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Outline of lecture

1)   The transition region in data
● Spectrum, composition and dipole anisotropy
● Open questions

2)   Computational challenges and requirements
● Ballistic vs. diffusive propagation
● Galactic magnetic field modelling

3)   Combating the transition region: Propagation in the Galactic magnetic field
● Propagation effects in the GMF
● Effect on observables (flux, composition and arrival direction)

4)   Summary
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Cosmic ray energy spectrum
Broken power-law with three ‘main’ features:

● ‘knee’: softening at ~1015.4 eV
● ‘ankle’: hardening at ~1018.7 eV
● high-energy cut-off  beyond ~1019.6 eV 

Further more subtle features:
● hardening at ~1016.7 eV
● ‘2nd knee’: softening at ~1017.(0...4) eV
● ‘toe’: softening at ~1019.1 eV

Galactic cosmic rays (GCRs) for diffusive shock 
acceleration (DSA) in supernova remnants 
(SNR) dominate below ‘knee’ energies.
Extragalactic cosmic rays (EGCRs) dominate 
at energies above ‘ankle’.
Transition region (= ‘shin’) unexplained:

● unaccounted for flux
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Knee:
● Maximum energy of

 Galactic sources
● Propagation effect

(leakage from Galaxy)

→ Rigidity:
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Cosmic ray composition
Composition highly energy-
dependent:

● heavier beyond the ‘knee’
● maximum before ‘2nd knee’
● minimum just before ‘ankle’
● increasing mean mass at 

high-energy cut-off
Increasing mean mass 
→ rigidity-dependent change in:

● source properties (maximum 
acceleration energy)

● propagation regimes in 
magnetic fields
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see also: Thoudam, Astron.Astrophys. 595 (2016) A33

At ultra-high energies, cosmic ray composition is 
measured via:

Ai: nuclear mass number of nucleus i = H, He, …, Fe
fi: fraction of nucleus i to total flux 

● Measure of mean mass of flux

Interlude:

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1605.03111
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“All” data in one look
Composition:

● What explains ‘2nd knee’ if maximum 
mean mass is reached 
well before?

● Why does the composition become lighter 
up to the ‘ankle’?

Spectrum:
● How could GCRs be accelerated up to 

energies beyond the ‘knee’?
● What constraints are there on 

low-energy contribution of EGCRs?
● How are observables affected by the 

propagation in the Galactic magnetic 
field (GMF)?

Simulation:
● (Qualitatively) reproduce features
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Galactic magnetic field (GMF)
GMF model: JF12 (ApJ 757 14x) with three 
components:

● Large-scale regular
● Large-scale random (striated)
● (Small-scale) random

GMF has three regions of differing field 
strength:

● Galactic plane (GP): ~ 1 – 10 µG
● Halo: ~ 0.1 – 1 µG 
● Edge of Galaxy: 10 – 100 nG

Gyroradius rg: 

Transition region = change in propagation 
regimes

● diffusive → ballistic propagation

,    R = E/Ze

x-z projection of JF12 field

mailto:a.kaeaepae@uni-wuppertal.de
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Galactic magnetic field (GMF)
Change of gyroradius with rigidity plus

typical length scales of GalaxyGMF model: JF12 (ApJ 757 14x) with three 
components:

● Large-scale regular
● Large-scale random (striated)
● (Small-scale) random

GMF has three regions of differing field 
strength:

● Galactic plane (GP): ~ 1 – 10 µG
● Halo: ~ 0.1 – 1 µG 
● Edge of Galaxy: 10 – 100 nG

Gyroradius rg: 

Transition region = change in propagation 
regimes

● diffusive → ballistic propagation

,    R = E/Ze
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Galactic magnetic field (GMF)
Change of gyroradius with rigidity plus
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components:
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● diffusive → ballistic propagation

,    R = E/Ze

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              29

Ballistic propagation
Trajectories of ballistically propagating GCRs

Solve equation of motion:

● tracking of single particles (microscopic view)
● best suited when rg  is large
● applicable for arbitrary fields  

→ more fundamental and precise*
● particle trajectories are tracked

→ possibility of anisotropy studies

BUT:
● below                   , computation times start to 

diverge
● also: precision dependent on grid size (*)      
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Ballistic propagation
Change of computation time per particle

with rigidity for propagation in GMFSolve equation of motion:

● tracking of single particles (microscopic view)
● best suited when rg  is large
● applicable for arbitrary fields  

→ more fundamental and precise*
● particle trajectories are tracked

→ possibility of anisotropy studies

BUT:
● below                   , computation times start to 

diverge
● also: precision dependent on grid size (*)      
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Diffusive propagation
Solve transport equation:

● multi-particle approach:
– change of momentum density 

(macroscopic view)
● best suited when rg  is small & turbulent B-

field component dominant
● generally shorter computation times

NOTE:
● CRPropa 3 has implement diffusive 

propagation module via SDEs
(JCAP 06 (2017) 046)

● For a full description of the transition region 
both propagation methods must be applied

Trajectories of diffusively propagating GCRs

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1704.07484
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GMF not well known:
● field strength inferred indirectly via observables → uncertainty in quantities, contamination
● ad hoc assumptions necessary (simplifications): morphological features (spiral arms, halo field), field components 

(regular, turbulent etc.)
      

Major challenge: GMF model
x-y and x-z projections of coherent field for various GMF models

Jaffe13JF12Sun08

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1302.0143
https://arxiv.org/abs/1210.7820
https://arxiv.org/abs/0711.1572
https://arxiv.org/abs/0711.1572


Combating the transition region: 
Propagation in the GMF
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Procedure: Ballistic propagation with CRPropa3
Forward tracking: 

● particle tracked from source to observer:
● highly inefficient (1:10²⁸ for observer the size of Earth)

→ increase observer size, BUT: this introduces artefacts!

Only propagation effects (i.e. only deflections/no interactions):
● propagation of one nuclear species: proton → results can be scaled to all nuclei (important 

for composition)

Galactic magnetic field model:
● JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic 
centre)

Source properties:
● R-1 injection spectrum, lg(R/V) = 16.0 – 20.0
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Procedure: Ballistic propagation with CRPropa3
Forward tracking: 

● particle tracked from source to observer:
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Procedure: Ballistic propagation with CRPropa3
Forward tracking: 
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Procedure: Ballistic propagation with CRPropa3
Forward tracking: 

● particle tracked from source to observer:
● highly inefficient (1:10²⁸ for observer the size of Earth)

→ increase observer size, BUT: this introduces artefacts!

Only propagation effects (i.e. only deflections/no interactions):
● propagation of one nuclear species: proton → results can be scaled to all nuclei (important 

for composition)

Galactic magnetic field model:
● JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic 
centre)

Source properties:
● R-1 injection spectrum, lg(R/V) = 16.0 – 20.0
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Galactic volume with GMF
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Sources:
● GCRs:

● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Sources and observers
GCR source distribution
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

EGCR source distribution
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Sources and observers
Sources:

● GCRs:
● homogeneously distributed in GP 
● isotropic injection direction 

distribution
● EGCRs:

● Isotropic injection: Lambertian 
injection direction distribution from 
Galactic shell

Observers:
● ‘Galactic plane’: cylinder of 100 pc 

height around Galactic centre with 
variable radius

● ‘Earth’: observer sphere at Earth’s 
position in Galactic coordinates 
(-8.5 kpc, 0, 0)

Observer types: Earth and GP
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Change in propagation regimes: Deflection angle

θ = π/2 for lg(R/V) ≤ 17 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1607.01645
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Change in propagation regimes: Deflection angle

θ = π/2 for lg(R/V) ≤ 17 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth

diffusive propagation
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Change in propagation regimes: Deflection angle

θ = π/2 for lg(R/V) ≤ 17 → diffusive propagation
(see also: Erdman, Astropart.Phys. 85 (2016) 54-64)

GCRs forward tracked to Earth EGCRs backtracked from Earth

ballistic propagation
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Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              46

Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few 1 EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

ballistic propagation
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Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few 1 EV.

GCRs forward tracked to Earth EGCRs backtracked from Earth

0.326  Myr

3.26  Myr

32.6  Myr

0.326  Myr

3.26  Myr

32.6  Myr

diffusive propagation
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Propagation effects: Galactic residence time

NOTE: Lowest-rigidity particles have residence times up to 100 Myr.

GCRs EGCRs reaching the GP
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confinement

confinement

shielding
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Propagation effects: GCRs – Confinement in GP
Galactic trajectories (lg(R/V) = 15 – 16.5) Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

diffusive propagation
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Propagation effects: GCRs – Confinement in GP
Relative time spent in GPGalactic trajectories (lg(R/V) = 16 – 18.5)

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Decreasing confinement in GP with 
rigidity.

transition region
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Propagation effects: GCRs – Confinement in GP
Relative time spent in GP

Relative time spent in GP decreases with 
rigidity; inflection point at a few EV.

Galactic trajectories (lg(R/V) = 18 – 20)

Decreasing confinement in GP with 
rigidity.

ballistic propagation
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Propagation effects: EGCRs – 
Shielding from vs. confinement in GP

Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.
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Relative time spent in GPCR count reaching GPGalactic trajectories
(lg(R/V) = 15 – 16.5)

CR count decreases for 
smaller rigidities; 
inflection point at 
a few EV. 

Decreasing shielding 
from and confinement in 
GP with rigidity.
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Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.
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Relative time spent in GP 
decreases with rigidity; 
inflection point at 
a few EV.
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Shielding from vs. confinement in GP
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Effect on observables: GCRs – Flux suppression

Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Rigidity spectrum (sigmoid fit)
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Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Mean logarithm of mass number (sigmoid fit)

NOTE: Only propagation effects in GMF!

Effect on observables: GCRs – Heavier composition
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Decreasing confinement 
→ flux reduction
Mixed composition 
→ heavier towards ‘ankle’
Arrival direction distribution: 
correlation with GP direction 
above 0.1 EV

Arrival direction distribution above 0.1 EV

Effect on observables: GCRs – 
Correlation with source direction (GP)

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              58

Effect on observables: Isotropic EGCRs – 
Flux conservation

Rigidity spectrum
Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction

sm
aller o bserver  size
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Effect on observables: Isotropic EGCRs – 
Isotropic arrival direction

Arrival direction distribution
Apparent flux suppression for large 
observer sphere sizes; effect vanishes 
as r → 0.
Increased confinement in GP 
compensates increased shielding:
→  flux conservation
Isotropic arrival direction

NOTE: Structures not significant
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Effect on observables: Anisotropic EGCRs – 
Why flux modification? Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction of observed EGCRs
(lg(R/V) = 19-20)
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Effect on observables: Anisotropic EGCRs – 
Why flux modification? Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction of observed EGCRs
(lg(R/V) = 18-19)

mailto:a.kaeaepae@uni-wuppertal.de


Alex Kääpä     a.kaeaepae@uni-wuppertal.de                     Transition from GCRs to EGCRs                                              62

Effect on observables: Anisotropic EGCRs – 
Why flux modification? Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction of observed EGCRs
(lg(R/V) = 17-18)
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Effect on observables: Anisotropic EGCRs – 
Why flux modification? Opacity of Galaxy

● Regions of enhanced/suppressed transparency shift with rigidity

Injection direction of observed EGCRs
(lg(R/V) = 16-17)
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Propagation in GMF can be quantified via lens
– distance of EG source to observer >> size of 

Galaxy
→ only injection direction relevant

Procedure:
1 track N particles between Earth and edge of 

Galaxy and store injection direction at edge and 
arrival direction at Earth

2 discretise solid angle range and ascribe 
numbers n and m to corresponding injection and 
arrival directions

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1302.3761
https://arxiv.org/abs/1409.5120
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3 count occurrence o of each injection/arrival direction 
pair (n,m)

● spans matrix L (lnm = o)
● L signifies distribution of arrival directions m at the 

observer point for each injection direction n
4 matrix weighted by its 1-norm

(= number of backtracked particles N) defines lens

→ calculate arrival direction distribution for any 
injection direction distribution:

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme &
Eichmann, JCAP04(2020)047 for parallel work

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

mailto:a.kaeaepae@uni-wuppertal.de
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Injected flux Flux at Earth

Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure dipole

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

Flux at Earth
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Rigidity spectrum at 
Earth → possible flux 
modification

Injection direction 
distribution:
Pure single-point 
source (Cen A)

Injected flux Flux at Earth

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

Flux at Earth
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Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (minimum 
Galactic transparency; 
Galactic centre)

Injected flux Flux at Earth

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

Flux at Earth
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Rigidity spectrum at 
Earth → possible flux 
modification

• surviving dipole in arrival 
direction distribution 
above 1 EV

• strong isotropisation by 
GMF at lower energies

Injection direction 
distribution:
Pure single-point 
source (Galactic 
anti-centre)

Injected flux Flux at Earth

Effect on observables: Anisotropic EGCRs – 
Galactic lensing

Flux at Earth
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Summary (1)
 

Computational challenges:
● change in propagation regimes

– both propagation methods necessary, ideally in self-
consistent framework 
→ CRPropa 3

● GMF poorly understood
– apply multiple models
– improve measurements of observables and associated quality
– use more input in model creation (see also IMAGINE project)

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1801.04341
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Summary (2)
Transition region in data:
● multiple features in spectrum, composition, …, many of which have an 

unknown origin
→ goal of simulation: reproduce these data (qualitatively) to gain 
understanding of underlying processes

● propagation in GMF:
– GCRs: 

● leakage from Galaxy leads to ‘knee’-like feature
→ significant contribution of GCRs originating from GP 
disfavoured

– EGCRs: 
● part of ‘ankle’ may be a propagation effect in GMF

mailto:a.kaeaepae@uni-wuppertal.de
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Open questions

Propagation effects:
● How does the change in propagation regimes manifest?
● Do propagation features arise?

GCRs:
● How strongly are they contained/How easily do they diffuse out of the Galaxy?
● What effect does this have on the GCR flux?

EGCRs:
● How strongly are they shielded by the GMF?
● How are they deflected by the GMF once they have entered the Galactic plane?
● Does this lead to flux modification? 

mailto:a.kaeaepae@uni-wuppertal.de
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Liouville’s Theorem
● Objection to flux modification of 

EGCRs: Liouville’s Theorem
– If phase space density is 

conserved, so is flux
– BUT: If Liouville holds, then 

other quantities are 
conserved, i.a. first adiabtic 
invariant 
~ classical magnetic moment 
(APJ 842:54, APJ 830:19):
 

       = const.                        small⇒

mailto:a.kaeaepae@uni-wuppertal.de
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions

mailto:a.kaeaepae@uni-wuppertal.de
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Sigmoid fit to flux

● Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
● Advantage: wider overlapping energy range of mixed compositions
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GCRs – Total flux (data and sigmoid fit)

● Onset of flux suppression for mixed composition visible for sigmoid fit
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● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding

On the modification of EGCR energy spectrum

mailto:a.kaeaepae@uni-wuppertal.de
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On the modification of EGCR energy spectrum

● Propagation time and 
fraction of space 
traversed increases to 
compensate shielding

mailto:a.kaeaepae@uni-wuppertal.de
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Injection direction of observed EGCRs
forward tracking

Galactic lensing – time reversibility

Injection direction distributions of backtracked and forward tracked protons match

Injection direction of observed EGCRs
backtracking

mailto:a.kaeaepae@uni-wuppertal.de
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Spectrum of lensed isotropic
injection distribution

Galactic lensing – testing lens

Lensed arrival direction distribution and spectrum of isotropic injection distribution is as 
expected.

Arrical direciton of lensed isotropic
injection distribution

mailto:a.kaeaepae@uni-wuppertal.de
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Anisotropic EGCRs – Galactic lensing

Rigidity spectrum at 
Earth → possible flux 
modification

Distribution of harmonic 
moments of arrival direction 
distribution above 1 EV 
→  strong isotropisation 
by GMF

Injection direction 
distribution:
Pure dipole

Injected flux Flux at EarthDistribution of moments above 1 EV

mailto:a.kaeaepae@uni-wuppertal.de
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Anisotropies
Dipole anisotropy:

● amplitude increases with energy
● no significant dipole between 

~1016.5 eV –1019 eV
● phase roughly constant in both 

energy ranges but shifts away from 
Galactic centre (GC) for highest 
energies
→ extragalactic origin likely

Small-scale anisotropies:
● amplitude and direction indicate 

strength of diffusion vs. advection: 
correlation with source direction
↔ strength of Galactic wind
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see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98
Arrival direction distribution measured via multipole 
expansion:

  : right ascension

  : declination

Ylm: spherical harmonics

● l = 1: dipole anisotropy

Interlude:

α

δ

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/2002.00964
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Anisotropies
Dipole anisotropy:

● amplitude increases with energy
● no significant dipole between 

~1016.5 eV –1019 eV
● phase roughly constant in both 

energy ranges but shifts away from 
Galactic centre (GC) for highest 
energies
→ extragalactic origin likely

Small-scale anisotropies:
● amplitude and direction indicate 

strength of diffusion vs. advection: 
correlation with source direction
↔ strength of Galactic wind
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see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98
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GMF not well known:
● field strength inferred indirectly via 

observables:
– Faraday rotation (for      )
– synchrotron emission (for      )
– thermal dust emission/

polarised starlight (for      )
→ uncertainty in quantities, contamination   

    of other sources of radiation
● ad hoc assumptions necessary 

(simplifications):
– morphological features
– field components (regular, 

turbulent etc.)

      

Major challenge: GMF model
x-y and x-z projections of coherent field

 for various GMF models
Jaffe13JF12Sun08

mailto:a.kaeaepae@uni-wuppertal.de
https://arxiv.org/abs/1302.0143
https://arxiv.org/abs/1210.7820
https://arxiv.org/abs/0711.1572
https://arxiv.org/abs/0711.1572
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Outlook (1)
 

Combine fluxes:
● GCRs: 

– Test discrete source distribution
– Include rigidity-dependent cut-off at around “knee” energies

→ fit to ”knee” region

● EGCRs: 
– Realistic source distribution (e.g. 10 brightest AGN/SBGs) and spectra

→ fit to “post” ankle flux

→ retrieve “missing” flux

mailto:a.kaeaepae@uni-wuppertal.de
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