

Chris Young, University of Freiburg

19th May 2022 TU Dortmund Seminar

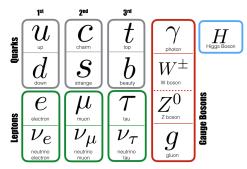
Chris Young, University of Freiburg

Introduction + Outline

- The universality of the couplings of the leptons to the gauge bosons is one of the fundamental axioms of the Standard Model.
- This means that branching ratios of the W and Z bosons should be equal to each of the different charged leptons; e[±], μ[±], τ[±]. (Note; mass effects are small)
- Here I present an analysis from the ATLAS collaboration which directly tests this fundamental assumption of the Standard Model by measuring the ratio;

$$R(au/\mu) = rac{B(W o au
u_{ au})}{B(W o \mu
u_{\mu})}$$

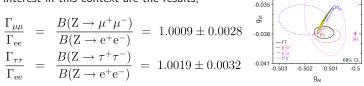
- Outline
 - Previous measurements of the W and Z ratios of BRs
 - Our methodology:
 - 1. Strategy
 - 2. Selection
 - 3. Background estimation
 - 4. Systematics and fit
 - Our Result + the Broader Picture + Conclusion



Chris Young, University of Freiburg

The Standard Model

- The Standard Model contains three generations of quarks and leptons.
- The relative couplings of the W boson to the different quark pairs is governed by the CKM matrix.
- ▶ For leptons the vector boson couplings should be identical for all generations.
- As the vector bosons as much more massive than the leptons this means that the branching ratios should all be identical – and we can test this experimentally.



Chris Young, University of Freiburg

LEP Measurements for Z

- ► The e⁺ e⁻ collider at CERN that preceded the LHC; the Large Electron Positron Collider produced a large number of Z bosons allowing precise measurement of the properties. [1]
- ► The final analyses used 1.7 million $Z \to \ell^+ \ell^-$ events across the 4 experiments recorded at the Z peak between 1990 and 1995.
- Of particular interest in this context are the results;

and the extracted axial and vector couplings (figure). Good agreement with unity is seen and the precision of the results is \sim 0.3%.

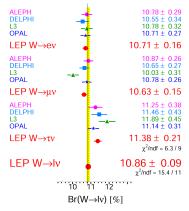
Chris Young, University of Freiburg

LEP Measurements for W

- From 1997-2000 LEP ran at $\sqrt{s} > 2 \times m_W$ so WW production was possible.[2]
- By performing a fit across all decay channels the branching fractions to each lepton species could be extracted, and the ratios then test the universality of the couplings;

$$\begin{split} \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) \, / \, \mathcal{B}(W \to e \overline{\nu}_{e}) &= 0.993 \pm 0.019 \,, \\ \mathcal{B}(W \to \tau \overline{\nu}_{\tau}) \, / \, \mathcal{B}(W \to e \overline{\nu}_{e}) &= 1.063 \pm 0.027 \,, \\ \mathcal{B}(W \to \tau \overline{\nu}_{\tau}) \, / \, \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) &= 1.070 \pm 0.026 \,. \end{split}$$

- While the lighter generations are in good agreement, the ratio w.r.t. τ-leptons show significant discrepancies.
- In particular the ratio that we have measured; $B(W \rightarrow \tau \nu)/B(W \rightarrow \mu \nu)$, is found to be 2.7 σ from the Standard Model expectation of unity.
- The uncertainty on their measurement is 2.6% so we aim to significantly improve on this precision to provide an unambiguous solution to this tension with the Standard Model value.


6/38

Chris Young, University of Freiburg

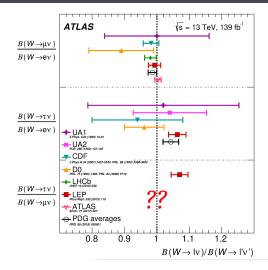
LEP Measurements for W

 $\begin{array}{lll} \mathcal{B}(W \rightarrow \mu \overline{\nu}_{\mu}) \, / \, \mathcal{B}(W \rightarrow e \overline{\nu}_{e}) &=& 0.993 \pm 0.019 \, , \\ \mathcal{B}(W \rightarrow \tau \overline{\nu}_{\tau}) \, / \, \mathcal{B}(W \rightarrow e \overline{\nu}_{e}) &=& 1.063 \pm 0.027 \, , \\ \mathcal{B}(W \rightarrow \tau \overline{\nu}_{\tau}) \, / \, \mathcal{B}(W \rightarrow \mu \overline{\nu}_{\mu}) &=& 1.070 \pm 0.026 \, . \end{array}$

W Leptonic Branching Ratios

Chris Young, University of Freiburg

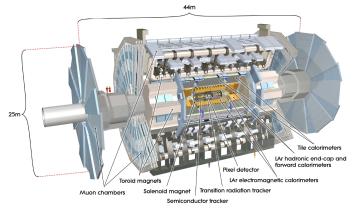
Low energy results and Other Measurements


- There have also been a series of low energy measurements which are sensitive to the couplings of the W boson to different lepton generations.
- Many of these are much more precise than those for on-shell bosons.
- ► For example; $|g_{\tau}|/|g_{\mu}| = 0.9999 \pm 0.0014$ from $\Gamma_{\tau \to e}/\Gamma_{\mu \to e}$, $\Gamma_{\tau \to \pi}/\Gamma_{\pi \to \mu}$ and $\Gamma_{\tau \to \kappa}/\Gamma_{\kappa \to \mu}$ and using the lifetime [3]
- There is therefore a tension between these highly precise low energy results which show good agreement with the Standard Model and those for on-shell W bosons.
- Additionally, interestingly, in the measurement of R(D) and $R(D^*)$ which also tests τ/μ universality this is a 3.4 σ discrepancy with the Standard Model.

8/38 B/38

Chris Young, University of Freiburg

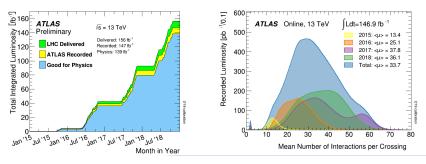
Summary of Previous Experimental Results



Chris Young, University of Freiburg

The ATLAS Experiment

The ATLAS general purpose experiment surrounds the interaction point and has various sub-detectors to reconstruct the different particles produced in the LHC collisions.

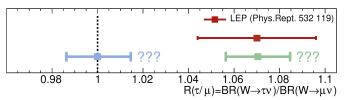


Chris Young, University of Freiburg

The Run 2 Dataset

- From 2015-2018 the LHC ran with a center of mass energy of $\sqrt{s} = 13$ TeV.
- ► ATLAS efficiently recorded this data and 139fb⁻¹of data is available for analysis.
- ▶ This corresponds to 8.4 billion $W \rightarrow \ell \nu$, 813 million $Z \rightarrow \ell \ell$, 115 million $t\bar{t}$ and 7.7 million Higgs events!
- A complication in reconstructing the events is the large number of simultaneous collisions - there was an average of 33.7 interactions per crossing.

Chris Young, University of Freiburg

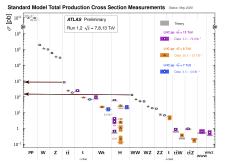

Introduction to the ATLAS Analysis

The aim of the measurement is to determine

$$R(\tau/\mu) = B(W \to \tau \nu)/B(W \to \mu \nu)$$

with a precision significantly better than the 2.6% accuracy achieved by LEP.

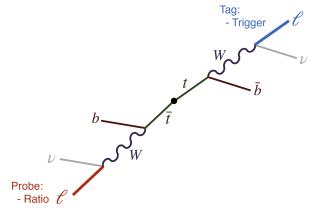
- ► A precision of 1-2% would either be able to refute the LEP excess or lead to an unambiguous discovery of beyond the Standard Model physics!
- This level of precision was not thought possible at a hadron collider; large backgrounds and kinematic biases (eg. due to trigger selection).
- ► How can we get a large unbiased sample of W bosons where we can evaluate $B(W \rightarrow \tau \nu)$ and $B(W \rightarrow \mu \nu)$?



Chris Young, University of Freiburg

Introduction to the ATLAS Analysis

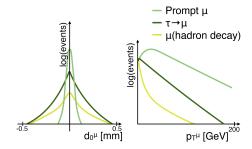
- ▶ How can we get a large unbiased sample of W bosons where we can evaluate $B(W \rightarrow \tau \nu)$ and $B(W \rightarrow \mu \nu)$?
- We use $t\bar{t}$ events to give us this sample.
- The tt cross-section is very large at the LHC over 100 million top pairs were produced in Run 2!
- ▶ Note this is almost an order of magnitude higher than WW production.



Chris Young, University of Freiburg

Introduction to the ATLAS Analysis

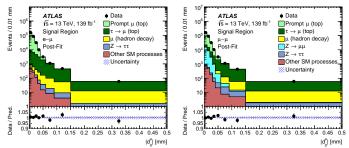
- ▶ How can we get a large unbiased sample of W bosons where we can evaluate $B(W \rightarrow \tau \nu)$ and $B(W \rightarrow \mu \nu)$?
- The two W bosons can then be used in a tag and probe approach.



Chris Young, University of Freiburg

Identifying τ -leptons

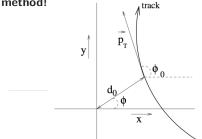
- The analysis focuses on the decay; $\tau^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \nu_{\tau}$.
- Hadronic decays are harder to reconstruct and come with larger associated uncertainties so we only use the decay to muons.
- ▶ This branching fraction is very well known (17.39 \pm 0.04% [4]) so we can extrapolate to the full τ final state.
- Muons from intermediate τ-leptons are distinguished from prompt muons by their different p_T and different transverse impact parameter, |d₀^μ|.



Chris Young, University of Freiburg

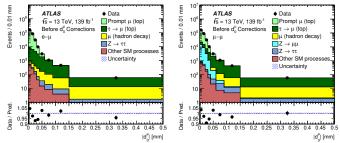
Event Selection

- A simple di-leptonic tt selection is applied.
- Two opposite sign leptons (e, μ) , two b-tagged jets, Z mass window veto.
- Require "tag" lepton to trigger the event.
- Probe lepton required to be a muon and have p_T > 5 GeV tag and probe allows us to go below trigger thresholds.
- ▶ Main backgrounds are then muons from hadron decays, and $Z \rightarrow \mu\mu$ in the $\mu \mu$ channel.



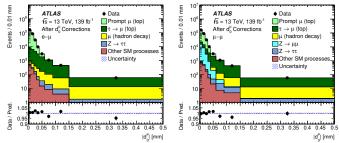
Chris Young, University of Freiburg

- To extract $R(\tau/\mu)$ a 2-D fit is performed in the probe muon $p_{\rm T}$ and $|d_0^{\mu}|$.
- Therefore the accurate modeling of $|d_0^{\mu}|$ is very important.
- We define this variable as the distance of closest approach of a track to the beam-line.
- Importantly, we define it with respect to the beam-line rather than the primary vertex to make it only dependent on the properties of the muon (p_{T} , η , etc).
- Therefore we can take the modeling from a different process and apply it to muons in $t\bar{t}$ data-driven method!



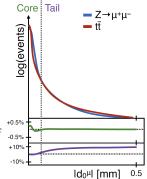
Chris Young, University of Freiburg

- We use $Z \to \mu \mu$ events to derive templates for $|d_0^{\mu}|$ for prompt muons.
- ▶ Selection; two opposite sign muons, $85 < m(\mu\mu) < 100$ GeV, no b-tagged jets.
- Extremely high purity but we subtract from simulation the small $Z \rightarrow \tau \tau$ background.
- We produce templates year-by-year in 33 bins in p_T, |η| and then apply them based on the signal yields in the tt selection.
- Before corrections discrepancies from beamspot size, alignment and material.



Chris Young, University of Freiburg

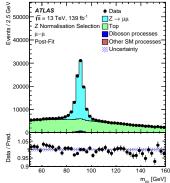
- We use $Z \to \mu \mu$ events to derive templates for $|d_0^{\mu}|$ for prompt muons.
- ▶ Selection; two opposite sign muons, $85 < m(\mu\mu) < 100$ GeV, no b-tagged jets.
- Extremely high purity but we subtract from simulation the small $Z \rightarrow \tau \tau$ background.
- We produce templates year-by-year in 33 bins in p_T, |η| and then apply them based on the signal yields in the tt selection.
- After corrections agreement is very good.



19/38

Chris Young, University of Freiburg

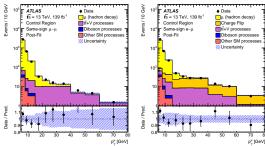
- ▶ For systematic uncertainties on these templates we look at the closure in simulation.
- The limited binning in p_T, η is a potential source of non-closure along with the amount of nearby hadronic activity.
 Core Tail
- Closure is seen to be very good and the full size of the small differences is taken as an uncertainty.
- Different parts of the spectrum could be affected by different sources such that this uncertainty is split into a core and tail component.
- For processes with real displacement eg. $\tau \rightarrow \mu\nu\nu$ or hadron decays, we smear the simulation to match the resolution determined from a gaussian fit of the core of the distribution in the same $Z \rightarrow \mu\mu$ selection.



Chris Young, University of Freiburg

$Z \rightarrow \mu \mu$ Background

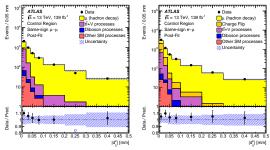
- ▶ We extract the normalization of the $Z \rightarrow \mu\mu$ background by applying the same selection without the $m(\mu\mu)$ veto.
- ► The same b-tagged jet requirements are applied only extrapolating over lineshape.
- A fit is then performed across $m(\mu\mu)$ using a Voigt for the signal and Chebychev polynomial for background.
- Other functions used to derive a systematic uncertainty.
- Find a scaling of 1.36 is required with a 1-2% error.



Chris Young, University of Freiburg

Hadron Decay Background

- Modeling of the background from heavy flavour hadron decays is difficult.
- ▶ We form a control region to normalize this requiring same-sign leptons.
- ▶ In this control region there is significant $t\bar{t}$ +V and charge flip (in $e \mu$) at high p_{T} .
- ▶ We normalize these other contributions from the region with $p_{\rm T}$ > 30 GeV, then extract the normalization of the hadron decay background.
- Good agreement is seen in the modeling of the kinematics in the control region giving us confidence in the approach.



Chris Young, University of Freiburg

Hadron Decay Background

- We are extrapolating from SS to OS regions.
- While hadrons from b-decays are expected to be charge symmetric, the c-hadron component isn't.
- Uncertainties on this normalization come from; limited statistics 4% (4%), varying the generator and generator parameters 8% (3%), and the background subtraction 1% (1%) for the e μ, and μ μ channels.
- Additional uncertainties on the shape in p_{T} , $|d_0^{\mu}|$ from generator comparisons.

Chris Young, University of Freiburg

Experimental Uncertainties

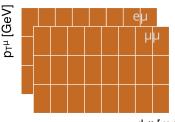
- As the analysis is measuring a ratio many systematic uncertainties usually associated with top measurements cancel and become very unimportant.
- For example, all jet energy scale and resolution, as well as b-tagging systematics have little impact on the result.
- The remaining experimental uncertainties come from muon reconstruction and pile-up modeling.
- ▶ Pile-up affects the rate of muons passing the isolation cuts, and the reconstruction and identification efficiencies are $p_{\rm T}$ dependent so affect the $W \rightarrow \tau (\rightarrow \mu \nu \nu) \nu$ and $W \rightarrow \mu \nu$ processes differently.
- ▶ These effiencies are measured using $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ events using tag and probe methods. These processes have very large statistics so they are now well known at the < 1% level for almost all of the phase space.

Chris Young, University of Freiburg

Theoretical Uncertainties

- ► Theoretical uncertainties affect the p_T , η distribution of both the $W \rightarrow \tau (\rightarrow \mu \nu \nu) \nu$ and $W \rightarrow \mu \nu$ processes.
- These are evaluated by changing a number of generator settings or using different generators in the case of the parton shower + hadronization uncertainty.
- For the parton shower + hadronization uncertainty as many things are changing this is separated out into separate components for low p_T, mid p_T, high p_T normalization, high p_T shape.
- It was checked that different correlation scenarios did not affect the results.
- These variations are also applied to the hadron decay background to give shape uncertainties in the p_T, |d₀^µ| space.

Uncertainty	Alternative Settings / Sample
Inital- and final-state radiation	A14 eigen-tune variations [38] of the strong coupling (α_s)
Missing higher-order QCD corrections	Factorisation and renormalisation scales
	up by a factor of 2 and down by a factor of 0.5
Resummation scale uncertainty	POWHEG h_{damp} parameter varied from 1.5 to 3 m_{top}
Parton shower and hadronisation model	HERWIG v7.04 [79, 80], H7UE tune [80],
	MMHT2014L0 PDF set [81]
Top $p_{\rm T}$ spectrum	Removing the NNLO top p_T reweighting

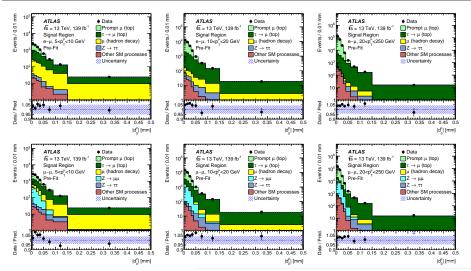


Chris Young, University of Freiburg

Fit Setup

A profile likelihood fit is performed to extract $R(\tau/\mu)$ in 2-D;

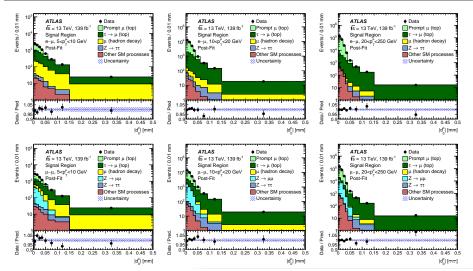
- ▶ 3 bins in p_T: [5, 10, 20, 250] GeV
- ▶ 8 bins in $|d_0^{\mu}|$: [0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.5] mm
- ▶ 2 channels; $e \mu$, $\mu \mu$ 48 bins in total
- Two parameters are freely floating; the parameter of interest, $R(\tau/\mu)$, and $k(t\bar{t})$ which determines the normalization of the sum of the $W \rightarrow \tau(\rightarrow \mu\nu\nu)\nu$ and $W \rightarrow \mu\nu$ processes in $t\bar{t}$ and Wt.
- Nuicance parameters are then used for all the uncertainties with the appropriate bin-by-bin and process-by-process correlations.
- The normalizations from the control regions are performed in advance of the fit being performed.


d₀µ [mm]

26/38

Chris Young, University of Freiburg

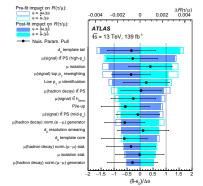
Pre-fit distributions



27/38

Chris Young, University of Freiburg

Post-fit distributions



Chris Young, University of Freiburg

Fit Pull and Constraints

- Good agreement is seen after the fit has been performed the global goodness of fit when fitting the expectation from simulation: p-value of 0.29.
- The ranked plot of pulls and constraints shows some minor constraints in eg. top p_T modeling, and no significant pulls.
- Recall we have a large number of high statistics bins in this analysis!

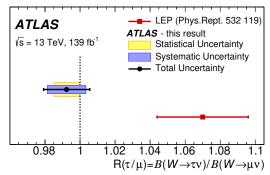
Chris Young, University of Freiburg

Systematic Uncertainties

A list of the grouped systematic uncertainties and their impact on $R(\tau/\mu)$.

Source	Impact on $R(\tau/\mu)$
Prompt d_0^{μ} templates	0.0038
$\mu_{(prompt)}$ and $\mu_{(\tau \to \mu)}$ parton shower variations	0.0036
Muon isolation efficiency	0.0033
Muon identification and reconstruction	0.0030
$\mu_{(had.)}$ normalisation	0.0028
$t\bar{t}$ scale and matching variations	0.0027
Top $p_{\rm T}$ spectum variation	0.0026
$\mu_{(had.)}$ parton shower variations	0.0021
Monte Carlo statistics	0.0018
Pile-up	0.0017
$\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0^{\mu}$ shape	0.0017
Other detector systematic uncertainties	0.0016
Z+jet normalisation	0.0009
Other sources	0.0004
$B(\tau \to \mu \nu_{\tau} \nu_{\mu})$	0.0023
Total systematic uncertainty	0.0109
Data statistics	0.0072
Total	0.013

We achieve a precision of 1.3% – half the uncertainty of LEP!

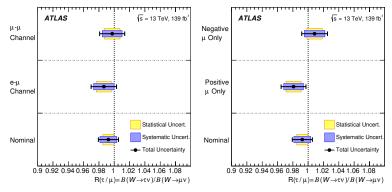

Chris Young, University of Freiburg

Final Result

We acheive a precision two times better than LEP and find;

 $R(\tau/\mu) = 0.992 \pm 0.013 \ [\pm 0.007 \ (stat) \pm 0.011 \ (syst)].$

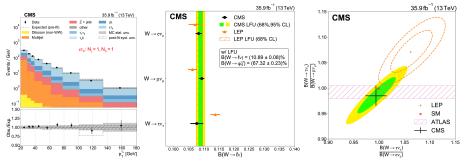
- This agrees well with the Standard Model expectation of unity.
- The postulate of Lepton Flavour Universality survives this stringent test!



Chris Young, University of Freiburg

Cross-Checks of Stability

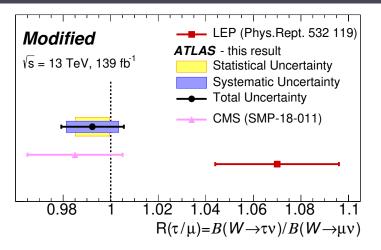
- It was also checked that the result is consistent with respect to different channels, kinematic bins, data-taking periods and the charge of the *probe* lepton.
- Here examples of different channels (left) and different charges (right).



Chris Young, University of Freiburg

CMS Result

- Following the release of our preliminary result summer 2020 (published 7/21), in March 2021 CMS released a similar preliminary analysis which was published 01/22.
- They also use di-leptonic $t\bar{t}$ events and the $p_{\rm T}$ spectrum but do not use $|d_0|$.
- They do use hadronic *τ*-leptons and 1-lepton+jets channels, and extract all branching ratios rather than just a single ratio; R(τ/μ).
- The value of the ratio for comparison they get is $R(au/\mu) = 0.985 \pm 0.020$.



33/38

Chris Young, University of Freiburg

CMS Preliminary Result

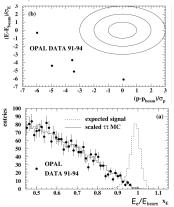
Chris Young, University of Freiburg

Measurements of $R(\mu/e)$

Closely related to this measurement are the measurements of;

$$R(\mu/e) = rac{B(W o \mu
u_{\mu})}{B(W o e
u_{e})}$$

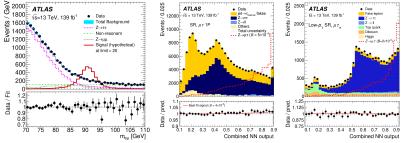
- Earlier we saw the precise LEP result of 0.993 ± 0.019 .
- ATLAS and LHCb have also made precise measurements; 1.003 ± 0.010 and 0.980 ± 0.018, using the 2011 and 2012 datasets respectively.
- Due to the similar kinematics of $\mu\nu$ and $e\nu$ decays these measurements are done in specific phase space selections.
- These have been combined with the LEP results to yield 0.996 \pm 0.008.
- CMS extracted $R(\mu/e) = 1.009 \pm 0.009$ using Run 2 data with $t\bar{t}$ (previous slide).
- All of the above results are dominated by systematic (rather than stat.) uncertainties – precise knowledge of the reconstruction, identification and isolation is essential for these measurements.
- ▶ Better than 1% precision is achieved by the LHC! half that achieved by LEP!



Chris Young, University of Freiburg

Lepton Flavour Violating Z boson decays at LEP

- In the SM we also have the principle of lepton number conservation (although this is violated in neutrino oscillations).
- ▶ Therefore decays $Z \rightarrow e\mu$, $Z \rightarrow e\tau$, $Z \rightarrow \mu\tau$ are not expected.
- LEP searched for these using the dataset of ~ 4 million Z bosons produced in each detector.
- ► Background of $Z \rightarrow \tau \tau$ rejected using that in signal $E_{\ell} = E_{\text{beam}}$, resulting in almost background free search!
- The strictest results in each of the channels were;
- $B(Z
 ightarrow e\mu) < 1.7 imes 10^{-6}$ (OPAL)
- $B(Z
 ightarrow e au) < 9.8 imes 10^{-6}$ (OPAL)
- $B(Z \rightarrow \mu \tau) < 1.2 \times 10^{-5}$ (DELPHI)



Chris Young, University of Freiburg

Lepton Flavour Violating Z boson decays at ATLAS

- ATLAS has looked for $Z \rightarrow e\mu$ [2204.10783] and $Z \rightarrow \ell\tau$ [Nat.Ph.17(2021)][PRL 127 (2021)]
- ► The ATLAS Run 2 dataset has 8 billion Z bosons 2000× the LEP dataset, but at a hadron collider the backgrounds are much more significant.
- For $e\mu$ a BDT suppresses background before the mass is fit, for $\ell\tau$ neural networks using $m^{\rm coll}$ are used to distinguish signal and background.
- $B(Z
 ightarrow e \mu) < 2.62 imes 10^{-7}$ 6× better than LEP
- ▶ $B(Z \to e\tau) < 5.0 \times 10^{-6}$, $B(Z \to \mu \tau) < 6.5 \times 10^{-6}$ almost 2× better than LEP

Chris Young, University of Freiburg

Conclusions

We developed a new method for measuring the ratio

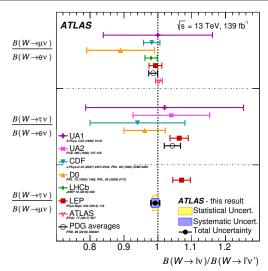
$$R(au/\mu) = rac{B(W o au
u)}{B(W o \mu
u)}$$

to test the axiom of Lepton Flavour Universality.

- ▶ $t\bar{t}$ events were used in a tag and probe approach, and muons from taus were distinguished from prompt muons using their $p_{\rm T}$ and $|d_0^{\mu}|$.
- We acheive a precision two times better than LEP and find;

 $R(\tau/\mu) = 0.992 \pm 0.013 \ [\pm 0.007 \ (stat) \pm 0.011 \ (syst)].$

so the SM survives this stringent test of Lepton Flavour Universality!


- Paper published in Nature Physics.
- ▶ More information; arXiv, CERN Courier, ATLAS Briefing, YouTube, Press release.
- LHC has more precise $R(\mu/e)$ and more stringent limits on Z boson LFV than LEP!
- We are entering the precision era of the LHC with large statistics data samples and precise detector understanding...

38/38

Chris Young, University of Freiburg

Conclusions

