Very long baseline interferometry of radio-loud active galactic nuclei, the multimessenger connection

Emma Kun Konkoly Observatory, Budapest, Hungary 20 May 2022, CRC ring lecture series

Active galactic nuclei

Urry&Padovani, 1995, PASP,107, 803 Beckmann & Shrader, 2012 illustration by Marie-Luise Menzel, 2012

The continuum spectrum of AGN

Schematic overview of a broadband jet model and the various components contributing to the spectral energy distribution (Migliari et al. 2007).

Relativistic jets

Blandford–Znajek-effect

Critical frecquency of synchrotron radiation:

$$\upsilon_{c,e^{-}} = \frac{3}{4\pi} \frac{eB\chi}{m_{0,e^{-}c}} \gamma^{2} = 16.1 \times \left(\frac{B\chi}{\mu G}\right) \left(\frac{E}{GeV}\right)^{2} MHz$$

B_x=0,1µG, E=10GeV $\rightarrow \upsilon_{c,e} \sim 160 MHz$

Radio waves

The Cygnus—A AGN at 5GHz (VLA) The source-distance is 760 mega-lightyear (z=0,056, scale 1,096kpc/") National Radio Astronomy Observatory (NRAO) Charged particle

Magnetic field

Apparent superluminal motion

Due to projection effects in relativistic jets

Jet moving with apparent superluminal speed. Source : NRAO $dI/dt \approx 4c$ (impossible according to first postulate of the special relativity)

Relativistic beaming

 $\delta = 1/[\gamma(1 - \beta \cos t)]$

a: spectral index,

n: jetgeometric factor

Doppler factor,

The synchrotron radiation is beamed within a cone having half-opening angle ~1/γ (γ=1/(1-β²)^{1/2} Lorentz factor)

- F_{obs}(v) apparent spectral flux density: F_{obs}(v)= F(v)δ^{n-α} (Jansky, 1Jy=10⁻²⁶ W/m²/Hz)
- □ Intrinsic flux density: $F(\upsilon) \sim \upsilon^{+\alpha}$

Depending on the α spectral index, the continuum spectrum can be

- inverted: $\alpha > 0$ (optically thick)
- □ flat: $-0,5 < \alpha < 0$ (optically thick)
- steep: $\alpha < -0,5$ (optically thin)
- The ratio of the Doppler beaming and debeaming

 $R = \left(\frac{1 + \beta \cos I}{1 - \beta \cos I}\right)^{(n+\alpha)}$

E.g.:: $\beta = 0,992, I = 7^{\circ}, n = 2, \alpha = -0,05 \rightarrow R = 13000$

Only the approaching jet is seen if the jet is relativistic, and has small inclination

The apparent luminosity $L=L_0 \bar{0}^n$ as function of the jetspeed and line-ofsight angle.

/Kellerman et al., 2007/

Relativistic beaming (relativistic aberration, time dilatation, blue- or redshifting)

Light-house effect: the brightness of the light-source depends on the angle under which we sees its beam

If the line-of-sight angle (inclination) is small (a few degrees, or smaller):

- -> The jet is largely boosted
- -> The counter-jet is largely de-boosted

With VLBI we see a core+jet structure

The continuum radio spectrum of AGN

Flat spectrum is due to energetic electrons, with high Lorentz factors

Single-dish radio telescopes

A radio telescope reflects radio waves to a focus at the antenna.

Paraboloid antennas: movable dish to follow the source, focusable radiation, weak signals can be amplified, diameter~sensitivity

Diffraction, antenna-beam

Diffraction pattern caused by the finite size of the aperture main lobe+side lobes

Half-power beamwidth: $\theta = 1.22\lambda/D$ Solid angle: $\Omega = \lambda^2/A$ Gain: $G = 4\pi/\Omega$

D: diameter of the dish
λ: wavelength of observation
A: surface of the dish

Diffraction, antenna beam

Gain: $G = 4\pi/\Omega$

A: surface of the dish

Diffraction, antenna beam

Half-power beamwidth: $\theta = 1.22\lambda/D$ Solid angle: $\Omega = \lambda^2/A$ Gain: $G = 4\pi/\Omega$

D: diameter of the dish λ: wavelength of observation A: surface of the dish

Solution: Very Long Baseline Interferometry (VLBI) Stations of the Very Long Baseline Array (NRAO) in US

In VLBI not the diameter of the dishes rather the baseline between them counts

-	SC	HN	NL	FD	LA	PT	KP	OV	BR	MK	EB	AR	GB	Y27
SC	_	2853	3645	4143	4458	4579	4839	5460	5767	8611	6822	238	2708	4532
HN	2853		1611	3105	3006	3226	3623	3885	3657	7502	5602	2748	829	3198
NL	3645	1611	_	1654	1432	1663	2075	2328	2300	6156	6734	3461	1064	1640
FD	4143	3105	1654	_	608	564	744	1508	2345	5134	8084	3922	2354	515
LA	4458	3006	1432	608		236	652	1088	1757	4970	7831	4246	2344	226
РТ	4579	3226	1663	564	236		417	973	1806	4795	8014	4365	2551	52
KP	4839	3623	2075	744	652	417	_	845	1913	4466	8321	4623	2939	441
ov	5460	3885	2328	1508	1088	973	845		1214	4015	8203	5255	3323	1025
BR	5767	3657	2300	2345	1757	1806	1913	1214	_	4398	7441	5585	3326	1849
МК	8611	7502	6156	5134	4970	4795	4466	4015	4398	_	10328	8434	7028	4835
EB	6822	5602	6734	8084	7831	8014	8321	8203	7441	10328	_	6911	6335	8008
AR	238	2748	3461	3922	4246	4365	4623	5255	5585	8434	6911	_	2545	4317
GB	2708	829	1064	2354	2344	2551	2939	3323	3326	7028	6335	2545	—	2516
Y27	4532	3198	1640	515	226	52	441	1025	1849	4835	8008	4317	2516	_

Distances between locations

Wavelength (cm)

PBW milliarcs

sub-mas resolutions are routinely done 1mas =1/3,600,000 degrees!
 0,7
 0,3

 0,17
 0,12

2

(the apparent separation of your car's headlights, as seen by an astronaut on the Moon)

Idi	Die 3.1.1: C	onngurati	on Propertie	5					
Configuration	А	В	С	D					
B _{max} (km ¹)	36.4	11.1	3.4	1.03					
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035					
Band	Synthesiz	Synthesized Beamwidth $\theta_{HPBW}(arcsec)^{1,2}$							
74 MHz (4)	24	80	260	850					
350 MHz (P)	5.6	18.5	60	200					
1.5 GHz (L)	1.3	4.3	14	46					
3.0 GHz (S)	0.65	2.1	7.0	23					
6.0 GHz (C)	0.33	1.0	3.5	12					
10 GHz (X)	0.20	0.60	2.1	7.2					
15 GHz (Ku)	0.13	0.42	1.4	4.6					
22 GHz (K)	0.089	0.28	0.95	3.1					
33 GHz (Ka)	0.059	0.19	0.63	2.1					
45 GHz (Q)	0.043	0.14	0.47	1.5					
Band	Larg	jest Angul	ar Scale $\theta_{LAS}(arcsec)^{1,4}$						
74 MHz (4)	800	2200	20000	20000					
350 MHz (P)	155	515	4150	4150					
1.5 GHz (L)	36	120	970	970					
3.0 GHz (S)	18	58	490	490					
6.0 GHz (C)	8.9	29	240	240					
10 GHz (X)	5.3	17	145	145					
15 GHz (Ku)	3.6	12	97	97					
22 GHz (K)	2.4	7.9	66	66					
33 GHz (Ka)	1.6	5.3	44	44					
45 GHz (Q)	1.2	3.9	32	32					

Table 2.1.1. Configuration Properties

arcsec scale

typically kpc-scale

Australia Telescope Compact Array (ATCA) 22m radio telescopes (6)

Westerbork Synthesis Radio Telescope

25-meter radio telescopes deployed in a linear array arranged on a 2.7 kilometers

Space VLBI: (VSOP)

Pickmere

Jodrell Bank Lovell

Jodrell Bank Mk2

Multi-Element Radio Linked Interferometer Network

Basics of the very long baseline interferometry (VLBI)

Parsec-scale modelling the surface brightness of AGN jets

- Monitoring of jets in Active galactic nuclei with VLBA Experiments, MOJAVE (Lister et al. 2009-)
- Since 1994 they observed and analyzed 447 bright radio-loud AGNs based on 15 GHz VLBA data
- Calibrated uv-visibilities are public! (no need of fringe fitting, amplitude and phase calibration, yeyy!)
- We can do the imaging of these sources and model the surface brightness distribution of their jets (DIFMAP, Pearson&Taylor, 1994, BAAS, 26, 987).
- 2D Gaussian (circular or elliptic base) components
- Fitted parameters:
 - ★ Integrated flux density (Jansky, 1Jy=10-26 W/Hz/m²)
 - * Position relative to the VLBI core (mas)

★ Size (mas)

z=0.302 Planck18, 1mas->4.44pc

Jet structure of S5 1928+738 Kun et al, 2014, MNRAS, 445, 1370

MOJAVE database (>447 sources!)

				0010 105 (10
<u>0003+380 (S4 0003+38)</u>	<u>0003-066 (NRAO 005)</u>	<u>0006+061 (TXS</u> <u>0006+061)</u>	<u>0007+106 (III Zw 2)</u>	<u>0010+405 (4C</u> +40.01)
<u>0011+189 (RGB</u>	0012+610(4C+60.01)	<u>0014+813 (S5</u>	0015-054 (PMN J0017-	<u>0016+731 (S5</u>
<u>J0013+191)</u>	<u>00121010 (10100.01)</u>	<u>0014+813)</u>	<u>0512)</u>	<u>0016+73)</u>
<u>0019+058 (PKS</u>	0026+346 (B2 0026+34)	<u>0027+056 (PKS</u>	<u>0035+413 (B3</u>	0035-252 (OB -259)
<u>0019+058)</u>	<u>00201010 (D2 0020101)</u>	<u>0027+056)</u>	<u>0035+413)</u>	
<u>0041+341 (GB6</u>	<u>0044+566 (GB6</u>	0048-071 (OB -082)	0048-007 (PKS 0048-00)	0055+300 (NGC
<u>J0043+3426)</u>	<u>J0047+5657)</u>	<u>0040-071 (0D-002)</u>	<u>0040-037 (11000040-03)</u>	<u>315)</u>
0059+581 (TXS				
<u>0059+581)</u>				

<u>0106+013 (4C +01.02)</u>	<u>0106+612 (TXS</u> <u>0106+612)</u>	<u>0106+678 (4C +67.04)</u>	<u>0108+388 (S4</u> <u>0108+38)</u>	<u>0109+224 (S2</u> <u>0109+22)</u>
<u>0109+351 (B2 0109+35)</u>	<u>0110+318 (4C +31.03)</u>	<u>0111+021 (UGC 00773)</u>	<u>0112-017 (UM 310)</u>	<u>0113-118 (PKS 0113- 118)</u>
<u>0116-219 (OC -228)</u>	<u>0118-272 (OC -230.4)</u>	<u>0119+041 (PKS</u> <u>0119+041)</u>	<u>0119+115 (PKS</u> <u>0119+11)</u>	<u>0122-003 (UM 321)</u>
<u>0125+487 (GB6</u> J0128+4901)	<u>0128+554 (TXS</u> <u>0128+554)</u>	<u>0130-171 (OC -150)</u>	<u>0133+388 (B3</u> <u>0133+388)</u>	<u>0133+476 (DA 55)</u>
0134+579 (TXS 0134+579)	<u>0136+176 (PKS</u> <u>0136+176)</u>	<u>0138-097 (PKS 0139-09)</u>	0141+268 (TXS 0141+268)	<u>0142-278 (OC -270)</u>
<u>0149+218 (PKS</u> <u>0149+21)</u>	<u>0149+710 (TXS</u> <u>0149+710)</u>	<u>0151+081 (GB6</u> J0154+0823)	<u>0153+744 (S5</u> <u>0153+744)</u>	<u>0159+723 (S5</u> <u>0159+723)</u>

<u>0200+304 (IVS</u> <u>B0200+30A)</u>	<u>0201+113 (PKS</u> <u>0201+113)</u>	<u>0202+149 (4C +15.05)</u>	<u>0202+319 (B2</u> <u>0202+31)</u>	<u>0202-172 (PKS 0202-17)</u>
<u>0203-120 (PMN J0206-</u> <u>1150)</u>	<u>0208+106 (IVS</u> <u>B0208+106)</u>	<u>0210+515 (TXS</u> <u>0210+515)</u>	<u>0212+735 (S5</u> <u>0212+73)</u>	<u>0214+083 (PMN</u> J0217+0837)
<u>0215+015 (OD 026)</u>	<u>0219+428 (3C 66A)</u>	<u>0221+067 (4C +06.11)</u>	<u>0224+671 (4C +67.05)</u>	<u>0229+131 (4C +13.14)</u>
<u>0234+285 (4C +28.07)</u>	<u>0235+164 (PKS</u> <u>0235+164)</u>	<u>0237-027 (PKS 0237-</u> <u>027)</u>	<u>0238+711 (S5</u> <u>0238+711)</u>	<u>0238-084 (NGC 1052)</u>
0239+843 (WN B0239.6+8423)	<u>0241+622 (TXS</u> <u>0241+622)</u>	<u>0248+430 (B3</u> <u>0248+430)</u>	<u>0250+320 (IVS</u> <u>B0250+320)</u>	<u>0250-225 (OD -283)</u>
<u>0256+075 (OD 94.7)</u>				

Common Name:	TXS 0506+056	MOJAVE 15 GHz [Total intensity movie] [Polariz. movie] VLBA 1.4 GHz: NRAO Archive
B1950 Name:	<u>0506+056</u>	
J2000 Name:	<u>J0509+0541</u>	
R.A. and Dec. (J2000):	5h9m25.964s +5d41'35.334"	0506+056 2018-04-22 15.4 GHz MOJAVE Program
AGN Class:	ISP BL Lac	
Redshift:	0.3365 (2018ApJ854L32P)	
Luminosity Distance:	1762 Mpc ; 4.78 pc/mas	
Radio Spectrum:	Flat	
Gamma-ray Association	LAT: Y, EGRET: Y, TeV: Y	
Kpc-scale morphology:	Core	
	Maximum: 51 ± 6 μas/y ; 1.07 ± 0.14 c	

<u>Epoch</u> (Y-M-D)	VLBA Code	<u>VLBA I</u> (<u>mJy)</u>	<u>VLBA P</u> (<u>mJy</u>)	<u>VLBA</u> <u>P (%</u>)	<u>VLBA</u> EVPA (deg.)	<u>l Image (Nat. Weight)</u>	Tapered I Image	Tapered I Image (Widefield)	<u>Visibility</u> <u>Data</u>	tokes I Radplot	Pol. Image
2022-02-24 *	BL286AH										
2021-08-07	BL286AA	1082	18	1.6	126	<u>FITS PNG PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	PNG PS	PNG PS
2021-03-02	BL273J	1584	43	2.7	139	<u>FITS</u> <u>PNG</u> <u>PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	PNG PS	PNG PS
2020-12-24	BL229BL	2029	55	2.7	148	<u>FITS</u> <u>PNG</u> <u>PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	PNG PS	PNG PS
2020-08-01	BL229BH	2084	21	1.0	84	<u>FITS</u> <u>PNG</u> <u>PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	PNG PS	PNG PS
2020-06-13	BL229BF	2159	30	1.4	82	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2020-05-08	BL273E1	2307	23	1.0	66	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2020-04-09	BL273E	2324	52	2.2	38	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2020-02-16	BL273D	2191	39	1.8	38	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2019-12-17	BL273C	2130	32	1.5	59	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2019-08-04	BL273A	1789	8.8	0.5	117	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2018-12-16	BL229AT	1010	22	2.1	18	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2018-05-31	BL229AO	975	31	3.2	33	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2018-04-22	BL229AN	896	42	4.7	34	<u>FITS</u> <u>PNG</u> <u>PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2017-06-17	BL229AI	588	12	2.0	12	<u>FITS PNG PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2016-11-18	BL193BM	533	7.8	1.5	13	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2016-06-16	BL193BG	436	6.4	1.5	38	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2016-01-22	BL193BB	307	4.3	1.4	12	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2015-09-06	BL193AW	382	7.4	1.9	159	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	PNG PS	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2015-01-18	BL193AQ	420	8.5	2.0	16	<u>FITS PNG PS</u>	FITS PNG PS	<u>PNG</u> <u>PS</u>	<u>uvf</u>	PNG PS	PNG PS
2014-01-25	BL193AE	420	9.8	2.3	161	FITS PNG PS	FITS PNG PS	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2013-02-28	BL178BA	338	8.6	2.5	31	<u>FITS PNG PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	PNG PS	PNG PS
2012-02-06	BL178AG	342	4.6	1.3	26	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	<u>PNG</u> <u>PS</u>	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2011-02-27	BL149DC	360	14	3.8	36	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	PNG PS	<u>uvf</u>	<u>PNG</u> <u>PS</u>	PNG PS
2010-11-13	BL149CW	376	13	3.4	38	FITS PNG PS	FITS PNG PS	PNG PS	uvf	PNG PS	PNG PS
2010-07-12	BL149CL	430	5.3	1.2	67	<u>FITS PNG PS</u>	FITS PNG PS	PNG PS	<u>uvf</u>	<u>PNG</u> PS	PNG PS
2009-06-03	BL149BM	598	4.2	0.7	165	<u>FITS PNG PS</u>	<u>FITS PNG PS</u>	PNG PS	<u>uvf</u>	<u>PNG</u> PS	PNG PS
2009-01-07	BL149BG	543	9.6	1.8	10	FITS PNG PS	<u>FITS</u> <u>PNG</u> <u>PS</u>	PNG PS	<u>uvf</u>	PNG PS	PNG PS

Home I Science I AGN Samples I Data Archive I Status I Publications I Movies I RM Maps I α Maps I People I Outreat

astrogeo.org

* (AG The Astrogeo VLBI FITS image database

The Astrogeo VLBI FITS image database contains 111,834 brightness distributions of 17432 compact radio sources, mainly active galaxy nuclea (AGN), generated by analyzing very long baseline interferometry (VLBI) surveys — dedicated radioastronomy observations of large lists of radio sources on networks of radio telescopes spread at distances of thousand kilometers. The primary database contents is not pictures, but brightness distribution in a digital form, specifically in FITS format, and calibrated visibility data, which makes it possible to use this database for scientific work. Derived quantities, such as visualization of images and estimates of the correlated flux density are also available.

The images were contributed by courtesy of many authors.

The database can be searched using one of these methods:

- Alphabetic list of source J2000-names
 Get alphabetic list
- Search by name
 Name:
- Search by position
 Right ascension:
 Declination:
 Get

Get

In addition to brightness distribution, estimates of the correlated flux density from VLBI experiments for a number of sources are available. Currently, they are not included in the database and are not searched.

- <u>Q-band correlated flux densities of 637 sources</u> from the 43 GHz KVN Calibrator Survey
- <u>K-band correlated flux densities of 551 sources</u> from the 22 GHz VERA Fringe Survey
- <u>K-band correlated flux densities of 68 sources</u> from the 22 GHz experiment v230a at the LBA network.
- <u>X-band correlated flux densities of 1101 sources</u> from the 8.4 GHz LBA Calibrator survey observations.

J0509+0541

<u>Sts</u>	<u>Dist</u>	B1950 name	<u>J2000 name</u>	<u>J2000.0 c</u>	oordinates	Error	Image Band		Flux	(Jy)	<u>PS map</u>	PS rad plot	<u>FITS map</u>	<u>FITS uv</u>	<u>Analyst</u>
	deg			Right ascens.	Declination	mas	epoch		<u>Tot</u>	<u>Unres</u>					
С		<u>0506+056</u>	<u>J0509+0541</u>	05:09:25.9645	+05:41:35.333	0.12	1995.07.15 1995.07.15	S X	0.564 0.494	4 0.45 4 0.27	<u>S_map_ps</u> X_map_ps	<u>S_rad_ps</u> X_rad_ps	<u>S_map_fits</u> X_map_fits	<u>S_uf_fits</u> X_uf_fits	<u>(yyk)</u>
							1996.06.05	С	0.482	2 0.33	<u>C_map_ps</u>	<u>C_rad_ps</u>	<u>C_map_fits</u>	<pre>C_uf_fits</pre>	<u>(gur)</u>
							2009.01.07	U	0.532	2 0.31	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2009.06.03	U	0.580	0.33	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2010.07.12	U	0.416	0.19	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2010.10.23	Х	0.375	5 0.18	<u>X_map_ps</u>	<u>X_rad_ps</u>	<u>X_map_fits</u>	X_uf_fits	<u>(pet)</u>
							2010.11.13	U	0.368	3 0.20	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2010.12.26	Х	0.346	6 0.17	<u>X_map_ps</u>	<u>X_rad_ps</u>	<u>X_map_fits</u>	<u>X_uf_fits</u>	<u>(pet)</u>
							2011.02.07	Х	0.419	0.21	<u>X_map_ps</u>	<u>X_rad_ps</u>	<u>X_map_fits</u>	<u>X_uf_fits</u>	<u>(pet)</u>
							2011.02.27	U	0.346	5 0.20	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2012.02.06	U	0.335	5 0.20	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2012.03.15	Х	0.381	L 0.23	<u>X_map_ps</u>	<u>X_rad_ps</u>	<u>X_map_fits</u>	<u>X_uf_fits</u>	<u>(pet)</u>
							2013.02.12 2013.02.12	C X	0.348 0.346	8 0.19 5 0.18	<u>C_map_ps</u> X_map_ps	<u>C_rad_ps</u> X_rad_ps	<u>C_map_fits</u> X_map_fits	<u>C_uf_fits</u> X_uf_fits	<u>(pet)</u>
							2013.02.28	U	0.329	0.20	<u>U_map_ps</u>	<u>U_rad_ps</u>	<u>U_map_fits</u>	<u>U_uf_fits</u>	<u>(moj)</u>
							2013.05.07	Х	0.434	4 0.25	<u>X_map_ps</u>	X_rad_ps	X_map_fits	X_uf_fits	<u>(pet)</u>
							2013.05.18	Х	0.419	0.25	<u>X_map_ps</u>	X_rad_ps	X_map_fits	X_uf_fits	<u>(pet)</u>
							2014 01 25	П	Q 419	R 0 74	II man ns	Il rad ns	ll man fits	Il uf fite	(moi)

QSO S5 1928+738

Very Long Baseline Array (NRAO)/MOJAVE, 15 GHz

Kun, Gabányi, Karouzos, Britzen, Gergely, MNRAS, 2014, 445, 1370 in prep.

S5 1928+738

Flux density of the inner jet Inclination angle of the symmetry axis of the inner jet Position angle of the symmetry axis of the inner jet

Table 6. Binary parameters.

Binary parameters of the putative SMBH binary:

Total mass, m^a (M _{\odot})	8.13×10^{8}
Orbital period, T (yr)	4.78 ± 0.14
Binary separation, r (pc)	0.0128 ± 0.0003
PN parameter, ε	≈0.003
Mass ratio, v	[0.21:1/3]
Spin–orbit precession period, T_{SO} (yr)	4852 ± 646
Gravitational lifetime, T_{merger} (yr)	$(1.44 \pm 0.19) \times 10^{6}$

^aindependent result by Woo & Urry (2002).

QSO PG 1302-102

Table 1. BBH parameters derived for PG 1302-102.

Total mass, $m^*(M_{\bigodot})$	$\approx 4 \times 10^8$
Orbital period, T^* (yr)	4.0 ± 0.2
Binary separation, r* (pc)	≈0.01
Post-Newtonian parameter, ε	≈ 0.002
Mass ratio, v	$\nu > 0.08$
Spin–orbit precession period, T_{SO} (yr)	<14 100
Gravitational lifetime, $T_{\rm GR}$ (yr)	$< 7.2 \times 10^{6}$

Note. *Indicates parameters determined independently by Graham et al. (2015).

Very Large Array (NRAO), 1.4 GHz

A blazar with oscillating jet components S5 1803+784

Quasi-stationary jet components

The jet components are regions of the jet flaring "lantern regions" that are apparently brighter due their strong Doppler boosting, most probably due to geometric reasons

Kun, Karouzos, Gabányi, Britzen, Kurtanidze, Gergely, MNRAS, 2018, 478, 359

The VLBI jet ridge-lines

The average inclination angle of the jet is only ~2 degrees based on the VLBI data

VLBI jet structure of TXS 0506+056

The inclination angle should be pretty small, similarly to S5 1803+784

Kun, Biermann, Gergely, MNRAS Letters, 2019, 483, 42

Radio brightening of TXS 0506+056

The VLBI core is responsible for the abrupt radio brightening of the source

Kun, Biermann, Gergely, MNRAS Letters, 2019, 483, 42

Radio brightening of TXS 0506+056

The radio jet pointing towards the Earth is really a key property of TXS 0506+056 enabling the multimessenger observations.

Gaussian decomposition of the single dish flux density curves at 15 GHz measured with the OVRO 40m Telescope

The VLBI core is responsible for the abrupt radio brightening of the source

Kun, Biermann, Gergely, MNRAS Letters, 2019, 483, 42

The radio brightening of TXS 0506+056 continued...

Multimessenger astronomy

A tool to observe the highest-energy phenomena in the Nature

Multi-messenger observations of a binary neutron star merger Abbott et al., 2017, ApJL, 848,12

@LIGO, NASA's Goddard Space Flight Center, Caltech/MIT/LIGO Lab and ESA

Multi-messenger observations of a binary neutron star merger Abbott et al., 2017, ApJL, 848,12

Lesson learned: Binary neutron star mergers are indeed precursors of short GRBs

@LIGO, NASA's Goddard Space Flight Center, Caltech/MIT/LIGO Lab and ESA

TXS 0506+056 — identified high-energy neutrino source (3.5 σ) IceCube-170922A

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams, 2018, Science, 361, 6398

Multimessenger observations

TXS 0506-056 is a blazar (recently reclassified as a FSRQ), a class of the active galactic nuclei

TXS 0506+056 — identified high-energy neutrino source (3.5 σ) IceCube-170922A

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams, 2018, Science, 361, 6398

Lesson learned: blazars (AGN) are indeed sources of high-energy neutrinos

Multimessenger observations

TXS 0506-056 is a blazar (recently reclassified as a FSRQ), a class of the active galactic nuclei

Violent phenomena in the Universe

- active galactic nuclei (AGN)
- starburst galaxies
- tidal disruption events
- gamma-ray bursts
- merger of compact objects
- pulsars
- collapse of stellar cores
- ...etc

they are able to accelerate particles

Cosmic-ray energy spectrum

Cosmic-rays

Charged particles (with intrinsic masses) from the Solar System, the Galaxy and beyond... Protons (90%), heavier nuclei (9%), others (1%) Oh-My-God particle (1991): 3x10¹¹ GeV, <u>50 J</u>

4) Where are the (UHE)CR sources? A century years old puzzle

UHECRs

$10^{18} \text{ eV} < E_{UHECR} (LHC 6.5x10^{12} \text{ eV/beam})$

Deflection by galactic and intergalactic magnetic fields

<u>Greisen–Zatsepin–Kuzmin limit</u> The observed UHECR flux above ~ 5 x 10¹⁹ eV comes from sources within ~ 100 Mpc. It is z=0.024!

Gamma-rays make pairs with the EBL and CMB

The high-energy gamma-ray horizon at TeV energies is constrained to the universe at z < 1 and at PeV energies it is constrained to our Galaxy!

Pierre Auger Observatory (PAO):

One such event every four weeks in the 3000 km² area surveyed by the observatory

It is extremely difficult to find the sources of UHECRs

The observable Universe as function of the energy

Neutrinos are key messengers to reveal an unobstructed view of the universe where it is opaque to light, and to the high-energy cosmic rays

Neutrinos from the cosmos

Cosmic neutrino-background (primordial neutrinos, diffuse SN- neutrino background) Solar (and SN) neutrinos (nuclear processes)

Cosmogenic neutrinos (UHECRs+CMB, GZK cutoff) The rest-mass energy of a muon neutrino is <0,17 MeV 10 PeV is 10¹¹ times this

1 eV=1,6x10⁻¹⁹ J 10 PeV=1,6x10⁻³ J

Extremely efficient acceleration

Cosmic neutrinos

Galactic

- SNII supernovae
- Binary neutron stars
- Microquasars
- Magnetars
- Anomalous X-ray pulsars
- Molecular clouds

What we observe might be a cumulative signal of all sources (or more) What are the dominant sources?

Extragalactic

- <u>Active galactic nuclei</u>
- Starburst galaxies
- Tidal disruption events
- Gamma-ray bursts

AGN are extremely efficient particle accelerators

The most powerful permanent particle accelerators in the Cosmos

- The particles flow onto central supermassive black hole
- Some of the gravitational energy is released
- η measures how much of the rest mass will be converted to energy
- The efficiency η will depend on the spin (a) of the black hole:
 - for a=0 (Schwarzschild) we have $\eta = 6\%$
- for a=1 (extreme Kerr) we have η =40%! a* has a maximum at 0.89 for rotating black holes with accretions disk for the hydrogen fusion η is about 0.7%
- The binding energy is transformed into the acceleration of protons or heavier nuclei

Urry&Padovani, 1995, PASP,107, 803 Beckmann & Shrader, 2012 illustration by Marie-Luise Menzel, 2012

High-energy neutrinos from extragalactic UHECR sources?

A large part of the signal might come!

- HE neutrinos are isotropically distributed
- Their intensity is compatible with expectations

IceCube Neutrino Detector
~10 detections per year

• No significant correlation between nearby UHECR sources and neutrinos

Sky map of the arrival directions of UHECR events from the Pierre Auger Observatory and the Telescope Array and high-energy neutrinos from IceCube and ANTARES. Credit: The ANTARES, IceCube, Pierre Auger and Telescope Array collaborations.

ANTARES, IceCube, Pierre Auger and Telescope Array Collaborations: M.G.Aartsen et al. Submitted to Astrophysical Journal. arxiv.org/abs/2201.07313

High-energy neutrinos from extragalactic UHECR sources? A large part of the signal might come!

Catalogue of $z \ge 4$ AGNs

Sky map of the arrival directions of UHECR events from the Pierre Auger Observatory and the Telescope Array and high-energy neutrinos from IceCube and ANTARES. Credit: The ANTARES, IceCube, Pierre Auger and Telescope Array collaborations.

ANTARES, IceCube, Pierre Auger and Telescope Array Collaborations: M.G.Aartsen et al. Submitted to Astrophysical Journal. arxiv.org/abs/2201.07313

Radio emission from active galaxies

- Charged particles gyrating about the magnetic field
- Synchrotron radiation: primary process to generate the radio continuum of jetted AGN
- Low energy component of the blazar SEDs
- method 1: search correlations between astro neutrinos and <u>individual radio sources</u> or source catalogs

Radio observations+neutrinos

 method 1: search correlations between astro neutrinos and <u>individual radio</u> <u>sources</u> or source catalogs

Single-dish radio observation of individual sources

PKS 1502+106: gamma-ray flux vs radio flux density

Mode2: more complex connection

Kun, Bartos, Becker-Tjus, Biermann, Halzen, Mező, 2021, ApJL, 911, L18

What caused this switch?

We can pinpoint different components of the jet

Where are the acceleration sites? (do leptons and hadrons get co-accelerated?

VLBI of individual sources

A ring accelerator? Unusual jet dynamics in the IceCube candidate **PKS 1502+106** Britzen et al. 2021

A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in **TXS 0506+056**? Britzen et al. 2019

Radio observations+neutrinos

- method 1: search correlations between astro neutrinos and individual radio sources or <u>source catalogs</u>
- 7 years of IceCube muon tracks, 8 GHz VLBI data of 3411 radio-loud AGN (Plavin et al 2020, 2021): 4.1 sigma connection
- OVRO (15 GHz) and Metsahovi radio observatories (36.8 GHz), IceCube tracks (Hovatta et al. 2021): radio flares in blazars at the same time as the neutrino event unlikely to be random coincidence at 2 sigma level

Radio observations+neutrinos

- method2: stacking analysis (Achterberg et al. 2006)
- 10 year of muon tracks 3,388 Radio Fundamental Cat. (Zhou et al. 2020): these AGN can account for at most 30% (95 CL) of the flux of neutrino tracks
- MOJAVE XV. Catalog (15 GHz, VLBA) 10 years of detector data (Desai et al 2021): no significant correlation

No significant findings, but there are promising results

CRATES 4.8 GHz and 8.4 GHz + 70 IceCube muon-tracks (2009-2019)

- Matched positions of point sources in the CRATES 8.4 GHz catalog (also 4.8 GHz) with 70 track-type IceCube neutrinos (2009-2019) from Giommi et al. (2020)
- Found 87 (96) CRATES sources at 4.8 GHz (8.4 GHz) within the 90 C.L. error ellipse of the neutrinos

Figure 3. Galactic sky-position (l,b) and 8.4 GHz flux density of the CRATES radio sources (colored dots) and track-type neutrino detections of the IceCube Neutrino Detector (black filled ellipses) published by Giommi et al. (2020). The maps are shown in Mollweide projection. The equator is plotted by a purple continuous line. TXS 0506+056 and PKS 1502+106 are marked on the map.

Kun et al. 2022, submitted

CRATES 4.8 GHz and 8.4 GHz + 70 IceCube muon-tracks (2009-2019)

- Matched positions of point sources in the CRATES 8.4 GHz catalog (also 4.8 GHz) with track-type neutrinos from Giommi et al. (2020)
- Found 87 (96) CRATES sources at 4.8 GHz (8.4 GHz) within the 90 C.L. error ellipse of the neutrinos

 75°

CRATES flat spectrum radio sources and track-type IceCube neutrinos

Based on spatial correlation and brightness, we found a **1.9-2 sigma connection** between the CRATES catalog and the 70 IceCube muon-tracks (same result with Fermi and Swift)

Figure 3. Galactic sky-position (l,b) and 8.4 GHz flux density of the CRATES radio sources (colored dots) and track-type neutrino detections of the IceCube Neutrino Detector (black filled ellipses) published by Giommi et al. (2020). The maps are shown in Mollweide projection. The equator is plotted by a purple continuous line. TXS 0506+056 and PKS 1502+106 are marked on the map.

Kun et al. 2022, submitted

CRATES + neutrinos

- Made a complete sample of CRATES (complete in luminosity redshift plane)
- Calculated how many neutrinos could be explained with this complete sample, if the probability of to detect a neutrino is proportional to the (k-corrected) radio flux
- Results: the CRATES 4.8 GHz (8.4 GHz) complete subsample can explain between 4% and 53% (3% and 42%) of the neutrinos (90% C.L.).

A. R. Thompson, J. M. Moran, G. W. Swenson Jr. WILEY-VCH

Interferometry and Synthesis in Radio Astronomy

Second Edition

PHYSICS TEXTBOOK

Nuclei

Volker Beckmann , Chris Shrader

Active Galactic

WILEY-VCH

Edited by M. Boettcher, D. E. Harris, and H. Krawczynski

WILEY-VCH

Relativistic Jets from Active Galactic Nuclei

Recommended books

Recommended books