CR Propagation & Simulation II

On the transition from Galactic to extragalactic cosmic rays

Alex Kääpä

Lecture Series Astroteilchenphysik 2 - Crossing the Desert Session 6 Zoom conference 15^{th} November 2021

BERGISCHE UNIVERSITÄT WUPPERTAL

SPONSORED BY THE

Federal Ministry of Education and Research

Outline of lecture

1) The transition region in data

- Spectrum, composition and dipole anisotropy
- Open questions

2) Computational challenges and requirements

- Ballistic vs. diffusive propagation
- Galactic magnetic field modelling

3) Combating the transition region: Propagation in the Galactic magnetic field

- Propagation effects in the GMF
- Effect on observables (flux, composition and arrival direction)
- 4) Summary

The transition region in data

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:

- hardening at ~ $10^{16.7}$ eV
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- 'ankle': hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \, \mathrm{eV}$

Further more subtle features:

- hardening at ~ $10^{16.7}$ eV
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Transition from GCRs to EGCRs

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Transition from GCRs to EGCRs

Alex Kääpä a.kaeaepae@uni-wuppertal.de

20

ankle

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Transition from GCRs to EGCRs

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- **'ankle'**: hardening at $\sim 10^{18.7} \text{ eV}$
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \, \mathrm{eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4}$ eV
- **'ankle'**: hardening at $\sim 10^{18.7}$ eV
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Transition from GCRs to EGCRs

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4}$ eV
- **'ankle'**: hardening at $\sim 10^{18.7}$ eV
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4}$ eV
- **'ankle'**: hardening at $\sim 10^{18.7}$ eV
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \, \mathrm{eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Transition from GCRs to EGCRs

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4}$ eV
- **'ankle'**: hardening at $\sim 10^{18.7}$ eV
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Broken power-law with three 'main' features:

- **'knee'**: softening at $\sim 10^{15.4} \text{ eV}$
- **'ankle'**: hardening at $\sim 10^{18.7}$ eV
- high-energy cut-off beyond $\sim 10^{19.6} \text{ eV}$

Further more subtle features:

- 'low-energy ankle' at ${\sim}10^{16.7}\,{\rm eV}$
- '2nd knee': softening at ~ $10^{17.(0...4)}$ eV
- 'toe': softening at $\sim 10^{19.1} \text{ eV}$

Galactic cosmic rays (**GCR**s) for diffusive shock acceleration (DSA) in supernova remnants (SNR) dominate **below 'knee'** energies.

Extragalactic cosmic rays (**EGCR**s) dominate at energies **above 'ankle'**.

Transition region (= 'shin') **unexplained**:

• unaccounted for flux

Comis non comparitio

Interlude:

Compositio dependent:

At ultra-high energies, cosmic ray composition is measured via:

 $\langle \ln A \rangle = \sum f_i \cdot \ln A_i$

- heavier
- maximu
- minimu
- **increas** high-ene

Increasing A_i : nuclear mass number of nucleus i = H, He, ..., Fe \rightarrow **rigidity**- f_i : fraction of nucleus i to total flux

- source p acceler
- Measure of mean mass of flux

Cosmic ray composition

Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2nd knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → energy-dependent change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields

Cosmic ray composition

Composition highly energydependent:

- heavier beyond the 'knee'
- maximum **before** '2nd knee'
- minimum just before 'ankle'
- **increasing mean mass at** high-energy **cut-off**

Increasing mean mass → **rigidity-dependent** change in:

- source properties (maximum acceleration energy)
- **propagation regimes** in magnetic fields

"All" data in one look

Composition:

- What **explains '2nd knee'** if maximum mean mass is reached well before?
- Why does the composition become **lighter up to the 'ankle'**?

Spectrum:

- How could **GCRs** be accelerated up to energies **beyond the 'knee'**?
- What constraints are there on low-energy contribution of EGCRs?
- How are observables affected by the propagation in the Galactic magnetic field (GMF)?

Simulation:

• (Qualitatively) reproduce features

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Computational challenges and requirements

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ $0.1 1 \mu G$
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot rac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

x-z projection of JF12 field

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot \frac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change of gyroradius with rigidity plus typical length scales of Galaxy

Galactic magnetic field (GMF)

GMF model: JF12 (ApJ 757 14x) with three components:

- Large-scale regular
- Large-scale random (striated)
- (Small-scale) random

GMF has **three regions** of differing **field strength**:

- Galactic plane (GP): ~ 1 10 μG
- Halo: ~ 0.1 1 μG
- Edge of Galaxy: 10 100 nG

Gyroradius r_{g} :

$$r_{\rm g}[{
m pc}] \approx 11 \cdot \frac{R \,[{
m PV}] \cdot v_{\perp}/c}{B \,[\mu {
m G}]}, \quad R = E/Ze$$

Transition region = change in propagation regimes

• **diffusive** → **ballistic** propagation

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change of gyroradius with rigidity plus typical length scales of Galaxy

Ballistic propagation

Solve equation of motion:

$$\ddot{\vec{r}} = \frac{q}{E/c^2} \left(\vec{v} \times \vec{B} \right)$$

- tracking of single particles (microscopic view)
- best suited when r_g is large
- applicable for arbitrary fields
 → more fundamental and precise*
- particle trajectories are tracked
 → possibility of anisotropy studies

BUT:

- below $\approx 10^{17}\,\mathrm{V},$ computation times start to diverge
- also: precision dependent on grid size (*)

Transition from GCRs to EGCRs

Ballistic propagation

Solve equation of motion:

$$\ddot{\vec{r}} = \frac{q}{E/c^2} \left(\vec{v} \times \vec{B} \right)$$

- tracking of single particles (microscopic view)
- best suited when r_g is large
- applicable for arbitrary fields
 → more fundamental and precise*
- particle trajectories are tracked
 → possibility of anisotropy studies

BUT:

- below $\approx 10^{17}\,\rm V$, computation times start to diverge
- also: precision dependent on grid size (*)

Change of computation time per particle with rigidity for propagation in GMF

Transition from GCRs to EGCRs

Diffusive propagation

Solve transport equation:

$$\frac{n_l}{\partial t} = \sum_{j=1}^3 \frac{\partial}{\partial x_j} \left[\left(D_{jk} \cdot \frac{\partial}{\partial x_k} \right) n_l \right] - \frac{\partial}{\partial x_j} \left[u_j \cdot n_l \right] + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{n_l}{p^2} \right) \right] \\ - \frac{\partial}{\partial p} \left[\dot{p} n_l - \frac{p}{3} \left(\nabla \cdot \vec{u} \right) \cdot n_l \right] + \sum_{j>l} \frac{v_l}{c} n_0 \int dp' \sigma_{j \to l}(p, p') n_j(p') - \frac{n_l}{\tau} + Q_l(p)$$

- multi-particle approach:
 - change of momentum density (macroscopic view)
- best suited when r_g is small & turbulent B-field component dominant
- generally shorter computation times

NOTE:

- CRPropa 3 has implement diffusive propagation module via SDEs (JCAP 06 (2017) 046)
- For a full description of the transition region both propagation methods must be applied

Trajectories of diffusively propagating GCRs

GMF not well known:

- field strength inferred indirectly via observables \rightarrow uncertainty in quantities, contamination
- ad hoc assumptions necessary (simplifications): morphological features (spiral arms, halo field), field components (regular, turbulent etc.)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Combating the transition region: Propagation in the GMF

Procedure: Ballistic propagation with CRPropa3

Forward tracking:

- particle tracked **from source to observer**:
- highly **inefficient** (1:10²⁸ for observer the size of Earth)
 - → increase observer size, BUT: this introduces **artefacts**!

Only propagation effects (i.e. only deflections/no interactions):

propagation of one nuclear species: proton → results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:

• JF12 (including regular, random and striated components)

 \rightarrow edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic centre)

Source properties:

• R^{-1} injection spectrum, $\lg(R/V) = 16.0 - 20.0$

Procedure: Ballistic propagation with CRPropa3

Forward tracking:

- particle tracked **from source to observer**:
- highly **inefficient** (1:10²⁸ for observer the size of Earth)
 - → increase observer size, BUT: this introduces **artefacts**!

Only propagation effects (i.e. only deflections/no interactions):

propagation of **one nuclear species: proton** → results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:

• JF12 (including regular, random and striated components)

 \rightarrow edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic centre)

Source properties:

• R^{-1} injection spectrum, $\lg(R/V) = 16.0 - 20.0$

Procedure: Ballistic propagation with CRPropa3

Forward tracking:

- particle tracked **from source to observer**:
- highly **inefficient** (1:10²⁸ for observer the size of Earth)
 - → increase observer size, BUT: this introduces **artefacts**!

Only propagation effects (i.e. only deflections/no interactions):

propagation of one nuclear species: proton → results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:

• JF12 (including regular, random and striated components)

→ edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic centre)

Source properties:

• R^{-1} injection spectrum, $\lg(R/V) = 16.0 - 20.0$
Procedure: Ballistic propagation with CRPropa3

Forward tracking:

- particle tracked **from source to observer**:
- highly **inefficient** (1:10²⁸ for observer the size of Earth)
 - → increase observer size, BUT: this introduces **artefacts**!

Only propagation effects (i.e. only deflections/no interactions):

propagation of one nuclear species: proton → results can be scaled to all nuclei (important for composition)

Galactic magnetic field model:

• JF12 (including regular, random and striated components)

 \rightarrow edge of Galaxy defined as volume within which GMF is defined (20 kpc sphere are Galactic centre)

Source properties:

• R^{-1} injection spectrum, $\lg(R/V) = 16.0 - 20.0$

Sources:

Galactic volume with GMF

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- 'Earth': observer sphere at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

a.kaeaepae@uni-wuppertal.de Alex Kääpä

Sources:

GCR source distribution

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Sources:

EGCR source distribution

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Sources:

- GCRs:
 - homogeneously distributed in GP
 - isotropic injection direction distribution
- EGCRs:
 - **Isotropic injection:** Lambertian injection direction distribution from Galactic shell

Observers:

- 'Galactic plane': cylinder of 100 pc height around Galactic centre with variable radius
- **'Earth': observer sphere** at Earth's position in Galactic coordinates (-8.5 kpc, 0, 0)

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Observer types: Earth and GP

Change in propagation regimes: Deflection angle

 $\theta = \pi/2$ for $\lg(R/V) \le 17 \Rightarrow$ diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs

42

Change in propagation regimes: Deflection angle

 $\theta = \pi/2$ for $\lg(R/V) \le 17 \rightarrow$ diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs

Change in propagation regimes: Deflection angle

 $\theta = \pi/2$ for $\lg(R/V) \le 17 \rightarrow$ diffusive propagation (see also: Erdman, Astropart.Phys. 85 (2016) 54-64) Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs

Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few 1 EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Change in propagation regimes: Propagation time

Propagation time increases below rigidities of a few 1 EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Propagation effects: Galactic residence time

NOTE: Lowest-rigidity particles have residence times up to 100 Myr.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Propagation effects: GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

Propagation effects: GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

Propagation effects: GCRs – Confinement in GP

Decreasing confinement in GP with rigidity.

Relative time spent in GP decreases with rigidity; **inflection point at a few EV.**

Propagation effects: EGCRs – Shielding from vs. confinement in GP

Galactic trajectories $(\lg(R/V) = 15 - 16.5)$

CR count reaching GP

Relative time spent in GP

Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Propagation effects: EGCRs – Shielding from vs. confinement in GP

Galactic trajectories $(\lg(R/V) = 16 - 18.5)$

-2.5

-2.0 -1.5

- 0.5 - 1.0

- 1.5

2.0

CR count reaching GP

Relative time spent in GP

Decreasing shielding from and confinement in GP with rigidity.

CR count decreases for smaller rigidities; inflection point at a few EV.

Relative time spent in GP decreases with rigidity; inflection point at a few EV.

a.kaeaepae@uni-wuppertal.de Alex Kääpä

Propagation effects: EGCRs – Shielding from vs. confinement in GP

Galactic trajectories $(\lg(R/V) = 18 - 20)$

CR count reaching GP

Relative time spent in GP

Decreasing shielding from and confinement in GP with rigidity. CR count decreases for smaller rigidities; inflection point at a few EV. Relative time spent in GP decreases with rigidity; inflection point at a few EV.

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: GCRs – Flux suppression

Rigidity spectrum (sigmoid fit)

Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: GCRs – Heavier composition

Mean logarithm of mass number (sigmoid fit)

Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

Effect on observables: GCRs – Correlation with source direction (GP)

Decreasing confinement → **flux reduction**

Mixed composition → heavier towards 'ankle'

Arrival direction distribution: **correlation with GP direction** above 0.1 EV

Effect on observables: Isotropic EGCRs – Flux conservation

Rigidity spectrum

Apparent flux suppression for large observer sphere sizes; effect vanishes as $r \rightarrow 0$.

Increased confinement in GP compensates increased shielding:

 \rightarrow flux conservation

Isotropic arrival direction

Effect on observables: Isotropic EGCRs – Isotropic arrival direction

Apparent flux suppression for large observer sphere sizes; effect vanishes as $r \rightarrow 0$.

Increased confinement in GP compensates increased shielding:

→ flux conservation

Isotropic arrival direction

Arrival direction distribution

• Regions of enhanced/suppressed transparency shift with rigidity

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: Anisotropic EGCRs – Why flux modification? Opacity of Galaxy Injection direction of observed EGCRs

• Regions of enhanced/suppressed transparency shift with rigidity

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: Anisotropic EGCRs – Why flux modification? Opacity of Galaxy Injection direction of observed EGCRs $(\lg(R/V) = 17-18)$

• Regions of enhanced/suppressed transparency shift with rigidity

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: Anisotropic EGCRs – Why flux modification? Opacity of Galaxy Injection direction of observed EGCRs $(\lg(R/V) = 16-17)$ 60° 45° 30° 15° 0° -15° -30° -45° -60° -75°

Regions of enhanced/suppressed transparency shift with rigidity

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Effect on observables: Anisotropic EGCRs – Galactic lensing edge of Galaxy

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04(2020)047 for parallel work

Propagation in GMF can be quantified via lens

- distance of EG source to observer >> size of Galaxy
 - \rightarrow only injection **direction** relevant

Procedure:

- **1 track** *N* **particles** between Earth and edge of Galaxy and **store injection direction** at edge and **arrival direction** at Earth
- 2 discretise solid angle range and ascribe numbers n and m to corresponding injection and arrival directions

Effect on observables: Anisotropic EGCRs – Galactic lensing edge of Galaxy

see also: Astropart.Phys. 85 (2016) 54-64 for lensing scheme & Eichmann, JCAP04(2020)047 for parallel work

- **3** count occurrence *o* of each injection/arrival direction pair (n,m)
 - spans matrix $L(l_{nm} = o)$
 - L signifies distribution of arrival directions m at the observer point for each injection direction n
- 4 matrix weighted by its 1-norm
 - (= number of backtracked particles N) defines lens

 \rightarrow calculate arrival direction distribution for any injection direction distribution:

$$\vec{A} = \vec{I} \cdot \mathcal{L}$$

Injection direction distribution: **Pure dipole**

- surviving dipole in arrival direction distribution above 1 EV
- strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth → **possible flux modification**

Flux at Earth

Injection direction distribution: **Pure single-point source** (Cen A) surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth → **possible flux modification**

Flux at Earth

Injection direction · su distribution: dir **Pure single-point** ab **source** (minimum · str Galactic transparency; GI Galactic centre) Alex Kääpä a.kaeaepae@uni-wuppertal.de

surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth → **possible flux modification**

Flux at Earth

Flux at Earth

Injection direction distribution: **Pure single-point source** (Galactic anti-centre)

surviving dipole in arrival direction distribution above 1 EV

strong isotropisation by GMF at lower energies

Rigidity spectrum at Earth → **possible flux modification**

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Summary (1)

Computational challenges:

- change in propagation regimes
 - both propagation methods necessary, ideally in selfconsistent framework
 → CRPropa 3
- GMF poorly understood
 - apply **multiple models**
 - improve measurements of observables and associated quality
 - use more input in model creation (see also IMAGINE project)

Summary (2)

Transition region in data:

- multiple features in spectrum, composition, ..., many of which have an unknown origin
 - → goal of simulation: **reproduce these data** (qualitatively) to gain understanding of underlying processes
- propagation in GMF:
 - GCRs:

leakage from Galaxy leads to 'knee'-like feature → significant contribution of GCRs originating from GP disfavoured

- EGCRs:
 - part of 'ankle' may be a propagation effect in GMF

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Thank you for your attention!
Open questions

Propagation effects:

- How does the change in propagation regimes manifest?
- Do propagation features arise?

GCRs:

- How **strongly** are they **contained**/How easily do they diffuse out of the Galaxy?
- What **effect** does this have **on** the GCR **flux**?

EGCRs:

- How **strongly** are they **shielded** by the GMF?
- How are they **deflected** by the GMF **once** they have **entered** the **Galactic plane**?
- Does this lead to **flux modification**?

Liouville's Theorem

- Objection to flux modification of EGCRs: Liouville's Theorem
 - If phase space density is conserved, so is flux
 - BUT: If Liouville holds, then other quantities are conserved, i.a. first adiabtic invariant

~ classical magnetic moment (APJ 842:54, APJ 830:19):

$$\mu = \frac{e}{2 \, m \pi \, c} \cdot I = \text{const.} \Rightarrow r_{\mu} = \frac{\sigma_{\mu}}{\langle \mu \rangle} \text{ small}$$

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
 Advantage: wider overlapping energy range of mixed compositions
 Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs B75

Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
 Advantage: wider overlapping energy range of mixed compositions
 Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs B76

Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
 Advantage: wider overlapping energy range of mixed compositions
 Alex Kääpä a.kaeaepae@uni-wuppertal.de
 Transition from GCRs to EGCRs
 B77

Flux enhancement towards lower rigidities appears to flatten out → sigmoid fit
 Advantage: wider overlapping energy range of mixed compositions
 Alex Kääpä a.kaeaepae@uni-wuppertal.de Transition from GCRs to EGCRs B78

GCRs – Total flux (data and sigmoid fit)

• Onset of flux suppression for mixed composition visible for sigmoid fit

Alex Kääpä a.kaeaepae@uni-wuppertal.de

On the modification of EGCR energy spectrum

 Propagation time and fraction of space traversed increases to compensate shielding

Alex Kääpä a.kaeaepae@uni-wuppertal.de

On the modification of EGCR energy spectrum

 Propagation time and fraction of space traversed increases to compensate shielding

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Injection direction distributions of backtracked and forward tracked protons match

Lensed arrival direction distribution and spectrum of isotropic injection distribution is as expected.

Anisotropic EGCRs – Galactic lensing

Injected flux

Flux at Earth

10⁻² 10⁻³ 10⁻³ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Harmonic moment *l*

Injection direction distribution: **Pure dipole**

Distribution of harmonic moments of arrival direction distribution above 1 EV → strong isotropisation by GMF

Rigidity spectrum at Earth \rightarrow **possible flux modification**

Aniantunion

Interlude:

Dipole anisot

(2020) pp.1-98

Anisotropies

Dipole anisotropy:

- amplitude increases with energy
- no significant dipole between $\sim 10^{16.5} \text{ eV} 10^{19} \text{ eV}$
- phase roughly constant in both energy ranges but shifts away from Galactic centre (GC) for highest energies
 - → **extragalactic** origin likely

Small-scale anisotropies:

 amplitude and direction indicate strength of diffusion vs. advection: correlation with source direction
 ⇔ strength of Galactic wind

see also: Becker-Tjus, Physics Reports 872 (2020) pp.1-98

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Major challenge: GMF model

GMF not well known:

- field strength inferred indirectly via observables:
 - Faraday rotation (for B_{\parallel}
 - synchrotron emission (for B)
 - thermal dust emission/ polarised starlight (for *B*)
 - \rightarrow uncertainty in quantities, contamin

of other sources of radiation

- ad hoc assumptions necessary (simplifications):
 - morphological features
 - field components (regular, turbulent etc.)

x-y and x-z projections of coherent field for various GMF models

Alex Kääpä a.kaeaepae@uni-wuppertal.de

Outlook (1)

Combine fluxes:

- GCRs:
 - Test discrete source distribution
 - Include rigidity-dependent cut-off at around "knee" energies
 - → fit to "knee" region
- EGCRs:
 - Realistic source distribution (e.g. 10 brightest AGN/SBGs) and spectra
 → fit to "post" ankle flux
 - → retrieve "missing" flux

Alex Kääpä a.kaeaepae@uni-wuppertal.de