Weak lensing approaches on Dark Matter and Dark Energy distributions

Cyrus Walther

June 24, 2022

Presentation in the Seminar: Astro-particle physics II

technische universität dortmund

Contents

- The missing 95% of the universe and why to investigate them
 - Dark Energy
 - Dark Matter

Contents

- The missing 95% of the universe and why to investigate them
 - Dark Energy
 - Dark Matter

- The concept of gravitational lensing
 - Conceptional idea
 - Usage in research

Contents

- The missing 95% of the universe and why to investigate them
 - Dark Energy
 - Dark Matter

- The concept of gravitational lensing
 - Conceptional idea
 - Usage in research

- Experimental observation and outlook
 - Dark Energy Survey
 - Data taking
 - DES Y3 Results
 - DES Y3 and the CMB
 - Conclusions and future projects

The missing 95% of the universe and why to investigate them

¹https://svs.gsfc.nasa.gov/12307

Dark Energy:

 $^{2} \tt https://en.wikipedia.org/wiki/Accelerating_expansion_of_the_universe$

Dark Energy:

- Dark energy is a construct to explain the accelerating expansion of the universe
 - \Rightarrow Dark energy countervailing the gravitational force of visible matter
- It can be used as an explanation of the inhomogeneous CMB
- One candidate for dark energy is the cosmological constant in general relativity following the A-CDM theory (the standard model of cosmology)

²https://en.wikipedia.org/wiki/Accelerating_expansion_of_the_universe

Dark Energy:

- Dark energy is a construct to explain the accelerating expansion of the universe
 - \Rightarrow Dark energy countervailing the gravitational force of visible matter
- It can be used as an explanation of the inhomogeneous CMB
- One candidate for dark energy is the cosmological constant in general relativity following the Λ-CDM theory (the standard model of cosmology)

²https://en.wikipedia.org/wiki/Accelerating_expansion_of_the_universe

³ZWICKY, Fritz. Die rotverschiebung von extragalaktischen nebeln. Helvetica physica acta, 1933, 6. Jg., S. 110-127.

Dark matter:

- Interacts gravitationally
- Does not interact electromagnetically
- Researchers hope dark matter interacts through the weak interaction
- Is neither included in the Standard Model of Particle Physics nor in general relativity

Dark matter:

- Interacts gravitationally
- Does not interact electromagnetically
- Researchers hope dark matter interacts through the weak interaction
- Is neither included in the Standard Model of Particle Physics nor in general relativity
- Dark matter evidence was found for example:
 - in galaxy rotation curves
 - in galaxy clusters

Dark matter:

- Interacts gravitationally
- Does not interact electromagnetically
- Researchers hope dark matter interacts through the weak interaction
- Is neither included in the Standard Model of Particle Physics nor in general relativity
- Dark matter evidence was found for example:
 - in galaxy rotation curves
 - in galaxy clusters

...and through gravitational lensing

Dark matter:

- Interacts gravitationally
- Does not interact electromagnetically
- Researchers hope dark matter interacts through the weak interaction
- Is neither included in the Standard Model of Particle Physics nor in general relativity
- Dark matter evidence was found for example:
 - in galaxy rotation curves
 - in galaxy clusters

...and through gravitational lensing

The concept of gravitational lensing

The gravitational lensing spectrum is divided in strong and weak lensing

 \Rightarrow Only weak lensing will be discussed in this presentation

⁴Weak lensing: Dark Matter, Dark Energy and Dark Gravity, arXiv:0911.0350v1 ⁵https://kids.strw.leidenuniv.nl/DR4

The gravitational lensing spectrum is divided in strong and weak lensing

 \Rightarrow Only weak lensing will be discussed in this presentation

- Weak lensing results from inhomogeneous mass distributions like galaxy clusters
- Electromagnetic waves are deflected along the travel path
- The effects are small distortions in the shape, size and brightness of objects
- Due to the signal-to-noise ratio shape distortions called shears are mostly analysed ⁴

⁴Weak lensing: Dark Matter, Dark Energy and Dark Gravity, arXiv:0911.0350v1 ⁵https://kids.strw.leidenuniv.nl/DR4

The gravitational lensing spectrum is divided in strong and weak lensing

 \Rightarrow Only weak lensing will be discussed in this presentation

- Weak lensing results from inhomogeneous mass distributions like galaxy clusters
- Electromagnetic waves are deflected along the travel path
- The effects are small distortions in the shape, size and brightness of objects
- Due to the signal-to-noise ratio shape distortions called shears are mostly analysed ⁴

⁴Weak lensing: Dark Matter, Dark Energy and Dark Gravity, arXiv:0911.0350v1 ⁵https://kids.strw.leidenuniv.nl/DR4

- Single observations will not show enough shear to lead to weak lensing
- Multiple shear measurements around the same lensing source will show a correlation developing an anisotropy in the orientation of the galaxies
- The mass distribution can be investigated using the systematic alignment of the shear measurements
- Weak lensing depends only on the mass distribution not on its dynamical state or composition
 - \Rightarrow Measures also dark matter
- Comparing measured mass distributions to luminous matter draws conclusions about possible dark matter effects

Weak lensing

⁶Big Ideas in Cosmology; 12.2020; Kim Coble, Kevin McLin, & Lynn Cominsky

Weak lensing

⁶Big Ideas in Cosmology; 12.2020; Kim Coble, Kevin McLin, & Lynn Cominsky

Cyrus Walther

Weak Lensing & Dark Matter

Weak lensing

⁶Big Ideas in Cosmology; 12.2020; Kim Coble, Kevin McLin, & Lynn Cominsky

Cyrus Walther

Weak Lensing & Dark Matter

Usage in research

- The first detection of a cosmic shear (change of shape) was only made in 2000
 - \Rightarrow Very young field of analysis
- Due to its nature, weak lensing is able to investigate high redshift targets
- Weak lensing requires high quantities of measurements to reduce statistical uncertainties
 - \Rightarrow Galaxy surveys and sky surveys are used to map major parts of the sky \Rightarrow Mass mapping
- Dark matter maps can be compared with optical or x-ray maps to find coherence in both distributions

Usage in research

⁷https://en.wikipedia.org/wiki/Weak_gravitational_lensing#/media/File:Bullet_cluster_lensing.jpg

Experimental observation and outlook

Dark Energy Survey (DES)

Phenomena of interest are:

- Type Ia supernovae \Rightarrow Usage as standard candles
- Baryon acoustic oscillations \Rightarrow Measuring the distribution of galaxies
- Gravitational lensing and cosmic shear \Rightarrow Investigate matter distribution in the universe
- In over 6 years (2013-2019), 400 scientists have measured 300 million galaxies in 5000 deg² of night sky
- So far, only the one year dataset (Y1) and the three year dataset (Y3) have been analyzed

Data taking

- The experiment is located at the Cerro Tololo Inter-American Observatory in Chile surveying parts of the southern hemisphere
- A highly sensitive 570-Megapixel camera was mounted on the Blanco 4-meter telescope to create the survey
- The telescope features with a 3.3 ft main lense the largest optical corrector component in astronomical use ⁸
- Image acquisition is achieved with five filters with a 62 cm diameter and a spectrum from $\lambda = 400$ nm to $\lambda = 1080$ nm
- The Hexapod mechanism assures alignment of the optical elements between exposure times

⁸https://www.darkenergysurvey.org/the-des-project/instrument/

DECam

⁹https://www.darkenergysurvey.org/the-des-project/overview/

DECam

¹⁰https://www.darkenergysurvey.org/the-des-project/instrument/

- The DECam Imager consists of 74 high sensitivity high thickness CCDs
- The DECam CCDs are specifically designed to observe red shifted light sources
- Read-out time of the Imager is approximately 30 s

Data taking: Imager

- The DECam Imager consists of 74 high sensitivity high thickness CCDs
- The DECam CCDs are specifically designed to observe red shifted light sources
- Read-out time of the Imager is approximately 30 s

- In the first 3 years of the DES, an effective area of 4143 deg² has been observed
- A DES weak lensing catalogue was created that consists of 100,204,026 galaxies

- In the first 3 years of the DES, an effective area of 4143 *deg*² has been observed
- A DES weak lensing catalogue was created that consists of 100,204,026 galaxies
- Resulting in an average galaxy density of $n_{eff} \approx 5.59 \frac{gal}{r^2}$
- In the observed area the photometric spectrum bands g, r, i, and z have been analyzed
- Only successfully measured objects are considered that were not marked as "anomalous" and that are part of the DES Gold catalogue

- In the first 3 years of the DES, an effective area of 4143 *deg*² has been observed
- A DES weak lensing catalogue was created that consists of 100,204,026 galaxies
- Resulting in an average galaxy density of $n_{eff} \approx 5.59 \frac{gal}{r^2}$
- In the observed area the photometric spectrum bands g, r, i, and z have been analyzed
- Only successfully measured objects are considered that were not marked as "anomalous" and that are part of the DES Gold catalogue

...resulting in a final 326,049,983 objects in the catalogue

11

¹¹Dark Energy Survey Year 3 Results: Weak Lensing Shape Catalogue, arXiv:2011.03408v3, Gatti et al.

	Cy	rus	W	al	tł	ne
--	----	-----	---	----	----	----

¹¹Dark Energy Survey Year 3 Results: Weak Lensing Shape Catalogue, arXiv:2011.03408v3, Gatti et al.

Cvrus	Wa	lthei

Weak Lensing & Dark Matter

¹²https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/

Cyrus Walther

Weak Lensing & Dark Matter

Idea:

If there are lensing sources in the weak lensing catalog, shouldn't there be the similar lensing sources in the CMB?

Idea:

If there are lensing sources in the weak lensing catalog, shouldn't there be the similar lensing sources in the CMB? U Cross-correlation of weak lensing measurements and lensing in the CMB!

DES Y3 and the CMB

- CMB data sources are the South Pole Telescope(SPT)(2500 deg²) and the PLANCK(full sky) satellite
- The cross correlation is sensitive to effects of large scale objects
- Results are expected to be robust to systematical uncertainties because of the different analyzed spectra
- CMB lensing objects peak at $z \approx 2$ whereas the weak lensing catalogue peaks at $z \leq 1$
 - \Rightarrow Combination with the CMB lensing is expected to increase the signal-to-noise ratio

- The comparison of both lensing maps reaches a signal-to-noise ratio of pprox 20
- The main effect diminishing the signal-to-noise ratio is the uncertainty in modeling nonlinear galaxy bias
 - \Rightarrow Leads to a removal of small angle correlations
- The cross correlations constraint the cosmic parameter to:¹³

¹³Point analysis of DES Year 3 data and CMB lensing from SPT and Planck II: Cross-correlation measurements and cosmological constraints, arXiv:2203.12440v2, C.Chang et al.

- The comparison of both lensing maps reaches a signal-to-noise ratio of pprox 20
- The main effect diminishing the signal-to-noise ratio is the uncertainty in modeling nonlinear galaxy bias
 - \Rightarrow Leads to a removal of small angle correlations
- The cross correlations constraint the cosmic parameter to:¹³

 $\Omega_m = 0.272^{+0.032}_{-0.052}$ $S_8 = 0.736^{+0.032}_{-0.028}$

- Competitive constrains are made only with galaxy-CMB lensing comparison
- An additional comparison with the DES Y3 3x2pt data set is yet to come

¹³Point analysis of DES Year 3 data and CMB lensing from SPT and Planck II: Cross-correlation measurements and cosmological constraints, arXiv:2203.12440v2, C.Chang et al.

¹⁴Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration, arXiv:2105.13543v1, A. Amon et at.

Dark energy and mass distributions can be analysed using gravitational lensing

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects
- Weak lensing is applied in surveys to map large areas and improve against statistical uncertainties

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects
- Weak lensing is applied in surveys to map large areas and improve against statistical uncertainties
- The DES was able to create a \approx 5000 deg^2 weak lensing map measuring competitive constrains

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects
- Weak lensing is applied in surveys to map large areas and improve against statistical uncertainties
- The DES was able to create a \approx 5000 deg^2 weak lensing map measuring competitive constrains
- The analysis of the DES Y6 data set will bring even more detail to the weak lensing map

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects
- Weak lensing is applied in surveys to map large areas and improve against statistical uncertainties
- The DES was able to create a \approx 5000 deg^2 weak lensing map measuring competitive constrains
- The analysis of the DES Y6 data set will bring even more detail to the weak lensing map
- There are significant opportunities in CMB lensing comparisons to improve constraints and increase robustness

- Dark energy and mass distributions can be analysed using gravitational lensing
- Weak lensing is sensitive to the mass distribution and is supposed to show dark energy and dark matter gravitational effects
- Weak lensing is applied in surveys to map large areas and improve against statistical uncertainties
- The DES was able to create a \approx 5000 deg^2 weak lensing map measuring competitive constrains
- The analysis of the DES Y6 data set will bring even more detail to the weak lensing map
- There are significant opportunities in CMB lensing comparisons to improve constraints and increase robustness
- It is desirable to measure a complete weak lensing map to allow for an overall comparison with the CMB and to understand the large scale mass and energy distribution of the universe

Thanks for your attention!

Any Questions?

¹⁵https://www.darkenergysurvey.org/desendofnights/

Cyrus Walther

15