Snakemake ~N\°

“A scalable bioinformatics workflow engine”

Vukan Jevtic, Louis Gerken
March 9, 2022

Technische Universitat Dortmund

Motivation: Analysis workflow automation

We would like to automate our analysis workflow

Make

|

Universal, always available

+ Supports abstraction

Exclusively Bash

Hard to read

Hard to debug

Hard to find rule for specific file

Especially if abstraction is used

Vukan Jevtic Snakemake

1/25

Motivation: Analysis workflow automation

We would like to automate our analysis workflow

Make

-+ Universal, always available
-+ Supports abstraction

— Exclusively Bash

— Hard to read

Hard to debug

Hard to find rule for specific file

Especially if abstraction is used

Vukan Jevtic

Snakemake

Snakemake

+

+ + + + o+

Install via conda

Recipes can contain either Bash or
Python(!)

Recipes are named

Much easier to read

Abstractions are easy to understand
Can submit jobs to a computing cluster
If rule fails: Corrupted output is deleted

Additional .snakemake directory

1/25

Make abstraction example

In every analysis, some degree of abstraction is needed
The following Makefile generates a plot for each dataset in current directory

interp=python

files:=$(shell find . -name '*.csv')
plots:=$(patsubst %.csv,%.pdf,$(files))
all: ${plots}

%.pdf: %.py %.csv
${interp} $< $@ $(word 2, $")

This is already quite hard to read

Vukan Jevtic Snakemake 2/25

Snakemake installation

$ conda config --add channels bioconda
$ conda install snakemake
Cite as:
+ Koster, Johannes and Rahmann, Sven. “Snakemake - A scalable bioinformatics workflow engine”.
Bioinformatics 2012.
Further reading (links)

- Documentation
- Implementation details
- Even more implementation details (TU Dortmund thesis)

Vukan Jevtic Snakemake 3/25

https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://snakemake.readthedocs.io/en/stable/index.html
https://drops.dagstuhl.de/opus/volltexte/oasics-complete/oasics-vol26-gcb2012-complete.pdf
https://eldorado.tu-dortmund.de/handle/2003/33940

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

Vukan Jevtic Snakemake 4125

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

1 rule make_plot:

2 input: "data.csv"
3 output: "plot.pdf"
_ 4 shell: "python plot.py"
1 plot.pdf: data.csv)
P python plot.py 6 rule select_data:
3 7 input: "raw_data.csv"
4 data.csv: raw_data.csv 8 output: "data.csv"
5 python selection.py) shell: "python selection.py"
Minimal console command Minimal console command
$ make $ snakemake

Vukan Jevtic Snakemake 425

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

1 rule make_plot:

2 input: "data.csv"
3 output: "plot.pdf"
_ 4 shell: "python plot.py"
1 plot.pdf: data.csv)
P python plot.py 6 rule select_data:
3 7 input: "raw_data.csv"
4 data.csv: raw_data.csv 8 output: "data.csv"
5 python selection.py) shell: "python selection.py"
Running by specifying output file Running by specifying output file
$ make plot.pdf $ snakemake plot.pdf

Vukan Jevtic Snakemake 4125

Workflow: | raw_data.csv| - |data.csv| > |plot.pdf

1 rule make_plot:

2 input: "data.csv"
3 output: "plot.pdf"
_ 4 shell: "python plot.py"
1 plot.pdf: data.csv)
P python plot.py 6 rule select_data:
3 7 input: "raw_data.csv"
4 data.csv: raw_data.csv 8 output: "data.csv"
5 python selection.py) shell: "python selection.py"
Running by specifying name of rule Running by specifying name of rule
$ 7272 $ snakemake make_plot

Vukan Jevtic Snakemake 425

Anatomy of a Snakefile

Workflow: | raw_data.csv| - |data.csv| - |plot.pdf

Snakemake

rule make_plot:
input:
output:

ELE shell: python plot.py

=
rule select_data:
input
: output:
python selection.py shell:

Input +Self-Documentation

Vukan Jevtic Snakemake 5/25

Building DAG of jobs...
Job counts:
count jobs
make_plot
select_data

[Wed Feb 19 15:50:05 2020]
rule select_data:
input: raw_data.csv
output: data.csv
jobid: 1
reason: Missing output files: data.csv

[Wed Feb 19 15:50:05 2020]
rule make_plot:
input: data.csv
output: plot.pdf
jobid: @
reason: Missing output files: plot.pdf; Input files updated by another job: data.csv

Job counts:
count jobs
make_plot
select_data

This was a dry-run (flag -n). The order of jobs does not reflect the order of execution.

Building DAG of jobs...
Using shell: /usr/local/bin/bash
Provided cores: 256
Rules claiming more threads will be scaled down.
Job counts:
count jobs
make_plot
select_data

[Wed Feb 19 15:38:12 2020]
rule select_data:
input: raw_data.csv
output: data.csv
jobid: 1

[Wed Feb 19 15:38:12 2020]
Finished job 1.
1 of 2 steps (50%) done

[Wed Feb 19 15:38:12 2020]
rule make_plot:
input: data.csv
output: plot.pdf
jobid: @

[Wed Feb 19 15:38:14 2020]

Finished job 0.

2 of 2 steps (100%) done

Complete log: /net/nfshome/home/somepath/.snakemake/10g/2020-02-19T153812.433826.snakemake.log

To train a BDT, we usually need a selected data and mc file

1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: ‘"python selection.py data_raw.root data_selected.root"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py mc_raw.root mc_selected.root"
10
11 rule train_bdt:
12 input:
13 "data_selected.root",
14 "mc_selected.root"
15 output: "bdt.model"
16 shell: "python train_bdt.py data_selected.root mc_selected.root"

input, output, shell etc. are optional
Vukan Jevtic Snakemake 8/25

To train a BDT, we usually need a selected data and mc file

1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: ‘"python selection.py data_raw.root data_selected.root"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py mc_raw.root mc_selected.root"
10
11 rule train_bdt:
12 input:
13 "data_selected.root",
14 "mc_selected.root"
15 output: "bdt.model"
16 shell: "python train_bdt.py data_selected.root mc_selected.root"

Would be nice to reduce amount of repetitions
Vukan Jevtic Snakemake 8/25

We can alias files = rules can reference their own parameters

1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: "python selection.py {input} {output}"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py {input} {output}"
10
11 rule train_bdt:
12 input:
13 data = rules.data_preselection.output,
14 mc = rules.mc_preselection.output
15 output: "bdt.model"
16 shell: "python train_bdt.py {input.data} {input.mc}"

Strings containing {. ..} are formatted
Vukan Jevti¢ Snakemake 9/25

A Snakefile can be treated almost like a python script:

import uproot
import pandas
import numpy as np

def say_hello(name):
print(f"Hello {name}!")

rule somerule:
input: files = [f"dataset_{num}.root" for num in range(100)]
run:
say_hello('r5")
for tfile in input.files:
ds = uproot.open(tfile)["Decayires"]
data = ds.arrays('c P[xXY]", outputtype=pandas.DataFrame)
print(np.sqrt(data.B_PX*+2 + data.B_PY*%2))

OVoONOUTHE WN

PR R R R R
OPWNR O

Vukan Jevtic Snakemake 10/25

Instead of shell or run a script can be invoked.
(It does not need to be a python script)

rule massfit:
input:
output: 5
params:
fitConstrained = False,
extendedMLFit = True
script:

NOoO oW N

massfit.py:

import ROOT as R
from ROOT import RooFit
fitContrained = snakemake.params.fitConstrained
extendedMLFit = snakemake.params.extendedMLFit
5 # Load datasets, fit something...
Vukan Jevtic Snakemake 11/25

S~ W N B

Useful command line options

Just print scheduled rules without running Run workflow until specified rule

$ snakemake <rule> -n $ snakemake <rule> --until <rule>
Print the reason for running each rule as well Update timestamps —>force files up to date
$ snakemake <rule> -n -r $ snakemake <rule> --touch

Force execution of target lgnore errors

$ snakemake <rule> -f $ snakemake <rule> --keep-going
Force execution of a target and its workflow Rerun incomplete rules (in case of crash)

$ snakemake <rule> -F $ snakemake --rerun-incomplete
Force re-execution of rule and its workflow Print shell commands that snakemake runs
$ snakemake <rule> -R $ snakemake -p

Vukan Jevtic Snakemake 12/25

Snakemake has an integrated method for generating lists of files: expand(...)

1 rule file_requester:
2 input: expand(, cat=[, 1, num=range(3))

The following list is created as input:
file_A_0.txt, file A_1.txt, file_ A_2.txt, file_B_0.txt, file B_1.txt, file_B_2.txt

Vukan Jevtic Snakemake 13/25

A wildcard rule matches patterns in dependencies

1 rule single_selection:

2 input:

3 output:

4 shell:

5

6 rule select_files:

7 input: expand(, h=range(10))
Note:

1. Input and output must contain same wildcards
2. A wildcard rule cannot be called directly by its name

3. Two rules should not contain the same outputs

Vukan Jevtic Snakemake 14/25

A wildcard rule matches patterns in dependencies

1 rule single_selection:
input:
output:
shell:

rule select_files:
input: expand(, n=range(10))

N O o B W N

If one runs

$ snakemake select files

rule select_files is going to call the wildcard rule for 10 different files

Vukan Jevtic Snakemake 14/25

A wildcard rule matches patterns in dependencies

1 rule single_selection:
input:
output:
shell:

rule select_files:
input: expand(, n=range(10))

N O o B W N

If one runs

$ snakemake data_7_selected.root

rule select_files is going to call the wildcard rule for case num = 7

Vukan Jevtic Snakemake 14/25

Inside a wildcard rule, a variable named “wildcards” is defined

1 rule my_wildcard_rule:

2 input:

3 output:

4 message:

5 run:

6 print()

7 if wildcards.year == and wildcards.channel ==

8 print()

s shell()

But what if a certain combination of wildcards needs to be treated differently?
= Use wildcard constraints

Vukan Jevtic Snakemake 15/25

1 rule somerule:

2 input:

3 output:

4 wildcard_constraints: year=

5 shell:

6

/ rule somerule_special_case:

8 input: rules.somerule.input

) output: rules.somerule.output
10 wildcard_constraints: year=
11 shell:

If you need to treat a wildcard value differently from the others, you need to
constrain them for each relevant rule as shown here
Here, regex can be quite useful: regex101.com.

Vukan Jevtic Snakemake 16/25

https://regex101.com

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

Vukan Jevtic Snakemake 17/25

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need ©(100) CPUs, for example 300 CPUs and 1TB of RAM?
= Send your jobs to our own cluster!

Vukan Jevtic Snakemake 17/25

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -3j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need ©(100) CPUs, for example 300 CPUs and 1TB of RAM?
= Send your jobs to our own cluster!

But what do you do if you need ©@(1000) CPUs and ©(20) GPUs?

= Send your jobs to the LIDO cluster of our university

Vukan Jevtic Snakemake 17/25

Using snakemake to submit to a computing cluster

A tutorial can be found here: Click me!

Submitting to a HTCondor computing cluster can be as simple as:

$ snakemake <rule> -j999 --profile htcondor

Vukan Jevtic Snakemake

18/25

https://git.e5.physik.tu-dortmund.de/infrastructure/batchwithsnakemake

1 rule clusterrule:

2 input:

3 output:

4 threads: 12

5 resources:

6 MaxRunHours=24, # Job takes up to a day

7 request_memory=1024 # Request RAM in MB

8 request_gpus=1, # Submit to a machine with GPU
9 request_disk=1000000 # Disk requirement in kB

10 run:

11 print(f)

Submit with the same command lean back while the cluster takes off o

Vukan Jevtic Snakemake 19/25

Snakefiles can be connected via subworkflows:
Main Snakefile

1 subworkflow another_worklow:
P workdir: 'path/to/other/workdir'
3 snakefile: 'path/to/other/workdir/Snakefile’
4
5 rule master_rule:
6 input: another_worklow(" tcxt. txi")
Another Snakefile
1 rule create_file:
2 output: "text.txt"
3 shell: "touch text.txt"

Vukan Jevtic Snakemake 20/25

Some more useful tips

Various file wrappers:

- Timestamp of files wrapped in ancient("filename") is ignored

- Files wrapped in protected("filename") are not deleted by Snakemake
- Afile wrapped in temp("filename") is deleted after rule is finished

- touch("filename") creates an empty file with that name as output

Setting a function as rule input:

get_files(wildcards):

rule arule:
input: get_files

Vukan Jevtic Snakemake

21/25

Some more useful tips

Various file wrappers:

- Timestamp of files wrapped in ancient("filename") is ignored

- Files wrapped in protected("filename") are not deleted by Snakemake
- Afile wrapped in temp("filename") is deleted after rule is finished

- touch("filename") creates an empty file with that name as output

Using a config file

config.json

{

Vukan Jevtic

Snakefile
configfile:

param_a
param_b

config[
config[

Snakemake

21/25

ADVANCED TOPICS

Vukan Jevtic Snakemake 22/25

Virtualisation in Snakemake via Singularity

Single rules (or the whole Snakefile) can be configured to run in an arbitrary virtual
environment

rule envrule:
input:
output:
singularity:
shell:

This is limited to shell and script execution
When calling snakemake, singularity needs to be activated:

$ snakemake envrule --use-singularity --singularity-args
"--bind /run,/ceph,/net"

Binding /run is obligatory, the rest is optional
When singularity: ... isdefined outside of a rule it is implied for all rules

Vukan Jevtic Snakemake 23/25

COMMON ERRORS

Vukan Jevtic Snakemake 24/25

1 rule somerule:
output:
shell:

rule requester:

2
3
4
5
6 input:

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"

Vukan Jevtic Snakemake 25/25

Common mistakes: Wrong wildcard deduction

rule somerule:
output:
shell:

rule requester:
input:

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"
This will eventually lead to an error »define what wildcard values are allowed

wildcard_constraints:
years=)
polarity=

Note: these are regex strings

Vukan Jevtic Snakemake 25/25

