

# The Evolution of Pulsar Environments at TeV Energies

Alison Mitchell TU Dortmund seminar 05/05/22



### The All-particle Cosmic Ray Spectrum



- High Energy particles from space, up to 10<sup>20</sup> eV
- p, He, C, N, O, Fe... e<sup>-</sup>, e<sup>+</sup> ...

#### Why are Cosmic Rays important?

- Highest energy particles in nature
- Central component of our Galaxy; comparable energy budget to starlight, dust, magnetic fields...
- Interact and feedback on environment
   → affect Galactic structure





Three stages to become a cosmic ray:

- 1. Acceleration within sources (injection spectrum)
- 2. Escape from sources (energy loss processes)
- Propagation through interstellar medium (ISM)
- $\rightarrow$  Each step modifies the spectral shape

 $f_{accn} \neq f_{esc} \neq f_{galCR}$ 

Galactic – Extragalactic transition occurs somewhere between "knee" (~ $10^{15}$ eV) and "ankle" (~ $10^{18}$ eV)



## The origin of Galactic cosmic rays?



- Supernova Remnants as prime candidates
- Difficult to reach 10<sup>15</sup> eV
- Shift to other PeVatron candidates
  - Stellar clusters → particle acceleration due to wind & shock interactions?
  - Pulsars → acceleration of ions as well as e<sup>+</sup> - e<sup>-</sup> pairs?
  - Shock mixing from SNRs in pulsar environments?





 $E_{\max} = Ze\beta cBL$ 

#### Pulsar – Pulsar Wind – Pulsar Wind Nebula





### Evolutionary stages of pulsar environments





Giacinti, AM, Lopez-Coto et al, A&A 636, A113 (2020)

**Pulsar Halos:** opportunity to directly measure rate of particles (electrons / protons) escaping source and joining the sea of galactic Cosmic Rays



# Very-High-Energy Gamma-ray Astronomy





8

## Detection Techniques for Very-High-Energy gamma-rays





### **Complementary Facilities**





#### Different techniques $\rightarrow$ different performance





## High Energy performance improvements



- Background rejection by muon tagging key for Water Cherenkov Facilities (LHAASO and Tibet AS $\gamma$  )
- Potential improvements in background rejection using muon tagging in IACTs
- Very Large Zenith Angle Observations
   → increase collection area at highest energies



MAGIC collaboration A&A 635 (2020) A158





# Muons and hadronic air showers

- <u>Limiting factor for detection of</u> <u>extended halos</u>: Background of cosmic ray air shower events
- Improving background rejection improves sensitivity
- Use muons from proton initiated air showers as a veto against background events
- New approach for IACTs





Muons form characteristically ringshaped images

 $\rightarrow$  when passing through the mirror dish Flag muons caught in shower images to veto events



Measure properties of muons in TeV air showers with IACTs:

Muon Rate, lateral distribution, production height...

Well-known discrepancy between simulations and data above ~10<sup>15</sup> eV





AM, Dembinski, Parsons Astroparticle Physics, 111, 23-34 (2019)



Muon deficit in simulations of hadronic Extensive Air Showers compared to measurements.

Results confirmed as atound 8 sigma deviation in a combined analysis across multiple experiments Dembinski et al, UHECR 2018 EPJ Web of Conferences 210, 02004, 2019

Plenty of potential to improve approach
→ Make a first measurement in the TeV range



AM, Dembinski, Parsons Astroparticle Physics, 111, 23-34 (2019)







Understanding performance of VHE gamma-ray instruments relies on simulations

Air shower simulations generated with different hadronic interaction models

Can affect and change results / interpretation  $\rightarrow$  especially for Cosmic Ray measurements





# Example pulsar environments

- Crab Nebula standard candle of TeV gamma-ray astronomy
  - Age = 0.94 kyr, log(Edot) = 38.65 erg/s, Distance = 2 kpc,
- R: radio = 2.8 pc, X-ray = 0.24 pc, TeV ≤ 3 pc
- Gamma-ray flares, resolved TeV extent
- Emission > 100 TeV







#### Example Stage 2: Vela X



- Age = 11.3 kyr, log(Edot) = 36.84 erg/s, Distance = 0.28 kpc,
- R: radio = 12.2 pc, X-ray = 3.08 pc, TeV = 2.9 pc





### Example transition: HESS J1825-137



- Age = 21.4 kyr, log(Edot) = 36.45 erg/s, Distance = 3.9 kpc,
- R: radio = ? pc, X-ray = 9.1 pc, TeV = 50 pc
- strong energy dependent morphology
- bright at energies > 100 TeV





H.E.S.S. collaboration et al. A&A 621 (2019) A116

### Example transition: HESS J1825-137



Particle evolution and transport

- Age = 21.4 kyr, log(Edot) = 36.45 erg/s, Distance = 3.9 kpc,
- R: radio = ? pc, X-ray = 9.1 pc, TeV = 50 pc
- strong energy dependent morphology
- bright at energies > 100 TeV



Principe et al. A&A 640 (2020) A76



### Example transition: HESS J1825-137

R: radio = ? pc, X-ray = 9.1 pc, TeV = 50 pc

strong energy dependent

bright at energies > 100 TeV

morphology

•

•

Age = 21.4 kyr, log(Edot) = 36.45 erg/s, Distance = 3.9 kpc,





Declination (J2000)



#### Voisin et al. MNRAS 458 (2016) 2813

A. Mitchell ECAP, FAU Erlangen-Nürnberg The Evolution of Pulsar Environments at TeV Energies

#### HAWC J1825-134





Voisin PhD thesis 2017

#### Example Stage 3: Geminga



- Age = 342 kyr, log(Edot) = 34.51 erg/s, Distance = 0.25 kpc,
- R: radio = 0.01 pc, X-ray = 0.15 pc, TeV = 100 pc







Diffusion much slower than Galactic Average (from B/C ratio) → tension with pulsars as an explanation for the CR e- spectrum?

Possible solutions:

- Diffusion only slow/inhibited within halo region (CR self-generated turbulence)
- Unidentified nearby source?



#### Careful!

Diffusion slow in halos – escaped particles

Diffusion slow in PWNe – trapped particles



Energy-dependent morphology

 → Due to cooling losses as particles are transported away from pulsar (seen in X-ray and gamma-ray)
 Spectral Energy Distribution

 $\rightarrow$  Leptonically dominated, inverse Compton







# Pulsar population and the gamma-ray sky

## Model for evolution of pulsar wind nebulae



N157E

Crab Nebula

10<sup>38</sup>

HGPS identified PWNe

1039

PWNe outside HGPS

1038

H.E.S.S. collaboration A&A 612, A2 (2018)

1039

Innanan Ras

Fiori et al MNRAS 511, 1439-53 (2022)

100

80

60

40

20

Age [Kyr]



10<sup>3</sup>

10<sup>2</sup>

10<sup>36</sup>

--- HGPS Best Fit

1036

1037

Spin-down Power L [erg s<sup>-1</sup>]



 $\tau_c$  (kyr)

101

100



- 1. Variation with evolutionary stage?
- 2. Particle transport mechanism?
- 3. Evidence of proton acceleration?
- → Combine TeV data with MWL observations to constrain emission models





# Current halo fraction low – might be a large number of low flux, diffuse halos



- Sky maps by LHAASO, Tibet-AS $\gamma$  and HAWC:
- $E_{\gamma} > 100 \text{ TeV}$  ( $E_p \sim 1 \text{ PeV}; E_e \sim 183 \text{ TeV}$ )  $\rightarrow \sim 12 \text{ sources}$ •

|              | Source            | Location (1,b)     | Detected > 100 TeV by          | Possible Origin |
|--------------|-------------------|--------------------|--------------------------------|-----------------|
|              | Crab Nebula       | (184.557, -5.784)  | HAWC, MAGIC, LHAASO, Tibet-ASy | PSR             |
|              | HESS J1702-420    | (344.304, -0.184)  | H.E.S.S.                       | ?               |
|              | Galactic Centre   | (0-1.2, -0.1-+0.1) | H.E.S.S.                       | SMBH?           |
|              | eHWC J1825-134    | (18.116, -0.46)    | HAWC, LHAASO                   | PSR             |
|              | LHAASO J1839-0545 | (26.49, -0.04)     | LHAASO                         | PSR             |
|              | LHAASO J1843-0338 | (28.722, 0.21)     | LHAASO                         | SNR             |
| with nulcare | LHAASO J1849-0003 | (32.655, 0.43)     | LHAASO                         | PSR, YMC        |
| with puisars | eHWC J1907+063    | (40.401, -0.70)    | HAWC, LHAASO                   | SNR, PSR        |
|              | LHAASO J1929+1745 | (52.94, 0.04)      | LHAASO                         | PSR, SNR        |
| ies e⁺ & e⁻, | LHAASO J1956+2845 | (65.58, 0.10)      | LHAASO                         | PSR, SNR        |
|              | eHWC J2019+368    | (75.017, 0.283)    | HAWC, LHAASO                   | PSR, H II/YMC   |
| ciel"        | LHAASO J2032+4102 | (79.89, 0.79)      | LHAASO                         | YMC, PSR, SNR?  |
| tion true?   | LHAASO J2108+5157 | (92.28, 2.87)      | LHAASO                         | ?               |
| uon tiue!    | TeV J2227+609     | (106.259, 2.73)    | Tibet-ASy, LHAASO              | SNR, PSRs       |
|              |                   | -                  |                                |                 |



- Most associated v •
- "But pulsars impli not protons / nuc  $\rightarrow$  is this assumpt



A sub-dominant hadronic component could be revealed at the highest energies, beyond the Klein-Nishina cut-off



Aharonian & Atoyan, proc. "Neutron Stars and Pulsars" 439 (1998)

Nie et al, ApJ 924, 42 (2022)





- In high radiation environments, synchrotron cooling dominates over IC losses, even into Klein-Nishina regime. (IC cross-section suppressed)
- Resulting spectrum is harder / cut-off at higher energies.
- Leptonic spectra out to PeV energies can be observed

1. Extraction of nuclei from pulsar surface and ion acceleration; mixed composition enters pulsar wind. e.g. Kotera et al., JCAP 08, 26 (2015)

lons can carry up to 20% of energy, acceleration at termination shock, e.g. Lemoine, Kotera & Pétri, JCAP 07, 16 (2015)

Max ion energy and injection depends on pair-production multiplicity Dashed lines: total, solid lines: escaping





- 1. Extraction of nuclei from pulsar surface and ion acceleration; mixed composition enters pulsar wind. e.g. Kotera et al., JCAP 08, 26 (2015)
- Particle reacceleration in shock mixing between SNR reverse and PWN forward shock.
   e.g. Ohira et al, MNRAS 478 (2018) 926; Lucek & Bell MNRAS 268 (1994) 581-594
   → Middle aged / evolved systems



If CR knee forms from source confinement, then evidence of > PeV particles will not be located at the accelerator, but nearby  $\rightarrow$  Molecular Clouds?



agugagagaga

ROTATION

INNER SHOCK

OUTER EDGE

OF NEBULA

AXIS



→Protons (and heavier nuclei) escape from accelerator (SNR or Pulsar) – will interact with nearby clouds

→ Predict and search for gamma-rays from clouds identified in radio

→Can use clouds in vicinity of pulsars and SNRs to probe escape of protons and constrain their presence









#### Spectral evidence:

- GeV spectral index ~2
- Clear pion-decay cut-off
- Second component at very high energies
- Emission reaching 100 TeV

#### Morphological evidence:

- Cosmic ray illumination of nearby clouds
- Enhanced gamma-ray emission with dense gas





- 1. Which particle species are accelerated leptonic or hadronic?
  - $\rightarrow$  Search for spectral and morphological indicators
  - ightarrow e.g. pion-decay bump, correlation with dense gas
- 2. How are particles transported through the surrounding medium?
  - $\rightarrow$  Test for energy-dependent morphology
  - → Characterise radial emission profile with transport models (diffusion / advection)
- 3. What is the maximum energy limit for particle acceleration in pulsar environments?
   → Sky-maps at E ≥ 100 TeV
  - → Evidence for escaped energetic particles?



# Thank you for your attention

DFG project number: 452934793

Funded by
Deutsche
Forschungsgemeinschaft
German Research Foundation