
Introduction Ionization Bremsstrahlung Pair production Nuclear interaction Propagation of particles Consequences and Applications Summary References

High-energy Lepton Propagation

Alexander Sandrock

National Research Nuclear University MEPhI1

January 28, 2022

1Now at Bergische Universität Wuppertal



Introduction Ionization Bremsstrahlung Pair production Nuclear interaction Propagation of particles Consequences and Applications Summary References

Introduction



Introduction Ionization Bremsstrahlung Pair production Nuclear interaction Propagation of particles Consequences and Applications Summary References

Leptons

standard model fermions
come in three families: e, µ, τ
neutrinos and charged leptons
particles and antiparticles
only electromagnetic and weak
interaction

Figure: Standard Model of Elementary
Particles [1]
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Charged leptons

Charged leptons loose energy electromagnetically via
ionization: `± + A

ZN → `± + A
ZN

+ + e−

bremsstrahlung: `± + A
ZN → `± + A

ZN + γ
pair production: `± + A

ZN → `± + A
ZN + e+ + e−

photonuclear interaction: `± + N → `± + X

Average energy loss per distance〈
−dE

dx

〉
=

NA

A
ρ

∫
Ev

dσ

dv
dv ' a(E ) + b(E )E (1)

Muons and taus decay
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Neutrinos

Neutrinos interact only via the weak interaction

Exchange of Z -bosons (NC):
(−)
ν` + N →

(−)
ν` + X

Exchange of W -bosons (CC):
(−)
ν` + N → `± + X∓

Mass eigenstates and interaction eigenstates do not coincide →
neutrinos oscillate into different lepton family

Pα→β =

∣∣∣∣∣∑
i

U∗αiUβie
−im2

i L/2E

∣∣∣∣∣
2

(2)
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Ionization
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Ionization

Ionization is a cover name for several processes
excitation µ± + A

ZN → µ± + A
ZN
∗

ionization in the strict sense µ± + A
ZN → µ± + A

ZN
+ + e−

emission of δ-electrons µ± + A
ZN → µ± + A

ZN
+ + e−

The first two processes are low-energy atomic physics processes
(eV-scale). The dominant contribution for high-energy particles are
δ-electrons.
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Bethe formula

energy loss for relativistic particles〈
−dE

dx

〉
= K

Z

A

1
β2

[
1
2

ln
2mec

2β2γ2Tmax

I 2
− β2 − δ(βγ)

2

]
,

Tmax =
2mec

2β2γ2

1 + 2γme/µ+ (me/µ)2 .

(3)

Accuracy at small energies not worse than 1%
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Density effect

The correction δ describes the density effect [2], which is connected
to the polarisation of the medium at large energies
Asymptotically

δ → ln
~ωp

I
+ lnβγ − 1

2
(4)

The Sternheimer parametrization of δ is not worse than 10% at
small energies and asymptotically exact at high energies.

Figure: 〈−dE/dx〉 for muons in copper [3]
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Radiative corrections

In the calculation of corrections to bremsstrahlung of muons scattered by
atomic electrons, also the radiative corrections to ionization was obtained
in logarithmic approximation [4]

∆

∣∣∣∣dEdx
∣∣∣∣ =

NZ

A
mαr2

e

(
ln

2E
µ
− 1

3
ln

2εmax

m

)
ln2 2εmax

m
. (5)

The mean loss is increased by several percent due to these corrections.
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Bremsstrahlung
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Bremsstrahlung

For relativistic particles, the bremsstrahlung cross-section can be written
as [5, 6]

v
dσ

dv
= 4Z 2α

(
re
m

µ

)2 [
(2− 2v + v2)Φ1(δ)− 2

3
(1− v)Φ2(δ)

]
,

δ =
µ2v

2E (1− v)
.

(6)
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Screening functions

In the absence of screening for a point-like nucleus we have

Φ1 = Φ2 = ln
µ

δ
− 1

2
, (7)

for complete screening of a point-like nucleus

Φ1 = ln
( µ
m
BZ−1/3

)
, Φ2 = Φ1 −

1
6
, (8)

where the constant B is ≈ 183 and ln(BZ−1/3) is the radiation
logarithm. An analytic interpolation describing also intermediate
screening was found by [7, 8].
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Formfactors

Fourier transformation of charge distribution
Nuclear formfactor: extended charge distribution inside nucleus
Atomic formfactor: screening of nuclear charge by atomic electrons

Figure: q-dependence of the bremsstrahlung cross section [9]
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Nuclear formfactor

The Compton wavelength of a muon is comparable to nuclear
dimensions.
The nuclear formfactor effectively cuts off large momentum transfers.
The cross-section is decreased by ∼ 10%.
Φi → Φi −∆i , where

∆1 −∆2 ≈
1
6
,

∆1 ≈ ln
µ

qc
+ 1

(9)

for heavy nuclei.
The calculations by [9] and [10, 11] on the basis of different models
of the nuclear formfactor differ somewhat, but [9] describes
numerical calculations better.
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Interaction with atomic electrons

Electrons not only screen the nucleus, but are also targets.
The recoil of electrons during scattering changes the situation
compared to atomic nuclei
An approximate formula is given by

v
dσ

dv
= 4αZ

(
re
m

µ

)2(4
3

(1− v) + v2
)

Φin(δ),

Φin(δ) = ln
µ/δ

µδ/m2 +
√
e
− ln

(
1 +

m

δB ′Z−2/3

)
,

B ′ = 1429.

(10)
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Quasielastic target excitation

excitation of nuclear levels
Assuming the nuclear wavefunction as a non-symmetrized product of
nucleon wave functions, the correction assumes the form [10]

∆inel
i =

1
Z

∆i . (11)
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Inelastic target excitation

Interaction with separate nucleons
Effect of a few percent
Better considered not as a nucleon correction to bremsstrahlung, but
as a radiative correction to nuclear interaction
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Radiative corrections

Calculated recently [12, 13]
Described by a universal function f (v) in the equivalent photon
approximation
The energy loss increases by ∼ 2%

Figure: Bremsstrahlung energy loss of
muons

Figure: Universal function f (v)
describing the ratio between Born
approximation and higher-order
corrections
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Diffractive corrections

Photon emitted by nucleus, not by muon
Interference effect dependent on sign of muon charge
∼ 0.1%; contrary to earlier calculations significantly overestimating
the effect [14]

Figure: Feynman
diagram for diffractive
corrections Figure: Muon energy loss in water with

radiative and diffractive corrections [15]
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LPM effect

at ultrahigh energies, multiple scattering perturbs interaction [16]
the cross-section is decreased [17], in particular for photons of small
energy compared to the muon energy

Figure: Energy loss in ice (above) and standard rock (below) [18]
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Coulomb corrections

Born approximation: first term in expansion in Zα

Coulomb corrections: remaining terms of this expansion
very important for electrons
negligible for muons due to the influence of the extended nucleus
. 0.4%
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Chemical bounds

The effect of molecular bounds was calculated by [19]
small, . 0.5% for hydrogren and less for heavier nuclei
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Pair production
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Electron-positron pair production

The leading-order cross section for complete screening and no
screening was calculated by [20, 21].
An analytic interpolation between these limiting cases was carried
out by [22, 23].

d2σ

dv dρ
=

2
3π

(Zαre)2 1− v

v

(
Φe +

m2

µ2 Φµ

)
,

Φe,µ = Le,µBe,µ +
1
2

∆e,µ

(12)
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Nuclear and atomic formfactor corrections

The influence of the nuclear formfactor was investigated in [24]
unimportant for dE/dx
effect on dσ/dv of the order of 1% for v & m/µ

interaction with atomic electrons important [25], of the order of 1/Z
target excitation unimportant [26]
Screening functions were parametrized more accurately in [13],
leading to an effect of the order of 1% for dσ/dv , but . 0.5% for
dE/dx

Figure: Total pair production cross-section in standard rock [26]
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Screening functions

The functions Le,µ are analogous to the function Φ1 from
bremsstrahlung
A new expression for the cross section has been derived taking into
account the difference between the analogues of Φ1,2 [13]
difference to earlier works ∼ 0.5% for dE/dx , ∼ 1% for dσ/dv

Figure: Differential cross section at 100TeV
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Muon pair production

Calculated in [27]
very small effect on the energy loss (∼ 10−4 compared to e+e− pair
production)
potentially interesting as it converts a single muon to a (small)
muon bundle
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LPM effect

the same effect as in bremsstrahlung, applied to the γ∗Z → e+e−Z
subprocess
significant effect on dE/dx only at energies & 1024 eV [17]
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Coulomb corrections

analytical expression for point-like nuclei [28, 29]
numerical results show that a nuclear formfactor decreases the
correction for very heavy elements [30]
for dE/dx : in standard rock ∼ 0.5%, in lead ∼ 9%

for dσ/dv : in standard rock ∼ 1% for v & m/µ

Figure: Energy loss in standard rock
[30]

Figure: Pair production energy loss in
lead [30]
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Radiative corrections, double pair production

radiative corrections increase the cross section by ∼ 2%
double pair production: logarithmically increasing loss, ∼ 0.5% at
PeV energies

Figure: Pair production energy loss and higher-order corrections.
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Diffractive corrections

very small correction to the µ-diagrams, negligible
no dependence on sign of muon charge
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Nuclear interaction
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Nuclear interaction

Inelastic interaction with nucleons at energies E . 1015 eV gives a
contribution of ∼ 10%–20% to the energy loss
the contribution rises with energy

Figure: Energy losses in standard rock, divided by energy.
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Limiting cases

Figure: Diagrams of limiting cases of inelastic interaction [31]
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Models of nuclear interaction

not a purely electromagnetic process
predominantly nonperturbative QCD
process with largest uncertainty

Figure: Different models of muon energy loss by nuclear interaction [18]
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Vector meson dominance

photons and vector mesons (ρ, ω, ϕ and their excited states) have
identical quantum numbers
the photon converts to a virtual vector meson, the meson interacts
hadronically with the nucleus
formulae of Bezrukov and Bugaev are often used [32]
structure functions are proportional to photoabsorption cross-section
σγp in this model
applicable for small momentum transfer Q2 . few GeV2

Figure: Different parametrizations of the photoabsorption cross-section σγp
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Perturbative contribution

hard interactions with high momentum transfer Q2 (deepy inelastic
scattering)
described by color dipole model
contribution rises with energy

Figure: Perturbative and nonperturbative contributions to energy loss
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Regge theory

phenomenological approach to scattering problem
uses analytical properties of scattering amplitudes at complex values
of orbital momenta
new degree of freedom (quasi-particles): reggeons, pomerons
Regge trajectory corresponds to a family of particles
e. g. Abramowicz, Levin, Levy & Maor [33, 34]
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Nuclear corrections

nuclear shadowing
σγA < Aσγp
effect: ∼ 20% [35]

EMC effect [36–38]
Fermi motion of nucleons [37]

Figure: Nuclear effects at Q2 = 4GeV2 [38]
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Weak interaction

at large momentum transfers Z bosons can contribute
also interference between γ and Z

effect on dE/dx . 10−4 [36, 39]
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Radiative corrections

bremsstrahlung during nuclear interaction, together with vertex
correction and vacuum polarization
calculated within the VMD model
dE/dx increases by ∼ 3%

Figure: Energy loss by nuclear interaction with radiative corrections [40]
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Nuclear interaction experimental data

data from fixed-target experiments
data from ep collider HERA
total combined HERA data only available recently

Figure: Photonuclear energy loss according to the literature and refits of
popular models [41]
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Electron energy loss
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Muon energy loss
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Tau lepton energy loss
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Propagation of particles
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Propagation of particles

interaction length

λint =
A

NAρσ
(13)

probability to traverse a distance λ without interaction

P(x) =
1
λint

e−λ/λint (14)

sufficient for calculation of attenuation factors
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Analytical calculations

Charged lepton interactions are typically not catastrophic, the lepton
propagates further and produces secondary particles, thus losing
energy
simplest approximation: loss happens continuously with
−dE/dx = a + bE with constant a, b
Range of lepton with initial energy E

R〈−dE/dx〉 =
1
b

ln
a + bE

a
. (15)

surface energy E0 of muon with energy E after traversing a layer of
matter with thickness h

E0 = exp(bh)
a + bE

b
− a

b
(16)

spectrum at depth h for a surface spectrum dN/dE = N0E
−γ :

dN

dE
= N0 exp(−γbh)

{
E +

a

b
[1− exp(−bh)]

}−γ
(17)
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Necessity of Monte-Carlo simulations

energy loss is a stochastic process → fluctuations around the
average energy loss
effect of fluctuations becomes more pronounced at higher energies
due to radiative processes
example for monoenergetic muons: average range 〈R〉 is smaller
than R〈−dE/dx〉

0 100 200 300 400 500
range / m

100

101
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103

104

105
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un

t

100000 MuMinus's with energy 0.1 TeV

Figure: Range distribution of 100GeV
muons

0 5000 10000 15000 20000 25000 30000
range / m

100

101

102

103

104

co
un

t

100000 MuMinus's with energy 100.0 TeV

Figure: Range distribution of 100TeV
muons
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Energy cuts

Simulation of all energy losses impossible due to infrared divergence:
Bremsstrahlung cross section diverges dσ/dv ∼ 1/v for v → 0 ⇒
infinitely many secondary particles, total cross section diverges
Separate losses into soft and hard losses

soft losses: continuous treatment
hard losses: stochastic treatment

Cutoff (relative vcut or absolute ecut) is an artificial scale; has to be
chosen sufficiently small so as not to influence the simulation results
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Propagation algorithm

Probability of stochastic hard loss over a distance dx

dP(E ) = dx
dN

dx

∣∣∣∣
hard

,

dN

dx

∣∣∣∣
hard

=
∑

processes

NA

A
ρ

∫ vmax

vtextcut

dσ

dv

(18)
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Propagation algorithm

Probability to experience no hard losses over a finite distance [xi , xf ]
and a hard loss between xf and xf + dx

(1− dP(E (xi ))) · · · (1− dP(E (xf ))) · dP(E (xf ))

≈ exp(−dP(E (xi ))) · · · exp(−dP(E (xf ))) · dP(E (xf ))

→dx→0 exp

(
−
∫ E(xf )

E(xi )

dP(E (x))

)
dP(E (xf ))

= d

[
− exp

(∫ E(xf )

E(xi )

dN
dx (E )

∣∣
hard

− dE
dx

∣∣
soft

dE

)]
=: d(−ξ), ξ ∈ (0, 1].

(19)



Introduction Ionization Bremsstrahlung Pair production Nuclear interaction Propagation of particles Consequences and Applications Summary References

Propagation algorithm

⇒ one random number determines the energy Ef and distance
xf − xi of the next interaction

− ln ξ =

∫ Ef

Ei

dN
dx (E )

∣∣
hard

− dE
dx

∣∣
soft

dE (20)

another random number determines which process and which relative
energy loss v is chosen based on the differential cross-section dσ/dv
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Consequences and Applications
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Neutrino event topologies in very large volume neutrino
telescopes

Figure: Cascade: νe CC
events, νe,µ,τ NC events

Figure: Track: µ, νµ CC
events

Figure: Double
cascade/double bang: ντ
CC events
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Energy reconstruction of muon tracks in VLVνT

muons of high energy travel large distances, so they do not deposit
all their energy inside the detector
small pair production losses are well correlated to the energy,
bremsstrahlung and photonuclear losses less well correlated →
truncate large losses for energy reconstruction
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Figure: Untruncated energy loss per
distance
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distance
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Selection of leading (quasi-single) muons based on energy
loss characteristics

muons come in groups
the muons loose energy independently of each other, smoothing out
the energy loss pattern
if a muon track has large energy losses, this cannot be the effect of
multiple low-energy muons

Figure: Simulated muon bundle event
[42]

Figure: Simulated leading muon event
[42]
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Measuring muon cross sections in muon neutrino datasets
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Figure: Energy loss distribution of 107 muons in ice [43]
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Mean energy of muons in inclined air showers

in more densely instrumented detectors, such as the
NEVOD-DECOR detector, the muon multiplicity can be measured
directly
using an estimator of the primary cosmic ray energy (local muon
density), the mean energy of muons in the shower can be measured
based on the energy losses
this throws light on possible solutions to the so-called muon puzzle

Figure: Mean energy of muons in inclined air showers in the NEVOD-DECOR
detector [44]
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Tau neutrino regeneration

Figure: Schematic of tau neutrino regeneration [45]
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Muography

Muon flux variations trace changes in composition, integrated along
particle track
Muons are abundant penetrating particles, that can be used to
investigate natural and artificial objects, e. g. volcanoes, blast
furnaces or nuclear reactors

Figure: Muographic image of the nuclear reactor in Fukushima-Daichi [46]
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Summary
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Summary

Lepton propagation is a central part of the simulation for practically
every underground experiment, in particular VLVνT
Accurate simulation of muon propagation is essential to muon
energy reconstruction and thus to measuring muon and muon
neutrino spectra
Muon energy losses can shed light on the muon puzzle
The propagation and decay of tau leptons opens the possibility to
observe tau neutrinos at ultrahigh energies
Muon propagation is the basis of muography applications
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