209, 2016.

m Initial conditions:

oy 1! uf?
f(x,u,t =0) = W exp <_M) (1 + avcos(kxi))

@
ko/c
m Resolution: grid points 16 x 8 x 8, particles 2,000,000, At = 0.1w,

m Parameters: o = 0.01, k =0.4, 0 = cor 0 = 155

Bi(x,t =0) = sin(kx1)
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Evolution of the electric energy

lofl 4

1072
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Conservation properties

relative energy error
=
o
i
=
N

10*13 4

10*15 4

1

o=c, implicit

o = ¢, semi-implicit

o0 =¢/100, implicit

o0 =¢/100, semi-implicit
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Conservation properties

10-3 4

10-5

107 4

109

10-11 4

10-13 4

10-15 4

—— o=c, implicit

o =c, semi-implicit
—— 0=¢/100, implicit
—=- 0=¢/100, semi-implicit

Costs of Picard iterations: 9 for 0 = ;55 and 8 for 0 = c.
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What more to do—HPC

m Implementation of the method based on AMReX.

m AMReX provides data structures for parallelization of particle and field routines, portable
to various systems.
m Weak scaling on Cobra@MaxPlanckComputing (INTEL Skylake, 20 cores 2.4 GHz,

connected through 100 Gb/s OmniPath interconnect) for 1000 particles per cell starting
with a grid of 10 x 10 x 10 cells:

cores | wall time [s] | efficiency
1 55.6 1.00
8 58.0 1.04
64 58.6 1.05
1000 60.8 1.09
8000 61.9 1.11
24389 63.1 1.13
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What more to do—Subcycling

Tackle fast frequencies by implicit method and/or partial subcycling
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What more to do—Physics

Example from fusion: lon-temperature gradient instability

108
o, = 0.12
k= 0.1
ke, = 0.08
70 ke, = 0.06
10 ko, = 0.04
Growth rate

1500

Next: CIM use cases?
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