
Snakemake W
“A scalable bioinformatics workflow engine”

Vukan Jevtić, Louis Gerken
March 9, 2022

Technische Universität Dortmund

Motivation: Analysis workflow automation

We would like to automate our analysis workflow

Make

+ Universal, always available

+ Supports abstraction

− Exclusively Bash

− Hard to read

− Hard to debug

− Hard to find rule for specific file

Especially if abstraction is used

Snakemake

+ Install via conda

+ Recipes can contain either Bash or
Python(!)

+ Recipes are named

+ Much easier to read

+ Abstractions are easy to understand

+ Can submit jobs to a computing cluster

+ If rule fails: Corrupted output is deleted

− Additional .snakemake directory

Vukan Jevtić Snakemake 1/25

Motivation: Analysis workflow automation

We would like to automate our analysis workflow

Make

+ Universal, always available

+ Supports abstraction

− Exclusively Bash

− Hard to read

− Hard to debug

− Hard to find rule for specific file

Especially if abstraction is used

Snakemake

+ Install via conda

+ Recipes can contain either Bash or
Python(!)

+ Recipes are named

+ Much easier to read

+ Abstractions are easy to understand

+ Can submit jobs to a computing cluster

+ If rule fails: Corrupted output is deleted

− Additional .snakemake directory

Vukan Jevtić Snakemake 1/25

Make abstraction example

In every analysis, some degree of abstraction is needed
The following Makefile generates a plot for each dataset in current directory

1 interp=python
2 files:=$(shell find . -name '*.csv')
3 plots:=$(patsubst %.csv,%.pdf,$(files))
4
5 all: ${plots}
6
7 %.pdf: %.py %.csv
8 ${interp} $< $@ $(word 2, $^)

This is already quite hard to read

Vukan Jevtić Snakemake 2/25

Snakemake installation

$ conda config --add channels bioconda
$ conda install snakemake

Cite as:

• Köster, Johannes and Rahmann, Sven. “Snakemake - A scalable bioinformatics workflow engine”.

Bioinformatics 2012.

Further reading (links)

• Documentation
• Implementation details
• Even more implementation details (TU Dortmund thesis)

Vukan Jevtić Snakemake 3/25

https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://snakemake.readthedocs.io/en/stable/index.html
https://drops.dagstuhl.de/opus/volltexte/oasics-complete/oasics-vol26-gcb2012-complete.pdf
https://eldorado.tu-dortmund.de/handle/2003/33940

Anatomy of a Snakefile

Workflow: raw_data.csv → data.csv → plot.pdf

Make
1 plot.pdf: data.csv
2 python plot.py
3
4 data.csv: raw_data.csv
5 python selection.py

Snakemake
1 rule make_plot:
2 input: "data.csv"
3 output: "plot.pdf"
4 shell: "python plot.py"
5
6 rule select_data:
7 input: "raw_data.csv"
8 output: "data.csv"
9 shell: "python selection.py"

Vukan Jevtić Snakemake 4/25

Anatomy of a Snakefile

Workflow: raw_data.csv → data.csv → plot.pdf

Make
1 plot.pdf: data.csv
2 python plot.py
3
4 data.csv: raw_data.csv
5 python selection.py

Minimal console command
$ make

Snakemake
1 rule make_plot:
2 input: "data.csv"
3 output: "plot.pdf"
4 shell: "python plot.py"
5
6 rule select_data:
7 input: "raw_data.csv"
8 output: "data.csv"
9 shell: "python selection.py"

Minimal console command
$ snakemake

Vukan Jevtić Snakemake 4/25

Anatomy of a Snakefile

Workflow: raw_data.csv → data.csv → plot.pdf

Make
1 plot.pdf: data.csv
2 python plot.py
3
4 data.csv: raw_data.csv
5 python selection.py

Running by specifying output file
$ make plot.pdf

Snakemake
1 rule make_plot:
2 input: "data.csv"
3 output: "plot.pdf"
4 shell: "python plot.py"
5
6 rule select_data:
7 input: "raw_data.csv"
8 output: "data.csv"
9 shell: "python selection.py"

Running by specifying output file
$ snakemake plot.pdf

Vukan Jevtić Snakemake 4/25

Anatomy of a Snakefile

Workflow: raw_data.csv → data.csv → plot.pdf

Make
1 plot.pdf: data.csv
2 python plot.py
3
4 data.csv: raw_data.csv
5 python selection.py

Running by specifying name of rule
$???

Snakemake
1 rule make_plot:
2 input: "data.csv"
3 output: "plot.pdf"
4 shell: "python plot.py"
5
6 rule select_data:
7 input: "raw_data.csv"
8 output: "data.csv"
9 shell: "python selection.py"

Running by specifying name of rule
$ snakemake make_plot

Vukan Jevtić Snakemake 4/25

Anatomy of a Snakefile

Workflow: raw_data.csv → data.csv → plot.pdf

Make
1 plot.pdf: data.csv
2 python script.py
3
4 data.csv: raw_data.csv
5 python selection.py

Output Input Recipe

Snakemake
1 rule make_plot:
2 input: "data.csv"
3 output: "plot.pdf"
4 shell: "python plot.py"
5
6 rule select_data:
7 input: "raw_data.csv"
8 output: "data.csv"
9 shell: "python selection.py"

+Self-Documentation

Vukan Jevtić Snakemake 5/25

“snakemake -nr” console output (dry run with reason for each rule)

Building DAG of jobs...
Job counts:

count jobs
1 make_plot
1 select_data
2

[Wed Feb 19 15:50:05 2020]
rule select_data:

input: raw_data.csv
output: data.csv
jobid: 1
reason: Missing output files: data.csv

[Wed Feb 19 15:50:05 2020]
rule make_plot:

input: data.csv
output: plot.pdf
jobid: 0
reason: Missing output files: plot.pdf; Input files updated by another job: data.csv

Job counts:
count jobs
1 make_plot
1 select_data
2

This was a dry-run (flag -n). The order of jobs does not reflect the order of execution.

“snakemake” console output

Building DAG of jobs...
Using shell: /usr/local/bin/bash
Provided cores: 256
Rules claiming more threads will be scaled down.
Job counts:

count jobs
1 make_plot
1 select_data
2

[Wed Feb 19 15:38:12 2020]
rule select_data:

input: raw_data.csv
output: data.csv
jobid: 1

[Wed Feb 19 15:38:12 2020]
Finished job 1.
1 of 2 steps (50%) done

[Wed Feb 19 15:38:12 2020]
rule make_plot:

input: data.csv
output: plot.pdf
jobid: 0

[Wed Feb 19 15:38:14 2020]
Finished job 0.
2 of 2 steps (100%) done
Complete log: /net/nfshome/home/somepath/.snakemake/log/2020-02-19T153812.433826.snakemake.log

Physics analysis example

To train a BDT, we usually need a selected data and mc file
1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: "python selection.py data_raw.root data_selected.root"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py mc_raw.root mc_selected.root"

10
11 rule train_bdt:
12 input:
13 "data_selected.root",
14 "mc_selected.root"
15 output: "bdt.model"
16 shell: "python train_bdt.py data_selected.root mc_selected.root"

input, output, shell etc. are optional
Vukan Jevtić Snakemake 8/25

Physics analysis example

To train a BDT, we usually need a selected data and mc file
1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: "python selection.py data_raw.root data_selected.root"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py mc_raw.root mc_selected.root"

10
11 rule train_bdt:
12 input:
13 "data_selected.root",
14 "mc_selected.root"
15 output: "bdt.model"
16 shell: "python train_bdt.py data_selected.root mc_selected.root"

Would be nice to reduce amount of repetitions
Vukan Jevtić Snakemake 8/25

Physics analysis example

We can alias files ⇒ rules can reference their own parameters
1 rule data_preselection:
2 input: "data_raw.root"
3 output: "data_selected.root"
4 shell: "python selection.py {input} {output}"
5
6 rule mc_preselection:
7 input: "mc_raw.root"
8 output: "mc_selected.root"
9 shell: "python selection.py {input} {output}"

10
11 rule train_bdt:
12 input:
13 data = rules.data_preselection.output,
14 mc = rules.mc_preselection.output
15 output: "bdt.model"
16 shell: "python train_bdt.py {input.data} {input.mc}"

Strings containing {...} are formatted
Vukan Jevtić Snakemake 9/25

Executing arbitrary python code in Snakefiles

A Snakefile can be treated almost like a python script:
1 import uproot
2 import pandas
3 import numpy as np
4
5 def say_hello(name):
6 print(f"Hello {name}!")
7
8 rule somerule:
9 input: files = [f"dataset_{num}.root" for num in range(100)]

10 run:
11 say_hello("E5")
12 for tfile in input.files:
13 ds = uproot.open(tfile)["DecayTree"]
14 data = ds.arrays("B_P[XY]", outputtype=pandas.DataFrame)
15 print(np.sqrt(data.B_PX**2 + data.B_PY**2))

Vukan Jevtić Snakemake 10/25

Executing python scripts

Instead of shell or run a script can be invoked.
(It does not need to be a python script)

1 rule massfit:
2 input: "data.root"
3 output: "parameters.txt", "plot.pdf"
4 params:
5 fitConstrained = False,
6 extendedMLFit = True
7 script: "massfit.py"

massfit.py:
1 import ROOT as R
2 from ROOT import RooFit
3 fitContrained = snakemake.params.fitConstrained
4 extendedMLFit = snakemake.params.extendedMLFit
5 # Load datasets, fit something...

Vukan Jevtić Snakemake 11/25

Useful command line options

Just print scheduled rules without running

$ snakemake <rule> -n

Print the reason for running each rule as well

$ snakemake <rule> -n -r

Force execution of target

$ snakemake <rule> -f

Force execution of a target and its workflow

$ snakemake <rule> -F

Force re-execution of rule and its workflow

$ snakemake <rule> -R

Run workflow until specified rule

$ snakemake <rule> --until <rule>

Update timestamps →force files up to date

$ snakemake <rule> --touch

Ignore errors

$ snakemake <rule> --keep-going

Rerun incomplete rules (in case of crash)

$ snakemake --rerun-incomplete

Print shell commands that snakemake runs

$ snakemake -p

Vukan Jevtić Snakemake 12/25

expand(...)

Snakemake has an integrated method for generating lists of files: expand(...)
1 rule file_requester:
2 input: expand("file_{cat}_{num}.txt", cat=["A", "B"], num=range(3))

The following list is created as input:
file_A_0.txt, file_A_1.txt, file_A_2.txt, file_B_0.txt, file_B_1.txt, file_B_2.txt

Vukan Jevtić Snakemake 13/25

Next level of abstraction: Wildcards

A wildcard rule matches patterns in dependencies

1 rule single_selection:
2 input: "data_{num}.root"
3 output: "data_{num}_selected.root"
4 shell: "python run_selection.py {input} {output}"
5
6 rule select_files:
7 input: expand("data_{n}_selected.root", n=range(10))

Note:

1. Input and output must contain same wildcards

2. A wildcard rule cannot be called directly by its name

3. Two rules should not contain the same outputs

Vukan Jevtić Snakemake 14/25

Next level of abstraction: Wildcards

A wildcard rule matches patterns in dependencies

1 rule single_selection:
2 input: "data_{num}.root"
3 output: "data_{num}_selected.root"
4 shell: "python run_selection.py {input} {output}"
5
6 rule select_files:
7 input: expand("data_{n}_selected.root", n=range(10))

If one runs

$ snakemake select_files

rule select_files is going to call the wildcard rule for 10 different files

Vukan Jevtić Snakemake 14/25

Next level of abstraction: Wildcards

A wildcard rule matches patterns in dependencies

1 rule single_selection:
2 input: "data_{num}.root"
3 output: "data_{num}_selected.root"
4 shell: "python run_selection.py {input} {output}"
5
6 rule select_files:
7 input: expand("data_{n}_selected.root", n=range(10))

If one runs

$ snakemake data_7_selected.root

rule select_files is going to call the wildcard rule for case num = 7

Vukan Jevtić Snakemake 14/25

The wildcards object

Inside a wildcard rule, a variable named “wildcards” is defined
1 rule my_wildcard_rule:
2 input: "file_{channel}_{polarity}_{year}.root"
3 output: "file_{channel}_{polarity}_{year}_out.root"
4 message: "Reading {wildcards.year} file"
5 run:
6 print("Running the rule for year = {wildcards.year}")
7 if wildcards.year == "2017" and wildcards.channel == "B2JpsiKstar":
8 print("This is my favourite dataset!")
9 shell("python run_selection {input} {output} -year {wildcards.year}")

But what if a certain combination of wildcards needs to be treated differently?
⇒ Use wildcard constraints

Vukan Jevtić Snakemake 15/25

Wildcard constraints

1 rule somerule:
2 input: "data_{year}.root"
3 output: "massplot_{year}.pdf"
4 wildcard_constraints: year="201[578]"
5 shell: "python massfit.py {input}"
6
7 rule somerule_special_case:
8 input: rules.somerule.input
9 output: rules.somerule.output

10 wildcard_constraints: year="2016"
11 shell: "python massfit.py {input} -be_careful"

If you need to treat a wildcard value differently from the others, you need to
constrain them for each relevant rule as shown here
Here, regex can be quite useful: regex101.com.

Vukan Jevtić Snakemake 16/25

https://regex101.com

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need 𝒪(100) CPUs, for example 300 CPUs and 1TB of RAM?
⇒ Send your jobs to our own cluster! (For huge jobs, please ask your supervisor for permission)
But what do you do if you need 𝒪(1000) CPUs and 𝒪(20) GPUs?
⇒ Send your jobs to the LiDO cluster of our university

Vukan Jevtić Snakemake 17/25

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need 𝒪(100) CPUs, for example 300 CPUs and 1TB of RAM?
⇒ Send your jobs to our own cluster! (For huge jobs, please ask your supervisor for permission)

But what do you do if you need 𝒪(1000) CPUs and 𝒪(20) GPUs?
⇒ Send your jobs to the LiDO cluster of our university

Vukan Jevtić Snakemake 17/25

Parallelizing everything!

At some point, you may realize that you need more than 1 CPU...
Luckily, there is an option for that:

$ snakemake my_analysis -j20

This command is going to (try to) parallelize your workflow into 20 parallel chains

But what do you do if you need 𝒪(100) CPUs, for example 300 CPUs and 1TB of RAM?
⇒ Send your jobs to our own cluster! (For huge jobs, please ask your supervisor for permission)
But what do you do if you need 𝒪(1000) CPUs and 𝒪(20) GPUs?
⇒ Send your jobs to the LiDO cluster of our university

Vukan Jevtić Snakemake 17/25

Using snakemake to submit to a computing cluster

A tutorial can be found here: Click me!
Submitting to a HTCondor computing cluster can be as simple as:

$ snakemake <rule> -j999 --profile htcondor

Vukan Jevtić Snakemake 18/25

https://git.e5.physik.tu-dortmund.de/infrastructure/batchwithsnakemake

Setting optional resource requirements for the scheduler

1 rule clusterrule:
2 input: "file.txt"
3 output: "outfile.txt"
4 threads: 12
5 resources:
6 MaxRunHours=24, # Job takes up to a day
7 request_memory=1024 # Request RAM in MB
8 request_gpus=1, # Submit to a machine with GPU
9 request_disk=1000000 # Disk requirement in kB

10 run:
11 print(f"This rule is allowed to use {threads} threads")

Submit with the same command lean back while the cluster takes off �

Vukan Jevtić Snakemake 19/25

Subworkflows

Snakefiles can be connected via subworkflows:
Main Snakefile

1 subworkflow another_worklow:
2 workdir: 'path/to/other/workdir'
3 snakefile: 'path/to/other/workdir/Snakefile'
4
5 rule master_rule:
6 input: another_worklow("text.txt")

Another Snakefile

1 rule create_file:
2 output: "text.txt"
3 shell: "touch text.txt"

Vukan Jevtić Snakemake 20/25

Some more useful tips

Various file wrappers:

• Timestamp of files wrapped in ancient("filename") is ignored
• Files wrapped in protected("filename") are not deleted by Snakemake
• A file wrapped in temp("filename") is deleted after rule is finished
• touch("filename") creates an empty file with that name as output

Setting a function as rule input:

1 def get_files(wildcards):
2 return #[A list of files according to wildcards]
3
4 rule arule:
5 input: get_files

Vukan Jevtić Snakemake 21/25

Some more useful tips

Various file wrappers:

• Timestamp of files wrapped in ancient("filename") is ignored
• Files wrapped in protected("filename") are not deleted by Snakemake
• A file wrapped in temp("filename") is deleted after rule is finished
• touch("filename") creates an empty file with that name as output

Using a config file

config.json
1 {
2 "param_a" : "362",
3 "param_b" : "cat"
4 }

Snakefile
1 configfile: "config.json"
2
3 param_a = config["param_a"]
4 param_b = config["param_b"]

Vukan Jevtić Snakemake 21/25

Advanced Topics

Vukan Jevtić Snakemake 22/25

Virtualisation in Snakemake via Singularity

Single rules (or the whole Snakefile) can be configured to run in an arbitrary virtual
environment

1 rule envrule:
2 input: "file.txt"
3 output: "outfile.txt"
4 singularity: "/path/to/singularity/container.simg"
5 shell: "SomeShellCommand"

This is limited to shell and script execution
When calling snakemake, singularity needs to be activated:

$ snakemake envrule --use-singularity --singularity-args
"--bind /run,/ceph,/net"

Binding /run is obligatory, the rest is optional
When singularity: ... is defined outside of a rule it is implied for all rules

Vukan Jevtić Snakemake 23/25

Common Errors

Vukan Jevtić Snakemake 24/25

Common mistakes: Wrong wildcard deduction

1 rule somerule:
2 output: "afile_{year}_{polarity}.root"
3 shell: "echo Running rule"
4
5 rule requester:
6 input: "afile_2017_MagnetUp_garbage.root"

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"

This will eventually lead to an error →define what wildcard values are allowed

1 wildcard_constraints:
2 year="201[5678]",
3 polarity="Magnet(Up|Down)"

Note: these are regex strings

Vukan Jevtić Snakemake 25/25

Common mistakes: Wrong wildcard deduction

1 rule somerule:
2 output: "afile_{year}_{polarity}.root"
3 shell: "echo Running rule"
4
5 rule requester:
6 input: "afile_2017_MagnetUp_garbage.root"

This is valid code: rule requester is calling somerule with (for example)
year="2017_MagnetUp" and polarity="garbage"
This will eventually lead to an error →define what wildcard values are allowed

1 wildcard_constraints:
2 year="201[5678]",
3 polarity="Magnet(Up|Down)"

Note: these are regex strings

Vukan Jevtić Snakemake 25/25

