

Seeking new fundamental phenomena in rare beauty decays

Dr. Harry Cliff

Cavendish Laboratory, University of Cambridge

Teilchenphysik Seminar, TU Dortmund Thursday 9th June 2022

The Standard Model

J.J. Thomson, 7th August 1897

Cathode ray tube \sim 30cm long

Mass = 0.5 MeV

ATLAS and CMS, 4th July 2012

LHC \sim 3 million cm long

Mass = 125 GeV

The Standard Model

Quantum Field Theory with U(1) x SU(2) x SU(3) gauge symmetry:

- Three vector forces (EM, Weak, Strong)
- Six quarks
- Six leptons
- Mass generated by spontaneous symmetry breaking leaving one scalar Higgs boson

Stupendously successful!

 Anomalous magnetic dipole moment of electron

 Theory:
 $11596521807.3 \pm 2.8 \times 10^{-13}$

 Experiment:
 $11596521817.8 \pm 7.6 \times 10^{-13}$

Higgs boson

Beyond the Standard Model

Observational challenges:

Matter-antimatter asymmetry

Open questions:

- Fine-tuning of the Higgs field (Hierarchy Problem)
- Origin of neutrino masses
- Flavour structure of the SM (why three generations, six quarks, six leptons?)
- Why U(1) x SU(2) x SU(3)?
- Unification of strong and electroweak forces?
- Gravity???

Why rare beauty decays?

- $b \rightarrow s\ell^+\ell^-$ and $b\bar{s} \rightarrow \ell^+\ell^-$ transitions, are **flavour-changing neutral current** (FCNC) processes → forbidden at tree level in the Standard Model (SM)
- \circ supressed in SM (branching fractions $\mathcal{O}(10^{-10}) \mathcal{O}(10^{-6})$) and hence sensitive to New Physics (NP)
- $\circ\,$ particles associated with NP quantum fields can have masses above reach of direct searches at LHC

Effective Field Theory

Such transitions can be described using an Effective Field Theory

- zoom out to *b* quark scale ~ 4.8 GeV
- \circ integrate out short distance (high energy) interactions
- \circ short distance interactions parametrised using Wilson Coefficients

Several **anomalies** in $b \rightarrow s\ell^+\ell^-$ decays emerged over the past decade:

Several **anomalies** in $b \to s\ell^+\ell^-$ decays emerged over the past decade: > Branching fraction of $B^0_{(s)} \to \mu^+\mu^-$ decays

Several **anomalies** in $b \to s\ell^+\ell^-$ decays emerged over the past decade: > **Angular analyses**: $B^0 \to K^{*0}\mu^+\mu^-$

- Large number of observables offering complementary information on NP
- SM uncertainties smaller than for BFs
- Combined tension between latest LHCb analysis and SM at 3.3 sigma when floating *Re(C₉)*
- Extent of hadronic contributions still matter of debate

Several **anomalies** in $b \to s\ell^+\ell^-$ decays emerged over the past decade: > **Angular analyses**: $B^+ \to K^{*+}\mu^+\mu^-$

• Combined tension with SM at **3.1 sigma** when floating $Re(C_9)$

Phys. Rev. Lett. 126 (2021) 161802

Several **anomalies** in $b \rightarrow s\ell^+\ell^-$ decays emerged over the past decade:

Tests of lepton universality

In the SM couplings of gauge fields to the three charged leptons (e, μ, τ) are identical \rightarrow known as **Lepton Universality**

Ratios of the form:

$$R_{H} = \frac{\int_{q_{min}}^{q_{max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{q_{min}}^{q_{max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to He^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \cong 1$$

in the SM, except for small corrections due to different lepton masses.

- Hadronic uncertainties (which affect BFs and angular observables) cancel in ratio down to $\mathcal{O}(10^{-4})$ []HEP 07 (2007) 040]
- QED corrections up to $\mathcal{O}(10^{-2})$ [EP] C76 (2016) 8, 440], []HEP 12 (2020) 104]

Significant deviation from unity unambiguous evidence of New Physics

Several **anomalies** in $b \rightarrow s\ell^+\ell^-$ decays emerged over the past decade: > Tests of lepton universality

 $\underline{B^0 \to K^{*0}\ell^+\ell^-} (3 \text{ fb}^{-1})$

 $R_{K^{*0}} = 0.66^{+0.11}_{-0.07}$ (stat) ± 0.03 (syst) $R_{K^{*0}} = 0.69^{+0.11}_{-0.07}$ (stat) ± 0.05 (syst)

 $[0.045 < q^2/\text{GeV}^2 < 1.1]$ $[1.1 < q^2/\text{GeV}^2 < 6.0]$

2.2–2.5 σ deviation from SM in each bin. []HEP 08 (2017) 55]

$$\underline{\Lambda_{b} \rightarrow pK^{-}\ell^{+}\ell^{-}} (5 \text{ fb}^{-1})$$

$$\underline{R_{pK^{-}}} = 0.86^{+0.14}_{-0.11}(\text{stat}) \pm 0.05(\text{syst})$$

$$\underline{Agrees with SM at 1\sigma. []HEP 05 (2020) 40]}$$

$$\underline{B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}} (9 \text{ fb}^{-1})$$

$$\underline{R_{K^{+}}} = 0.846^{+0.042}_{-0.039}(\text{stat}) \stackrel{+0.013}{-0.012}(\text{syst})$$

$$\underline{3.1\sigma \text{ deviation from SM.}}$$

$$\underline{Nature Physics 18, (2022) 277-282]}$$

$$\underline{Agrees} = 0.5 + 1 + 1.5$$

 R_{K}

Global Fits

≻ Combination of of all $b \to s\ell^+\ell^-$ measurements (and $B_s^0 \to \mu^+\mu^-$) through fit for Wilson Coefficients

> Anomalies can be explained **coherently** by:

• new vector coupling $C_9^{bs\mu\mu}$

○ new vector-axial vector coupling with $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

New Physics?

Possible coherent explanation involving tree-level new physics competing with SM loop and box diagrams.

May be probing Z' or leptoquarks at high mass scales, potentially within reach of direct production at LHC.

Further measurements are required to clarify situation

New Physics?

Today:

- **1. Tests of lepton universality** in $B^0 \to K_S^0 \ell^+ \ell^-$ and $B^0 \to K_S^0 \ell^+ \ell^-$ decays
- **2. Measurements** of $B_s^0 \to \mu^+ \mu^-$ decays and search for $B^0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^- \gamma$ decays

New Tests of Lepton Universality

Tests of lepton universality using 2011-2012 and 2016-2018 dataset

$$\begin{split} B^{0} &\to K_{\rm S}^{0} \ell^{+} \ell^{-} \ (9 \ {\rm fb^{-1}}) \\ R_{K_{\rm S}^{0}} &= \frac{\int_{1.1 \ {\rm GeV^{2}}}^{6.0 \ {\rm GeV^{2}}} \frac{{\rm d}\mathcal{B} \left(B^{0} \to K_{\rm S}^{0} \mu^{+} \mu^{-}\right)}{{\rm d}q^{2}} {\rm d}q^{2}}{\int_{1.1 \ {\rm GeV^{2}}}^{6.0 \ {\rm GeV^{2}}} \frac{{\rm d}\mathcal{B} \left(B^{0} \to K_{\rm S}^{0} e^{+} e^{-}\right)}{{\rm d}q^{2}} {\rm d}q^{2}} \\ B^{+} \to K^{*+} \ell^{+} \ell^{-} \ (9 \ {\rm fb^{-1}}) \\ R_{K^{*+}} &= \frac{\int_{0.045 \ {\rm GeV^{2}}}^{6.0 \ {\rm GeV^{2}}} \frac{{\rm d}\mathcal{B} \left(B^{+} \to K^{*+} \mu^{+} \mu^{-}\right)}{{\rm d}q^{2}} {\rm d}q^{2}}{\int_{0.045 \ {\rm GeV^{2}}}^{6.0 \ {\rm GeV^{2}}} \frac{{\rm d}\mathcal{B} \left(B^{0} \to K^{*+} e^{+} e^{-}\right)}{{\rm d}q^{2}} {\rm d}q^{2}} \end{split}$$

- ▶ **Isospin partners** of $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^{*0} \ell^+ \ell^-$: expect same NP contributions
- > More difficult to reconstruct due to long-lived K_S^0 in final state
- First measurements at LHC previously measured by Belle with statistical uncertainties ~50%

The LHCb Experiment

Electrons vs Muons

Electrons and muons have very different signatures in the experiment.

Electrons vs Muons

Electrons radiate bremsstrahlung photons when interacting with detector. Photons radiated before the magnet lead to underestimation of momentum and energy.

Bremsstrahlung recovery searches for energy deposits in the calorimeter and adds back to electron energy.

Electrons vs Muons

Even after brem. recovery mass resolution for electron modes is poorer than for muon modes.

From 2021 R_K analysis [Nature Physics 18, (2022) 277-282]

Efficiency to reconstruct and select electron modes is $\sim 20\%$ that of muon modes.

Controlling different efficiencies for electrons and muons is key challenge of analysis.

Analysis Strategy

Measure $R_{K^{(*)}}$ as **double ratio** compared to **control decays**:

 $B \to J/\psi(\ell^+\ell^-)K^{(*)}$

where the J/ψ decays to either e^+e^- or $\mu^+\mu^-$ at an equal rate. Branching fraction $\sim 1/1000$.

$$R_{K}^{(*)} = \frac{N(B \to K^{(*)}\mu^{+}\mu^{-})}{N(B \to K^{(*)}e^{+}e^{-})} \frac{N(B \to J/\psi(e^{+}e^{-})K^{(*)})}{N(B \to J/\psi(\mu^{+}\mu^{-})K^{(*)})} \cdot \frac{\epsilon(B \to K^{(*)}e^{+}e^{-})}{\epsilon(B \to K^{(*)}\mu^{+}\mu^{-})} \frac{\epsilon(B \to J/\psi(\mu^{+}\mu^{-})K^{(*)})}{\epsilon(B \to J/\psi(e^{+}e^{-})K^{(*)})}$$

$$\uparrow$$
Number (N) of each decay mode
extracted from data using a fit to the
B mass spectrum as prectrum as the select each decay measured
using simulation

Many systematic effects **cancel precisely** in double ratio – highly robust against biases.

Same strategy as previous *R* measurements **except** we fit $R_{K^{(*)}}^{-1}$ to keep low yield electron modes in the numerator \rightarrow uncertainties more Gaussian.

Analysis Strategy

Additionally:

➤ aim for first observations of $B^0 \to K_S^0 e^+ e^-$ and $B^+ \to K^{*+} e^+ e^-$ decays
➤ measurements of their differential branching fractions

$$\frac{\mathrm{d}\mathcal{B}(B \to K^{(*)}e^+e^-)}{\mathrm{d}q^2} = \frac{N(B \to K^{(*)}e^+e^-)}{\epsilon(B \to K^{(*)}e^+e^-)} \cdot \frac{\epsilon(B \to J/\psi(e^+e^-)K^{(*)})}{N(B \to J/\psi(e^+e^-)K^{(*)})} \cdot \frac{\mathcal{B}(B \to J/\psi(e^+e^-)K^{(*)})}{q_{\max}^2 - q_{\min}^2}$$

q^2 and $m(K^{*+})$ regions

Signal modes:

$$B^+ \to K^{*+} \ell^+ \ell^-: \quad [0.045 < q^2/\text{GeV}^2 < 6.0] \qquad \qquad \begin{array}{c} \text{Single } q^2 \text{ bin used} \\ \text{statistics despite} \end{array}$$
$$B^0 \to K^0_S \ell^+ \ell^-: \quad [1.1 < q^2/\text{GeV}^2 < 6.0] \qquad \qquad \begin{array}{c} \text{Single } q^2 \text{ bin used} \end{array}$$

Control modes:

due to low photon pole

Wider range used in electron mode due to poorer q^2 resolution

 $B^0 \to I/\psi(e^+e^-)K_S^0$ and $B^+ \to I/\psi(e^+e^-)K^{*+}$: [6.0 < q^2/GeV^2 < 11.0] $B^0 \to J/\psi(\mu^+\mu^-)K_S^0$ and $B^+ \to J/\psi(\mu^+\mu^-)K^{*+}$: [8.98 < q^2/GeV^2 < 10.02]

K^{*+} mass:

$$\left| m \left(K_{\rm S}^0 \pi^+ \right) - m (K^{*+})_{\rm PDG} \right| < 300 \,\,{\rm MeV}$$

Expect roughly 22% S-wave component based on LHCb $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^$ analysis. []HEP 11 (2016) 47]

Selection

Level 0 Trigger

- Muon decays selected by L0 muon trigger
- Electron decays selected by L0 electron or hadron trigger or be triggered on 'independent' part of underlying event

High-Level Trigger (HLT)

- HLT1: candidates selected using single track trigger requiring high p_T and impact parameter
- > HLT2: candidates selected using **topological** triggers

Selection

- → Candidates made by combining displaced dilepton pair with K_S^0 candidate (and π^+ for B^+ modes)
- Requirements on vertex quality, momentum and separation from primary interaction
- Boosted decision trees trained on data and simulation used to reject combinatorial background

Backgrounds

Backgrounds from mis-reconstructed b-hadron decays

Reduced to negligible levels by kinematic, mass and PID requirements:

B ⁰ backgrounds	B ⁺ backgrounds	
$H_b \to h h' \ell^+ \ell^-$	$H_b \to h h' \pi^+ \ell^+ \ell^-$	$B^0 \to K^0_{\rm S} \ell^+ \ell^- + {\rm random} \pi^+$
$\Lambda_b \to \Lambda \ell^+ \ell^-$	$\Lambda_b \to \Lambda h h \ell^+ \ell^-$	$B^{+} \to J/\psi(\ell^{+}\ell^{-})K^{*+}(K_{\rm S}^{0}\pi^{+})$ with $\ell^{+} \leftrightarrow \pi^{+}$ swap
$B^0 \to D^-(K^0_{\rm S}X)Y$	$B^+ \to \overline{D}^0 \left(K_{\rm S}^0 \pi^+ X \right) Y$	$B^+ \to \psi_{2S}(\ell^+ \ell^-) K^{*+} (K_{\rm S}^0 \pi^+)$ with $\ell^+ \leftrightarrow \pi^+$ swap

X,*Y*= π^{\pm} or $\ell^{\pm}\nu_{l}$

Modelled in the fits

 $> B^{0}: \text{ part. reco. } B^{+} \to K^{*+}(K_{S}^{0}\pi^{+})\ell^{+}\ell^{-} \text{ and mis-ID } B^{0} \to K_{S}^{0}\pi^{+}\pi^{-}$ $> B^{+}: \text{ part. reco. } B \to K^{*}(K_{S}^{0}\pi^{+}\pi^{-})\ell^{+}\ell^{-} \text{ and mis-ID } B^{+} \to K^{*+}\pi^{+}\pi^{-}$

Efficiency Calibration

Accurate calculation of efficiencies is essential to making an unbiased measurement.

Simulation is corrected using data-driven weights to improve agreement with data:

- 1. PID efficiencies
- 2. Electron tracking efficiency
- 3. Generated B kinematics
- 4. Event multiplicity
- 5. Fraction of K_S^0 mesons from long and downstream tracks
- 6. Trigger response
- 7. BDT response
- 8. q² resolution

Yields of control modes extracted using maximum likelihood fits:

 \succ Resolution improved by constraining J/ψ and K_S^0 mass

Parameters of control mode PDFs from simulation except mean and width

Phys. Rev. Lett. 128 (2022) 191802

Yields of **signal muon modes** and $R_{K^{(*)}}$ extracted using simultaneous maximum likelihood fits to signal mass spectra:

- > Resolution improved by constraining K_S^0 mass
- Parameters of signal PDFs from simulation
- Shifts in mean and width from control mode data fits

Yields of **signal muon modes** and $R_{K^{(*)}}$ extracted using simultaneous maximum likelihood fits to signal mass spectra:

- > Resolution improved by constraining K_S^0 mass
- ➢ Parameters of signal PDFs from simulation
- Shifts in mean and width First Observation!

Systematic Uncertainties

Dominant systematics (~2-3%):

statistical uncertainty on efficiencies

Next-to-dominant (1-2%):

size of sample of simulated candidates used to determine PDF shapes

 \succ models used for partially reconstructed and J/ψ leakage backgrounds

Sub-dominant ($\leq 1\%$):

- size of simulated samples used to determine correction weights
- PID efficiency correction: choice of binning and correlation in efficiency between the two electrons
- Choice of method used to calculate trigger correction
- imperfect modelling of muon track reconstruction efficiency
- residual mismodelling of the BDT classifier response in simulation
- residual contamination from cascade D decays
- residual bias in the fitting procedure evaluated using pseudoexperiments

Validation

Validation of the method by measuring single ratio:

$$r_{J/\psi K^{(*)}}^{-1} = \frac{N(B \to J/\psi(e^+e^-)K^{(*)})}{N(B \to J/\psi(\mu^+\mu^-)K^{(*)})} \cdot \frac{\epsilon(B \to J/\psi(\mu^+\mu^-)K^{(*)})}{\epsilon(B \to J/\psi(e^+e^-)K^{(*)})}$$

Stringent test of analysis due to lack of cancellation of electron vs muon systematics.

Finding:

$$r_{J/\psi K_{\rm S}^0}^{-1} = 0.977 \pm 0.008 \,(\text{stat.}) \pm 0.027 \,(\text{syst.})$$

and

$$r_{J/\psi K^{*+}}^{-1} = 0.965 \pm 0.011 \text{ (stat.)} \pm 0.045 \text{ (syst.)}$$

Both consistent with unity.

Validation

We also study $r_{J/\psi K^{(*)}}^{-1}$ differentially as a function of several variables that are differently distributed beween signal and control modes

Results: Electron Decays

Electron modes are **observed for the first time**

$B^0_{(s)} \rightarrow \mu^+ \mu^-$

Theoretical motivation

 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays are a **FCNC** decay *and* **helicity suppressed** – very rare.

Matrix element factorises into (trivial) leptonic part and B_q decay constant:

$$\langle \mu \mu | Q | B_q \rangle = \langle \mu \mu | j_\mu \cdot j_q | B_q \rangle = \langle \mu \mu | j_\mu | 0 \rangle \cdot \langle 0 | j_q | B_q \rangle \sim \langle \mu \mu | j_\mu | 0 \rangle \cdot f_{B_q}$$

- Decay constant (f_{B_q}) calculated with lattice QCD to a few percent.
- Decay depends only on Wilson coefficient C_{10} in SM.

Low theoretical uncertainty:

 $BR(B_s^0 \to \mu^+ \mu^-)_{SM} = (3.66 \pm 0.14) \times 10^{-9}$ $BR(B^0 \to \mu^+ \mu^-)_{SM} = (1.03 \pm 0.05) \times 10^{-10}$

C. Bobeth et.al. (2014) + M. Beneke, C. Bobeth, and R. Szafron (2019)

Theoretical motivation

Decay sensitive to **scalar (***S***)** and **pseudoscalar (***P***)** operators – not helicity suppressed and can lead to large enhancements (and suppression in case of *P***)**:

• Models with extended Higgs sector (e.g. MSSM) and vector leptoquarks

Also NP in C_{10} or C'_{10} :

- Effective FCNC Z couplings (MSSM, partial composite, Randall-Sundrum)
- Short distance semi-leptonic operators (Z', scalar or vector leptoquarks)

Analysis strategy

Used full 2011-2018 (9 fb⁻¹) data. Four goals:

- 1. Measure the $B_s^0 \rightarrow \mu^+ \mu^-$ branching fraction
- 2. Search for the $B^0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^- \gamma$ decays
- 3. Measure the $B_s^0 \to \mu^+ \mu^-$ effective lifetime (sensitive to $\mathcal{A}_{\Delta\Gamma}$):

$$\tau_{\mu\mu} \equiv \frac{\int_0^\infty t \langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle dt}{\int_0^\infty \langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle dt} \qquad \mathcal{A}_{\Delta\Gamma} = \frac{(1 - y_s^2) \tau_{\mu\mu} - (1 + y_s^2) \tau_{B_s}}{y_s (2\tau_{B_s} - (1 - y_s^2) \tau_{\mu\mu})} \qquad y_s \equiv \tau_{B_s} \Delta\Gamma/2$$

Key features / challenges:

- Normalise $B_s^0 \to \mu^+ \mu^-$ branching fraction w.r.t. $B^0 \to K^+ \pi^-$ and $B^+ \to J/\psi K^+$
- Reject /control physical backgrounds (esp. $B \rightarrow h^+h^-$) using particle ID
- Rejection of combinatorial background (mostly from semi-muonic *b*-hadron decays) using boosted decision tree (BDT)
- Correct for decay time efficiency using MC

Branching fraction

Improved measurement of $B_s^0 \to \mu^+ \mu^-$ decay but no evidence of $B^0 \to \mu^+ \mu^-$ or $B_s^0 \to \mu^+ \mu^- \gamma$ (yet!)

Effective lifetime

Improved measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime (with I. Williams):

- Simultaneous fit to two bins of BDT (simple cut in 2017 analysis)
- Softer PID requirements as $B \rightarrow h^+h^-$ background less problematic for B_s^0
- Decay time distribution extracted using *sWeights*
- Decay time efficiency calculated from weighted simulation
- Method validated on $B^0 \to K^+\pi^-$ and $B^0_s \to K^+K^-$

<u>Phys. Rev. Lett. 128, (2022) 041801</u> + <u>Phys. Rev. D105 (2022) 012010</u>

Effective lifetime

Currently statistically limited but favours SM $A_{\Delta\Gamma}$ =1 (SM).

Dominant systematic uncertainty from $B^0 \rightarrow K^+\pi^-$ validation – will decrease with more data.

Summary

We live in exciting times...

- No new particles at the LHC (yet)
- Rare beauty decays offer one of the best ways to probe for new physics at and above the TeV scale

Intriguing anomalies require urgent further experimental tests:

- Many new measurements possible with just the Run II LHCb data
- The **LHCb Upgrade I** and **II** will bring fantastic opportunities for precise measurements with great potential to discover deviations from the Standard Model

THE SUN: LIVING WITH OUR STAR

<u>HOME</u> → WHAT WAS ON

Books

How to Make an Apple Pie From Scratch In Search of the Recipe for our Universe Harry Cliff

HARRY CLIFF WAS MACHT DAS QUARK IM APFELKUCHEN?

> »Dieses Buch ist ein wilder Ritt durch die faszinierenden Gefilde der Teilchenphysik.« Heino Falcke

Auf der Suche nach dem Rezept für unser Universum

dtv

Backup

Yields of control modes extracted using maximum likelihood fits:

- > Resolution improved by constraining J/ψ and K_S^0 mass
- Parameters of control mode PDFs determined from simulation with mean mass and mass resolution allowed to float in fit to data

LHCb-PAPER-2021-038

Decay	Yield
$B^0\to J/\psi(\mu^+\mu^-)K^0_{\rm S}$	118,750 ± 360
$B^0 \rightarrow J/\psi(e^+e^-)K_{\rm S}^0$	21,080 ± 170
$B^+ \to J/\psi(\mu^+\mu^-)K^{*+}$	75,420 ± 290,
$B^+ \to J/\psi(e^+e^-)K^{*+}$	14,330 ± 170

Efficiencies

LHCb Simulation

Angular Distributions

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2 d\vec{\Omega}} \Big|_P = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_l \right]$$

$$F_L \cos^2\theta_K \cos 2\theta_l + S_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{FB} \sin^2\theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi_l \sin \phi + S_8 \sin^2\theta_l \sin^2\theta_k \sin^2\theta_l \sin^2\theta_$$

Validation

Method validated by measuring double ratio:

$$R_{\psi(2S)K^{(*)}}^{-1} = \frac{N(B \to \psi_{2S}(e^+e^-)K^{(*)})}{N(B \to \psi_{2S}(\mu^+\mu^-)K^{(*)})} \frac{N(B \to J/\psi(\mu^+\mu^-)K^{(*)})}{N(B \to J/\psi(e^+e^-)K^{(*)})} \cdot \frac{\epsilon(B \to \psi_{2S}(\mu^+\mu^-)K^{(*)})}{\epsilon(B \to \psi_{2S}(e^+e^-)K^{(*)})} \frac{\epsilon(B \to J/\psi(e^+e^-)K^{(*)})}{\epsilon(B \to J/\psi(\mu^+\mu^-)K^{(*)})}$$

Finding:

$$R_{\psi(2S)K_{\rm S}^0}^{-1} = 1.014 \pm 0.030 \text{ (stat.)} \pm 0.020 \text{ (syst.)}$$

Consistent with unity.

Validation

Method validated by measuring double ratio:

$$R_{\psi(2S)K^{(*)}}^{-1} = \frac{N(B \to \psi_{2S}(e^+e^-)K^{(*)})}{N(B \to \psi_{2S}(\mu^+\mu^-)K^{(*)})} \frac{N(B \to J/\psi(\mu^+\mu^-)K^{(*)})}{N(B \to J/\psi(e^+e^-)K^{(*)})} \cdot \frac{\epsilon(B \to \psi_{2S}(\mu^+\mu^-)K^{(*)})}{\epsilon(B \to \psi_{2S}(e^+e^-)K^{(*)})} \frac{\epsilon(B \to J/\psi(e^+e^-)K^{(*)})}{\epsilon(B \to J/\psi(\mu^+\mu^-)K^{(*)})}$$

Finding:

$$R_{\psi(2S)K^{*+}}^{-1} = 1.017 \pm 0.045 \text{ (stat.)} \pm 0.023 \text{ (syst.)}$$

Consistent with unity.

Results: Combination

Two results combined to evaluate total significance with respect to the SM:

Fit for Wilson Coefficients using Flavio [arxiv:1810.08132]
 Float C₉^{bsµµ} = -C₁₀^{bsµµ} (LFU ratios cannot disentangle C₉ and C₁₀)

Effective lifetime – control fit

