

DFG

KID KORK KERKER E 1990

High-energy Lepton Propagation

Alexander Sandrock

National Research Nuclear University MEPhI¹

January 28, 2022

¹Now at Bergische Universität Wuppertal

DFG

KOX KORK KEX KEX LE LONG

[Introduction](#page-1-0)

- **o** standard model fermions
- come in three families: e, μ , τ
- neutrinos and charged leptons
- particles and antiparticles
- o only electromagnetic and weak interaction

Figure: Standard Model of Elementary Particles [\[1\]](#page-64-1)

 4 ロ) 4 何) 4 ヨ) 4 コ)

 \Rightarrow

 $2Q$

Standard Model of Elementary Particles

Charged leptons

DFG

KORKA BRADE KORA

• Charged leptons loose energy electromagnetically via

- ionization: $\ell^{\pm} + {}^A_ZN \rightarrow \ell^{\pm} + {}^A_ZN^+ + e^-$
- bremsstrahlung: $\ell^{\pm} + {}^A_ZN \rightarrow \ell^{\pm} + {}^A_ZN + \gamma$
- pair production: $\ell^{\pm} + {}^A_ZN \rightarrow \ell^{\pm} + {}^A_ZN + e^+ + e^-$
- photonuclear interaction: $\ell^{\pm} + N \rightarrow \ell^{\pm} + X$

• Average energy loss per distance

$$
\left\langle -\frac{dE}{dx} \right\rangle = \frac{N_A}{A} \rho \int E v \frac{d\sigma}{dv} dv \simeq a(E) + b(E)E \qquad (1)
$$

• Muons and taus decay

Neutrinos

DFG

- Neutrinos interact only via the weak interaction
	- Exchange of Z-bosons (NC): $\overline{\nu}_\ell^{\text{(-)}} + N \rightarrow \overline{\nu}_\ell^{\text{(-)}} + X$
	- Exchange of W-bosons (CC): $\stackrel{(-)}{\nu_{\ell}} + N \rightarrow \ell^{\pm} + X^{\mp}$
- Mass eigenstates and interaction eigenstates do not coincide \rightarrow neutrinos oscillate into different lepton family

$$
P_{\alpha \to \beta} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i m_{i}^{2} L/2E} \right|^{2}
$$
 (2)

KORKA BRADE KORA

DFG

KOX KORK KEX KEX LE LONG

[Ionization](#page-5-0)

Ionization

DFG

KORKA BRADE KORA

Ionization is a cover name for several processes

- excitation $\mu^{\pm} + {}^A_ZN \rightarrow \mu^{\pm} + {}^A_ZN^*$
- ionization in the strict sense $\mu^{\pm} + \frac{A}{Z}N \rightarrow \mu^{\pm} + \frac{A}{Z}N^{+} + e^{-}$
- emission of δ -electrons $\mu^{\pm} + {}^A_ZN \rightarrow \mu^{\pm} + {}^A_ZN^+ + e^-$

The first two processes are low-energy atomic physics processes (eV-scale). The dominant contribution for high-energy particles are δ-electrons.

• energy loss for relativistic particles

$$
\left\langle -\frac{dE}{dx} \right\rangle = K \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{l^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right],
$$

\n
$$
T_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / \mu + (m_e / \mu)^2}.
$$
 (3)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

• Accuracy at small energies not worse than 1%

Density effect

DFG

- The correction δ describes the density effect [\[2\]](#page-64-2), which is connected to the polarisation of the medium at large energies
- **•** Asymptotically

$$
\delta \to \ln \frac{\hbar \omega_p}{I} + \ln \beta \gamma - \frac{1}{2} \tag{4}
$$

イロト イ押 トイヨ トイヨト

 \Rightarrow

 2990

• The Sternheimer parametrization of δ is not worse than 10% at small energies and asymptotically exact at high energies.

Figure: $\langle -dE/dx \rangle$ for muons in copper [\[3\]](#page-64-3)

Radiative corrections

DFG

KORK STRAIN A BAR STRAKER

In the calculation of corrections to bremsstrahlung of muons scattered by atomic electrons, also the radiative corrections to ionization was obtained in logarithmic approximation [\[4\]](#page-64-4)

$$
\Delta \left| \frac{dE}{dx} \right| = \frac{NZ}{A} m \alpha r_e^2 \left(\ln \frac{2E}{\mu} - \frac{1}{3} \ln \frac{2\epsilon_{\text{max}}}{m} \right) \ln^2 \frac{2\epsilon_{\text{max}}}{m}.
$$
 (5)

The mean loss is increased by several percent due to these corrections.

DFG

[Bremsstrahlung](#page-10-0)

Bremsstrahlung

DFG

KORKA SERKER ORA

For relativistic particles, the bremsstrahlung cross-section can be written as [\[5,](#page-64-5) [6\]](#page-64-6)

$$
v\frac{d\sigma}{dv} = 4Z^2 \alpha \left(r_e \frac{m}{\mu}\right)^2 \left[(2 - 2v + v^2)\Phi_1(\delta) - \frac{2}{3}(1 - v)\Phi_2(\delta) \right],
$$

$$
\delta = \frac{\mu^2 v}{2E(1 - v)}.
$$
 (6)

Screening functions

DFG

KORKA BRADE KORA

In the absence of screening for a point-like nucleus we have

$$
\Phi_1 = \Phi_2 = \ln \frac{\mu}{\delta} - \frac{1}{2},\tag{7}
$$

for complete screening of a point-like nucleus

$$
\Phi_1 = \ln\left(\frac{\mu}{m} B Z^{-1/3}\right), \quad \Phi_2 = \Phi_1 - \frac{1}{6}, \tag{8}
$$

where the constant B is ≈ 183 and ln $(BZ^{-1/3})$ is the radiation logarithm. An analytic interpolation describing also intermediate screening was found by [\[7,](#page-64-7) [8\]](#page-64-8).

- **•** Fourier transformation of charge distribution
- Nuclear formfactor: extended charge distribution inside nucleus
- Atomic formfactor: screening of nuclear charge by atomic electrons

Figure: q-dependence of the bremsstrahlung cross section [\[9\]](#page-65-0)

KORKA SERKER ORA

- The Compton wavelength of a muon is comparable to nuclear dimensions.
- The nuclear formfactor effectively cuts off large momentum transfers.
- The cross-section is decreased by $\sim 10\%$.
- $\Phi_i \rightarrow \Phi_i \Delta_i$, where

$$
\Delta_1 - \Delta_2 \approx \frac{1}{6},
$$

\n
$$
\Delta_1 \approx \ln \frac{\mu}{q_c} + 1
$$
\n(9)

KORKA BRADE KORA

for heavy nuclei.

• The calculations by [\[9\]](#page-65-0) and [\[10,](#page-65-1) [11\]](#page-65-2) on the basis of different models of the nuclear formfactor differ somewhat, but [\[9\]](#page-65-0) describes numerical calculations better.

Interaction with atomic electrons

DFG

KORKA SERKER ORA

- Electrons not only screen the nucleus, but are also targets.
- The recoil of electrons during scattering changes the situation compared to atomic nuclei
- An approximate formula is given by

$$
v\frac{d\sigma}{dv} = 4\alpha Z \left(r_e \frac{m}{\mu}\right)^2 \left(\frac{4}{3}(1-v) + v^2\right) \Phi_{\rm in}(\delta),
$$

$$
\Phi_{\rm in}(\delta) = \ln \frac{\mu/\delta}{\mu\delta/m^2 + \sqrt{e}} - \ln\left(1 + \frac{m}{\delta B'Z^{-2/3}}\right),
$$
(10)

$$
B' = 1429.
$$

Quasielastic target excitation

DFG

- excitation of nuclear levels
- Assuming the nuclear wavefunction as a non-symmetrized product of nucleon wave functions, the correction assumes the form [\[10\]](#page-65-1)

$$
\Delta_i^{\text{inel}} = \frac{1}{Z} \Delta_i. \tag{11}
$$

KORK EXTERNE DRAM

Inelastic target excitation

DFG

KORKA SERKER ORA

- Interaction with separate nucleons
- Effect of a few percent
- Better considered not as a nucleon correction to bremsstrahlung, but as a radiative correction to nuclear interaction

Radiative corrections

- Calculated recently [\[12,](#page-65-3) [13\]](#page-65-4)
- Described by a universal function $f(v)$ in the equivalent photon approximation
- The energy loss increases by \sim 2%

Figure: Bremsstrahlung energy loss of muons

DFG

 \Rightarrow

 2990

Figure: Universal function $f(v)$ describing the ratio between Born approximation and higher-order correctionsイロト イ押ト イヨト イヨト

Diffractive corrections

DFG

- Photon emitted by nucleus, not by muon
- Interference effect dependent on sign of muon charge
- $\bullet \sim 0.1\%$; contrary to earlier calculations significantly overestimating the effect [\[14\]](#page-65-5)

Figure: Feynman diagram for diffractive

corrections **Example 2018** Figure: Muon energy loss in water with radiative and diffractive corrections [\[15\]](#page-66-0)

- at ultrahigh energies, multiple scattering perturbs interaction [\[16\]](#page-66-1)
- the cross-section is decreased [\[17\]](#page-66-2), in particular for photons of small energy compared to the muon energy

Figure: Energy loss in ice (above) and standard rock (below) [\[18\]](#page-66-3)

KORK STRAIN A BAR STRAKER

Coulomb corrections

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

- **•** Born approximation: first term in expansion in $Z\alpha$
- Coulomb corrections: remaining terms of this expansion
- very important for electrons
- negligible for muons due to the influence of the extended nucleus $\leq 0.4\%$

KORKA SERKER ORA

• The effect of molecular bounds was calculated by [\[19\]](#page-66-4) • small, $\leq 0.5\%$ for hydrogren and less for heavier nuclei

DFG

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

[Pair production](#page-23-0)

Electron-positron pair production

DFG

KORKA SERKER ORA

- The leading-order cross section for complete screening and no screening was calculated by [\[20,](#page-66-5) [21\]](#page-66-6).
- An analytic interpolation between these limiting cases was carried out by [\[22,](#page-66-7) [23\]](#page-66-8).

$$
\frac{d^2\sigma}{d\nu d\rho} = \frac{2}{3\pi} (Z\alpha r_e)^2 \frac{1-\nu}{\nu} \left(\Phi_e + \frac{m^2}{\mu^2} \Phi_\mu\right),
$$

\n
$$
\Phi_{e,\mu} = L_{e,\mu} B_{e,\mu} + \frac{1}{2} \Delta_{e,\mu}
$$
\n(12)

Nuclear and atomic formfactor corrections

DFG

- The influence of the nuclear formfactor was investigated in [\[24\]](#page-67-0)
	- \bullet unimportant for dE/dx
	- e effect on $d\sigma/dv$ of the order of 1% for $v \gtrsim m/\mu$
- \bullet interaction with atomic electrons important [\[25\]](#page-67-1), of the order of $1/Z$
- target excitation unimportant [\[26\]](#page-67-2)
- Screening functions were parametrized more accurately in [\[13\]](#page-65-4), leading to an effect of the order of 1% for $d\sigma/dv$, but $\leq 0.5\%$ for dE/dx

Figure: Total pair production cross-section in standard rock [\[26\]](#page-67-2)K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 안

DFG

KORK STRAIN A BAR STRAKER

Screening functions

• The functions $L_{e,\mu}$ are analogous to the function Φ_1 from bremsstrahlung

- A new expression for the cross section has been derived taking into account the difference between the analogues of $\Phi_{1,2}$ [\[13\]](#page-65-4)
- \bullet difference to earlier works \sim 0.5% for dE/dx, \sim 1% for dσ/dv

Figure: Differential cross section at 100 TeV

Muon pair production

DFG

KORKA SERKER ORA

- Calculated in [\[27\]](#page-67-3)
- very small effect on the energy loss ($\sim 10^{-4}$ compared to e^+e^- pair production)
- potentially interesting as it converts a single muon to a (small) muon bundle

LPM effect

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

- the same effect as in bremsstrahlung, applied to the $\gamma^* Z \to e^+ e^- Z$ subprocess
- significant effect on dE/dx only at energies $\geq 10^{24}$ eV [\[17\]](#page-66-2)

Coulomb corrections

DFG

 2990

- analytical expression for point-like nuclei [\[28,](#page-67-4) [29\]](#page-67-5)
- numerical results show that a nuclear formfactor decreases the correction for very heavy elements [\[30\]](#page-67-6)
- for dE/dx : in standard rock ∼ 0.5%, in lead ~ 9%
- for $d\sigma/dv$: in standard rock ~ 1% for v $\geq m/\mu$

Figure: Energy loss in standard rock [\[30\]](#page-67-6)

Figure: Pair production energy loss in lead [\[30\]](#page-67-6) $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Radiative corrections, double pair production

- radiative corrections increase the cross section by \sim 2%
- \bullet double pair production: logarithmically increasing loss, $\sim 0.5\%$ at PeV energies

Figure: Pair production energy loss and higher-order corrections.

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

- very small correction to the μ -diagrams, negligible
- no dependence on sign of muon charge

DFG

KOX KORK KEX KEX LE LONG

[Nuclear interaction](#page-32-0)

Nuclear interaction

DFG

KORK STRAIN A BAR STRAKER

- Inelastic interaction with nucleons at energies $E \leq 10^{15}$ eV gives a contribution of $\sim 10\% - 20\%$ to the energy loss
- the contribution rises with energy

Figure: Energy losses in standard rock, divided by energy.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Limiting cases

DFG

Figure: Diagrams of limiting cases of inelastic interaction [\[31\]](#page-67-7)

- not a purely electromagnetic process
- **•** predominantly nonperturbative QCD
- process with largest uncertainty

Figure: Different models of muon energy loss by nuclear interaction [\[18\]](#page-66-3)

KORK STRAIN A BAR STRAKER

Vector meson dominance

DFG

- photons and vector mesons (ρ, ω, φ and their excited states) have identical quantum numbers
- the photon converts to a virtual vector meson, the meson interacts hadronically with the nucleus
- formulae of Bezrukov and Bugaev are often used [\[32\]](#page-67-8)
- structure functions are proportional to photoabsorption cross-section $\sigma_{\gamma\rho}$ in this model
- applicable for small momentum transfer $Q^2 \le$ few GeV²

Figure: Different parametrizations of the photoabs[orp](#page-35-0)[tio](#page-37-0)[n](#page-32-0) [cr](#page-36-0)[o](#page-37-0)[ss](#page-31-0)[-s](#page-32-0)[e](#page-45-0)[ct](#page-46-0)[io](#page-31-0)n $\sigma_{\gamma p}$ QQ

Perturbative contribution

DFG

KORK STRAIN A BAR STRAKER

- hard interactions with high momentum transfer Q^2 (deepy inelastic scattering)
- described by color dipole model
- contribution rises with energy

Figure: Perturbative and nonperturbative contributions to energy loss

Regge theory

DFG

KORKA BRADE KORA

- **•** phenomenological approach to scattering problem
- uses analytical properties of scattering amplitudes at complex values of orbital momenta
- new degree of freedom (quasi-particles): reggeons, pomerons
- Regge trajectory corresponds to a family of particles
- e. g. Abramowicz, Levin, Levy & Maor [\[33,](#page-68-0) [34\]](#page-68-1)

Nuclear corrections

DFG

KORK EXTERNE DRAM

- o nuclear shadowing
	- \bullet $\sigma_{\gamma A} < A \sigma_{\gamma B}$
	- effect: ∼ 20% [\[35\]](#page-68-2)
- EMC effect [\[36](#page-68-3)[–38\]](#page-68-4)
- Fermi motion of nucleons [\[37\]](#page-68-5)

Figure: Nuclear effects at $Q^2 = 4$ GeV² [\[38\]](#page-68-4)

Weak interaction

DFG

KORKA SERKER ORA

- \bullet at large momentum transfers Z bosons can contribute
- also interference between γ and Z
- effect on $dE/dx \lesssim 10^{-4}$ [\[36,](#page-68-3) [39\]](#page-68-6)

Radiative corrections

DFG

- **•** bremsstrahlung during nuclear interaction, together with vertex correction and vacuum polarization
- calculated within the VMD model
- \bullet dE/dx increases by \sim 3%

Figure: Energy loss by nuclear interaction with r[adi](#page-40-0)a[tiv](#page-42-0)[e](#page-40-0) [co](#page-41-0)[rr](#page-42-0)[e](#page-31-0)[c](#page-32-0)[ti](#page-45-0)[on](#page-46-0)[s](#page-31-0) [\[](#page-32-0)[40](#page-68-7)[\]](#page-0-0) 299

Nuclear interaction experimental data

DFG

- **o** data from fixed-target experiments
- · data from ep collider HERA
- total combined HERA data only available recently

Figure: Photonuclear energy loss according to the literature and refits of popular models [\[41\]](#page-69-0)

Electron energy loss

DFG

 \equiv

 299

イロト イ部ト イ君ト イ君ト

Muon energy loss

DFG

重

 299

イロト イ部ト イ君ト イ君ト

Tau lepton energy loss

DFG

イロメ イ部メ イ君メ イ君メー \equiv 990

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

[Propagation of particles](#page-46-0)

Propagation of particles

DFG

• interaction length

$$
\lambda_{\rm int} = \frac{A}{N_A \rho \sigma} \tag{13}
$$

• probability to traverse a distance λ without interaction

$$
P(x) = \frac{1}{\lambda_{\text{int}}} e^{-\lambda/\lambda_{\text{int}}} \tag{14}
$$

KORKA SERKER ORA

sufficient for calculation of attenuation factors

Analytical calculations

- Charged lepton interactions are typically not catastrophic, the lepton propagates further and produces secondary particles, thus losing energy
- simplest approximation: loss happens continuously with $-dE/dx = a + bE$ with constant a, b
- Range of lepton with initial energy E

$$
R_{\langle -dE/dx \rangle} = \frac{1}{b} \ln \frac{a + bE}{a}.
$$
 (15)

DFG

• surface energy E_0 of muon with energy E after traversing a layer of matter with thickness h

$$
E_0 = \exp(bh)\frac{a+bE}{b} - \frac{a}{b} \tag{16}
$$

spectrum at depth h for a surface spectrum $dN/dE = N_0 E^{-\gamma}$:

$$
\frac{dN}{dE} = N_0 \exp(-\gamma bh) \left\{ E + \frac{a}{b} [1 - \exp(-bh)] \right\}^{-\gamma} \qquad (17)
$$

Necessity of Monte-Carlo simulations

DFG

- \bullet energy loss is a stochastic process \rightarrow fluctuations around the average energy loss
- **•** effect of fluctuations becomes more pronounced at higher energies due to radiative processes
- **e** example for monoenergetic muons: average range $\langle R \rangle$ is smaller than $R_{\langle -dE/dx \rangle}$

muons

K ロ > K @ → K 할 > K 할 > → 할 → ⊙ Q @

Energy cuts

DFG

KORKA BRADE KORA

- Simulation of all energy losses impossible due to infrared divergence: Bremsstrahlung cross section diverges $d\sigma/dv \sim 1/v$ for $v \to 0 \Rightarrow$ infinitely many secondary particles, total cross section diverges
- Separate losses into soft and hard losses
	- soft losses: continuous treatment
	- hard losses: stochastic treatment
- Cutoff (relative v_{cut} or absolute e_{cut}) is an artificial scale; has to be chosen sufficiently small so as not to influence the simulation results

Propagation algorithm

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

• Probability of stochastic hard loss over a distance dx

$$
dP(E) = dx \left. \frac{dN}{dx} \right|_{\text{hard}},
$$

\n
$$
\left. \frac{dN}{dx} \right|_{\text{hard}} = \sum_{\text{processes}} \frac{N_A}{A} \rho \int_{V_{\text{textcut}}}^{V_{\text{max}}} \frac{d\sigma}{d\nu}
$$
\n(18)

Propagation algorithm

DFG

KORKA SERKER ORA

Probability to experience no hard losses over a finite distance $[x_i, x_f]$ and a hard loss between x_f and $x_f + dx$

$$
(1 - dP(E(x_i))) \cdots (1 - dP(E(x_f))) \cdot dP(E(x_f))
$$
\n
$$
\approx \exp(-dP(E(x_i))) \cdots \exp(-dP(E(x_f))) \cdot dP(E(x_f))
$$
\n
$$
\rightarrow^{d x \rightarrow 0} \exp\left(-\int_{E(x_i)}^{E(x_f)} dP(E(x))\right) dP(E(x_f))
$$
\n
$$
= d\left[-\exp\left(\int_{E(x_i)}^{E(x_f)} \frac{\frac{dN}{dx}(E)|_{\text{hard}}}{-\frac{dE}{dx}|_{\text{soft}}} dE\right)\right]
$$
\n
$$
=: d(-\xi), \quad \xi \in (0, 1].
$$
\n(19)

Propagation algorithm

DFG

KORKA BRADE KORA

 $\bullet \Rightarrow$ one random number determines the energy E_f and distance $x_f - x_i$ of the next interaction

$$
-\ln \xi = \int_{E_i}^{E_f} \frac{\frac{dN}{dx}(E)|_{\text{hard}}}{-\frac{dE}{dx}|_{\text{soft}}} dE \tag{20}
$$

another random number determines which process and which relative energy loss v is chosen based on the differential cross-section $d\sigma/dv$

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

[Consequences and Applications](#page-54-0)

Neutrino event topologies in very large volume neutrino telescopes

[Introduction](#page-1-0) [Ionization](#page-5-0) [Bremsstrahlung](#page-10-0) [Pair production](#page-23-0) [Nuclear interaction](#page-32-0) [Propagation of particles](#page-46-0) [Consequences and Applications](#page-54-0) [Summary](#page-62-0) [References](#page-64-0)

Figure: Cascade: ν^e CC events, $\nu_{e,\mu,\tau}$ NC events

Figure: Track: μ , ν_{μ} CC events

Figure: Double cascade/double bang: ν_{τ} CC events

 299

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

Energy reconstruction of muon tracks in $VLV\nu T$

DFG

- muons of high energy travel large distances, so they do not deposit all their energy inside the detector
- small pair production losses are well correlated to the energy, bremsstrahlung and photonuclear losses less well correlated \rightarrow truncate large losses for energy reconstruction

Figure: Truncated energy loss per distance

[Introduction](#page-1-0) [Ionization](#page-5-0) [Bremsstrahlung](#page-10-0) [Pair production](#page-23-0) [Nuclear interaction](#page-32-0) [Propagation of particles](#page-46-0) [Consequences and Applications](#page-54-0) [Summary](#page-62-0) [References](#page-64-0) Selection of leading (quasi-single) muons based on energy loss characteristics

- muons come in groups
- the muons loose energy independently of each other, smoothing out the energy loss pattern
- if a muon track has large energy losses, this cannot be the effect of multiple low-energy muons

Measuring muon cross sections in muon neutrino datasets

Figure: Energy loss distribution of 10^7 muons in ice [\[43\]](#page-69-2)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

DFG

Mean energy of muons in inclined air showers

- in more densely instrumented detectors, such as the NEVOD-DECOR detector, the muon multiplicity can be measured directly
- using an estimator of the primary cosmic ray energy (local muon density), the mean energy of muons in the shower can be measured based on the energy losses
- this throws light on possible solutions to the so-called muon puzzle

Figure: Mean energy of muons in inclined air showers in the NEVOD-DECOR detector [\[44\]](#page-69-3)**KORK STRAIN A BAR STRAKER**

Tau neutrino regeneration

DFG

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Figure: Schematic of tau neutrino regeneration [\[45\]](#page-70-0)

Muography

DFG

KORK STRAIN A BAR STRAKER

- Muon flux variations trace changes in composition, integrated along particle track
- Muons are abundant penetrating particles, that can be used to investigate natural and artificial objects, e. g. volcanoes, blast furnaces or nuclear reactors

Eukushima Daiichi Nuclear Power Plant

Figure: Muographic image of the nuclear reactor in Fukushima-Daichi [\[46\]](#page-70-1)

DFG

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[Summary](#page-62-0)

Summary

DFG

KORKA BRADE KORA

- Lepton propagation is a central part of the simulation for practically every underground experiment, in particular $VLV\nu T$
- Accurate simulation of muon propagation is essential to muon energy reconstruction and thus to measuring muon and muon neutrino spectra
- Muon energy losses can shed light on the muon puzzle
- The propagation and decay of tau leptons opens the possibility to observe tau neutrinos at ultrahigh energies
- Muon propagation is the basis of muography applications

- 1 File: standard model of elementary particles. svg, Wikipedia.
- 2 R. M. Sternheimer and R. F. Peierls, Phys. Rev. B3, 3681 (1971).
- M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- ⁴ S. R. Kelner, R. P. Kokoulin, and A. A. Petrukhin, Phys. At. Nucl. 60, 576 (1997).
- ⁵ H. A. Bethe and W. Heitler, Proc. Roy. Soc. A146, 83 (1934).
- ⁶ H. A. Bethe, Proc. Cambr. Phil. Soc. 30, 524 (1934).
- ⁷ A. A. Petrukhin and V. V. Shestakov, Can. J. Phys. 46, S377 (1968).
- ⁸ A. A. Petrukhin and V. V. Shestakov, "К вопросу о сечении тормозного излучения мюонов при больших энергиях (On the question of the cross-section of muon bremsstrahlung at high energies)", in Физика элементарных частиц (Physics of elementary particles), edited by V. D. Mikhailov and I. L. Rozental (Атомиздат (Atomizdat), Moscow, 1966), p. 102.

References II

DFG

- ⁹ S. R. Kelner, R. P. Kokoulin, and A. A. Petrukhin, About cross section for high-energy muon bremsstrahlung, Preprint MEPhI 024-95, Moscow, 1995.
- ¹⁰Y. M. Andreev, L. B. Bezrukov, and E. V. Bugaev, Phys. At. Nucl 57, 2066 (1994).
- ¹¹Y. M. Andreev and E. V. Bugaev, Phys. Rev. D 55, 1233 (1997).
- ¹²A. Sandrock, S. R. Kelner, and W. Rhode, Phys. Lett. B 776, 350 (2018).
- ¹³ J. Soedingrekso, A. Sandrock, and W. Rhode, in 36th International Cosmic Ray Conference, Vol. 358 (Proc. Sci., 2019), p. 429.
- ¹⁴A. Sandrock, E. V. Bugaev, R. P. Kokoulin, and A. A. Petrukhin, "Diffractive scattering of virtual photons on nuclei and its interference with the muon-induced bremsstrahlung process", Phys. At. Nucl. 84, 87 (2021).

References III

DFG

KORKAR KERKER EL POLO

- ¹⁵A. Sandrock, R. P.Kokoulin, and A. A. Petrukhin, "Theoretical uncertainties of muon transport calculations for very large volume neutrino telescopes", J. Phys. Conf. Ser. 1690, 012005 (2020).
- ¹⁶L. D. Landau and I. Y. Pomeranchuk, Dokl. AN SSSR 92, 535 (1953).
- ¹⁷S. Polityko et al., J. Phys. G **28**, 427 (2002).
- ¹⁸J.-H. Koehne et al., Comput. Phys. Commun. 184, 2070 (2013).
- ¹⁹Y. M. Andreev and E. V. Bugaev, Izv. AN SSSR. Ser. fiz. 42, 1475 (1978).
- ²⁰G. Racah, Nuovo Cimento 14, 93 (1937).
- ²¹S. R. Kelner, Sov. J. Nucl. Phys. 5, 778 (1967).
- $22R$. P. Kokoulin and A. A. Petrukhin, "Analysis of the cross section of direct pair production by fast muons", in Proc. 11th Int. Conf. on Cosmic Rays, Budapest 1969, Vol. 29, Suppl. 4 (Acta Phys. Acad. Sci. Hung., 1970), p. 277.
- ²³A. I. Nikishov, Sov. J. Nucl. Phys. 27, 677 (1978).

References IV

DFG

KORKA BRADE KORA

- ²⁴R. P. Kokoulin and A. A. Petrukhin, "Influence of the nuclear formfactor on the cross-section of electron pair production by high energy muons", in Proc. 12th Int. Conf. on Cosmic Rays, Hobart 1971, Vol. 6 (1971), p. 2436.
- ²⁵ S. R. Kelner, Phys. At. Nucl. **61**, 448 (1998).
- 26 A. P. Bulmahn and M. H. Reno, Phys. Rev. D 79, 053008 (2009).
- ²⁷S. R. Kelner, R. P. Kokoulin, and A. A. Petrukhin, Phys. At. Nucl. 63, 1603 (2000).
- 28 D. Ivanov and K. Melnikov, Phys. Rev. D 57, 4025 (1998).
- $29D$. Ivanov et al., Phys. Lett. B 442, 453 (1998).
- 30 A. Sandrock and W. Rhode, Coulomb corrections to the bremsstrahlung and electron pair production cross section of high-energy muons on extended nuclei, arxiv:1807.08475 [hep-ph], 2018.
- $31A$. A. Petrukhin and D. A. Timashkov, Phys. At. Nucl. 67, 2216 (2004).
- 32 L. B. Bezrukov and E. V. Bugaev, Sov. J. Nucl. Phys 32, 847 (1980).

References V

DFG

- 33H. Abramowicz, E. M. Levin, A. Levy, and U. Maor, Phys. Lett. B 269, 465 (1991).
- ³⁴H. Abramowicz and A. Levy, *The ALLM parametrization of* $\sigma_{\text{tot}}(\gamma^*\rho)$ *:* an update, arXiv:hep-ph/9712415, 1997.
- 35 L. B. Bezrukov and E. V. Bugaev, Sov. J. Nucl. Phys. 33, 635 (1981).
- 36 A. V. Butkevich and S. P. Mikheev, J. Exp. Theor. Phys. 95, 11 (2002).
- $37D$. Timashkov, Nuclear corrections for cross section of lepton inelastic scattering, arxiv:hep-ph/0509066, 2005.
- ³⁸ J. Sheibani, A. Mirjalili, and S. A. Tehrani, Phys. Rev. C 98, 045211 (2018).
- ³⁹M. M. Block, L. Durand, and P. Ha, Phys. Rev. D 89, 094027 (2014).
- $40A$. Sandrock, "Higher-order corrections to the energy loss cross sections of high-energy muons", PhD thesis (Technische Universität Dortmund, 2018).

References VI

DFG

- ⁴¹A. Sandrock, E. V. Bugaev, R. P. Kokoulin, and A. A. Petrukhin, "Uncertainties of the energy loss by inelastic interactions of muons with nuclei", Proc. Sci. 395, ICRC 2021, 1221 (2021).
- ⁴²T. Fuchs, "Charmante Myonen im Eis", PhD thesis (TU Dortmund, 2016).
- ⁴³J. Soedingrekso, A. Sandrock, M. Huennefeld, M. Meier, and W. Rhode, "Feasibility study to measure the muon bremsstrahlung cross section with the energy loss profile using neutrino telescopes", J. Phys. Conf. Ser. 1690, 012020 (2020).
- ⁴⁴E. A. Yurina, N. S. Barbashina, A. G. Bogdanov, S. S. Khokhlov, V. V. Kindin, R. P. Kokoulin, K. G. Kompaniets, G. Mannocchi, A. A. Petrukhin, V. V. Shutenko, G. Trinchero, and I. I. Yashin, "Measurements of the average muon energy in inclined muon bundles in the NEVOD-DECOR experiment", Proc. Sci. 395, ICRC 2021 (2021).

References VII

DFG

KORKA SERKER ORA

- ⁴⁵I. Safa, A. Pizzuto, C. A. Argüells, F. Halzen, R. Hussain, A. Kheirandish, and J. Vandenbroucke, "Observing EeV neutrinous through the earth: GZK and the anomalous ANITA events", JCAP 01, 012 (2020).
- 46 N. Polukhina, Muonography of large natural and industrial objects, ISCRA, 2021.