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Performing Modern Astronomical
Research
Regardless of your field of study, your career stage, your affiliation, or any other specialisation that makes
you a unique, identifiable member of the astronomical community, there are two things that can be
unequivocally said about every single astronomer:

They need to know how to write computer code
They need to have been taught some statistics

Statistics & Computers
Modern physics and astronomy requires an understanding of programming. From theoreticians writing
models to experimentalists writing analysis pipelines, most physicists and astronomers will use read, write,
or use a computer program every day.

N-body Simulation
An excellent example of this is the N-body simulation. The simulation of large gravitational bodies
(stars/galaxies/clusters) using point-masses. The term was coined by von Hoerner in 1960.

Holmberg (1941)
However, in 1941, 20 years prior to a famous work by Sebastian von Hoerner that established the field
(and name) N-body Simulations, Erik Holmberg performed the first simulations of colliding galaxies.

Holmberg’s work was exceptional for a number of reasons, but has become famous because of how it was
completed. Holmberg simulated the collisions of rotating spiral galaxies:

And generated tidal disruption features that are now seen commonly in merging spiral galaxies:

The surprise?
His work was computed entirely by hand. Holmberg used arrangements of lightbulbs to simulate groups of
stars, and photometers to compute the gravitational pull of all mass-elements on each-other per unit time.

Reproducing Holmberg in 2021



But “Scalability” is the main benefit

Astronomy and Statistics

It is uncontroversial (I think?!) to say that having an understanding of programming is vital to modern
astronomical research.

Less appreciated, and certainly less obvious to any student working their way toward becoming a future
astronomer (i.e. you!), is the fact that an understanding of statistics is just as important a skill as
programming.

“Well that’s a bit exaggerated, Angus”
Maybe…

But there is a common misconception in some astronomical fields that only people working in large
surveys (and with many sources) require an understanding of statistics. This is unequivocally false, as you
will see repeatedly throughout this lecture.

Unfortunately, though, one 90 minute lecture is an insufficient amount of time to teach (let alone learn!) the
nuances of statistical analysis methods and best practices. Indeed, in a standard Astrostatistics lecture
series, we would spend one 90 minute lecture on each the topics of:

Introducing statistical computing
Understanding and exploring data
Describing and modelling data
Understanding Probability
Bayesian Statistics
Modelling probabilistic events
Complex analysis methods (MCMC)
Machine Learning methods
My favourite: “How to not be wrong”

and much more. Unfortunately learning these in one hour is not possible, and skimming through them
typically does more harm than good.

Statistical Methods vs Statistical
Awareness
This lecture will therefore not cover statistical methods. Instead we will spend the next hour trying to
develop our statistical awareness: our ability to recognise and understand the sorts of statistical biases
that can wreak havoc with otherwise solid astronomical analyses.

What we’ll cover today
In this lecture we will discuss statistics and statistical fallacies in the context of astronomy. Or, framed in a
slightly more fun way:



How to invalidate your
research in 7 easy steps!

1. Looking at your data
2. Making selections on your data
3. Using data which has uncertainties
4. Focussing on interesting sources
5. Fitting models to your data
6. Trying to find “truth” in your data
7. Reproducing previous work

Statistical Paradoxes
Many of the errors we will discuss today result from statistical paradoxes. These are not paradoxes in the
sense that “they break physical laws and rigorous logic”, but rather they are paradoxes because (for the
vast majority of people) your brain instinctively draws the wrong conclusion.

A simple numerical paradox
A trivial example of a mathematical fallacy is one that is likely well known to all of us here: the fallacy of
large numbers.

This fallacy says, quite simply, that your brain is incapable of rationalising/comprehending large numbers
(or conversely, that humans generally think that numbers are large when they, mathematically speaking, are
not).

This is a fallacy we encounter every day in astronomy.

The Andromeda galaxy is  million light-years away
The Universe is  billion years old
There are  billion stars in the Milky Way Galaxy

The human brain is not constructed to innately understand these sorts of numbers, and this leads to bias.

Take the humble sheet of paper

∼ 11
∼ 13

∼ 100

This is a stack of 130 sheets of standard format A4 paper.
Without trying to crunch the numbers, ask your gut: how tall is 
billion sheets of paper?

The humble sheet of paper
Standard format A4 paper has a thickness of mm.  billion sheets is therefore:

Non-Astronomy Aside: Billionaires and the
Manginot line
You’ve likely all seen Jeff Bezos (and other billionaires) voyages into space recently.

The “important point” is called the Manginot line, and is 100km above the earth’s surface.

100

0.04 100

0.04 mm × km/mm × 100 × = 4 000 km10−6 109

A US  bill is  mm thick
A 100km tall pile of US  bills is  million bills tall

Jeff Bezos’ net worth is 177 billion USD
Jeff Bezos could make 196 100km-tall piles of US  bills.
Stacked alongside one-another…

$1 0.1
$1 ∼ 900

$1

Jeff Bezos could make a dollar bill tower that is 100km tall and larger
than a standard-sized single bed. He could sleep above the Manginot
line on a tower made of nothing but his own wealth
With any luck he would stay there

Outline
In this lecture we will discuss statistics and statistical fallacies in the context of astronomy. Or, framed in a
slightly more fun way:

How to invalidate your research in 7 easy steps!

1. Looking at your data
2. Making selections on your data
3. Using data which has uncertainties
4. Focussing on interesting sources
5. Fitting models to your data
6. Trying to find “truth” in your data
7. Reproducing previous work

Method 1: Looking at your data
Let’s start with a simple physical dataset in multiple dimensions that we want to investigate. For the vast
majority of this lecture we’re going to work with a simulated toy universe that I have constructed. Galaxies
in this universe are simple and easy to model, the universe obeys basic cosmological principles,
telescopes and detectors produce perfectly Gaussian uncertainties.

In short, my toy universe is an astronomers idea of heaven.



To start our exploration into my mock universe, we’re going to look at the distribution of galaxies in my
universe. Galaxies are observed with telescopes and fluxes are measured in various filters. We use these
fluxes to measure galaxy redshifts and galaxy properties using “Spectral Energy Distribution” modelling.

Galaxies have a number of physical parameters estimated, and a number of additional properties are
included (e.g. environment).

Relationships between parameters
When plotting data in multiple dimensions, we will frequently find properties that show some sort of
relationship. That is: variation in one parameter is coincident with variation in another parameter. This
behaviour is called correlation.

If one parameter is related to another, we are generally interested in determining if that relationship is
causal; that is, whether or not it is indicative of some underlying physical process that links the two
parameters.

A sneak peak at probability
As a demonstration, let’s say that in our toy universe we have a catalogue of  galaxies, with 
properties measured for each galaxy. A truly spectacular dataset. We decide a relationship is worth
investigating if it contains an  correlation or more.

But, our toy universe is cruel: someone corrupted our dataset, and (unbeknownst to us) all the variable are
filled with completely random values.

What fraction of our random variables do we expect to have a correlation of  or more?

## 0.65 % of variables have 80% correlation or more

Said differently, there is a 1 in 154 chance that two totally random variables in our survey will have an
absolute correlation of  or higher.

10 1000

80%

80%

0.8

What does this mean?
The likelihood of finding “significant” correlations between truly random data is non-zero, and grows with
decreasing numbers of observations and increasing numbers of observed variables.

-Working with small samples does not mean you can ignore statistics

The problem is further complicated by the existence of confounding variables.

A confounding variable is one that acts upon both the dependent and independent variables in a
measurement of correlation, and thereby creates a spurious correlation between the two.

#A simple Gaussian dataset 
obs<-data.frame(Z=rnorm(1E3,mean=0,sd=1))
#A new variable that correlates with Z
obs$X<-sin(obs$Z)+runif(1e3,min=-0.2,max=0.2)
#And another new variable that correlates with Z
obs$Y<-(1-obs$Z/4*runif(1e3,min=0.8,max=1.2))^3
#Plot them 
with(obs, {
  magplot(Z,X,xlab="Z",ylab="X",pch='.') 
  magplot(Z,Y,xlab="Z",ylab="Y",pch='.') 
})

We’ve created two variables that correlate with . But what if we never actually observed the variable …
We would instead plot  and :

Z Z
X Y

#Plot X and Y
magplot(obs$X,obs$Y,xlab='X',ylab='Y',ylim=c(-2,7),pch='.')



## [1] -0.9691508

And be tempted to decide that there is a causal relationship between these two parameters, when in fact
none exists.

A fundamental distinction

Here we can see that the number of divorces in the US state of Maine is correlated with the consumption
of margarine per person in the USA.

The conclusion is clear:

Eating margarine in LA will invariably lead to a divorce in Maine (you
monster!).

Or more accurately:

#Rank Correlation 
cor(obs$X,obs$Y,method='spearman')

No, of course it won’t.

This is an example of a spurious correlation. Such correlations are possible (and indeed likely!) when you
have few observations of many variables (more on this later).

If you only remeber one thing from this
lecture…
Thus have demonstrated the common but extremely important statistical fact, and Method 1 for
invalidating your research:

Looking for correlations in your data and then assuming that these
correlations are causal.

Correlation does not equal
Causation!

One final galaxy example
Let’s go back to our toy universe and look at one last correlation: the distribution of intrinsic galaxy
brightness vs the age of the universe:

This correlation suggests that galaxies were, on the whole, brighter at earlier times in the universe, and that
they are dimming over time. Is this correlation causal? Or spurious? Or something else?

Method 2: Making Selections on your data
Prior to performing any observational astronomical analysis, we need data. However there are too many
galaxies in the visible universe to observe with any one instrument, so astronomical samples are never
complete. That is, they are always a subset of the total population of all galaxies in the universe.

Selecting samples is therefore a fundamental part of astronomical analyses. It is unavoidable. However,
whenever we perform even simple sample selections, we open the door to pathological biases in our
analysis.

No matter what data you use, statistics governs your selection
function and therefore your soul biases

Let’s go back to our toy universe. This is our plot of intrinsic galaxy brightness vs Universe age from the
last section:

Now let’s plot the relationship between observed brightness and distance:

There is a clear relationship between these two properties, and an obvious (artificial) cut-off in the
distribution of apparent brightness at .

This cut-off is the magnitude limit of our toy survey.

What influence does the magnitude limit of our survey have on the distribution of intrinsic brightness?

Malmquist Bias

This is an observational bias called “Malmquist Bias”. It refers to the bias that one observes in the mean
intrinsic brightness of galaxies as a function of distance, caused by the fact observed brightness is a
strong function of distance.

m = 25



This effect means that galaxy properties, measured as a function of redshift or in wide chunks of redshift,
must account for the changing galaxy population. In this way, Malmquist bias is a form of survivor bias.

A common place that Malmquist bias occurs is in the modelling of galaxy distribution functions, such as
the galaxy stellar mass function (GMSF) or galaxy Luminosity function (GLF). Failing to account for
Malmquist bias in these measurements leads to catastrophic errors:

Thus we have Method 2 for invalidating your research:

Failing to correct for observational selection functions present in every
dataset.

Survivor Bias
The general term for a bias that originates because a studies sample is not representative of the general
population because of some selection effect is known as survivor bias (in the sense that the remaining
sample has “survived” some test).

In real astronomical survey imaging, survivor biases are caused by much more than simple magnitude
selections (although the magnitude limit is often the most dominant selection). A good example of this is
the bivariate brightness distribution:

The BBD showcases the 4 major selection effects that impact survey images in astronomy:

The particular problem with these selections is that we know galaxies exist outside these limits, because
we have (often by accident) discovered them.



Non-Astronomy Aside: The original
“survivor bias”
The name originates from the studies of military aircraft during the dawn of airborne warfare. In an effort to
protect aircraft from destruction, the planes ought to be shielded with armour.

Military analysts noted that planes were generally most heavily damaged on their wings and tails when
they returned from battle. And so they decided that it was necessary to fortify these areas. However
armour is heavy, and reduces the efficiency of the aircraft. So they contracted statistician Abraham Wald to
optimise the placement of armour on the aircraft.

Wald returned to the analysts with a recommendation that was somewhat unexpected: Armour the parts of
the plane that don’t have any bullet holes.

The reason was simple: bullet’s do not preferentially strike wings and tails. They should be randomly
distributed over the fuselage, but they are not.

Therefore, there must be some selection effect that means planes with bullet holes on the wings and tails
preferentially return home. Why? Because planes that get shot in the engine crash!

Method 3: Using data which has
uncertainties

1. All observational data has uncertainties, because no instrument is
perfect.

2. All models have uncertainties, because no model looks exactly like the
real universe.

3. Ergo: you will always be working with uncertain quantities.

“Monte Carlo” realisations
Monte Carlo realisations refer to data that are generated by adding random perturbations to the data
values. A simple example is the simulation of uncertainties given some “true” underlying distribution.

Back to the toy universe: our observed galaxies have some distribution of “true” stellar mass (now
corrected for Malmquist Bias!):

What happens if we add a small amount of noise to our estimated stellar masses?

Eddington Bias
This effect known as “Eddington Bias”, and is most apparent when modelling a property that follows a
simple power law distribution, and a constant Gaussian uncertainty on the parameter:

It is caused by the distribution of sources being highly asymmetric. You can think of this probabilistically:

The probability that any one source scatters by  is very small.
At any one point on the x-axis, there are more sources to the left than the right
Ergo: there is a greater absolute chance that sources from the left will scatter rightward, than vice
versa.

Thus we have Method 3 for invalidating your research:
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Failing to account for the influence of observational uncertainties on
your models and derived data distributions.

Method 4: Focussing on interesting
sources
In many areas of astronomy and astrophysics, extreme and rare phenomena are a focus for study and are
highly prized as “the most interesting sources”. Examples include extreme stars (blue stragglers, variables,
super-giants), extreme galaxies (rings, AGN, mergers), or rare objects (exotic transients, strong
gravitational lenses).

Selecting and focussing on these rare and extreme objects is generally very attractive, as frequently they
are sensitive laboratories for understanding underlying physical phenomena.

However simply focussing on extreme phenomena can in itself lead to biases in analysis. This effect is
particularly dangerous in temporal studies, but also arises in other areas.

Let’s say that we are working in the field of stellar transients, and we want to know if the variability of a
source is impacted by the environment that the source resides in. Specifically, whether interactions
between star clusters reduce the overall variability of stars.

We start by constructing a sample of sources. Using existing data, we take a population of variable stars,
and select a sample which are both extremely variable and which reside in stellar clusters that are
undergoing violent interaction.

We then return to these transients with our telescope at a later date time (much longer than the period of
variation in the sources). And we reobserve our sample.

We conclude that the interaction has significantly reduced the variability of our sources, and we publish.

What is wrong with this?

Regression to the mean
This effect is known as ‘regression to the mean’, It refers to the phenomenon whereby a random variable
that is initially selected to be extreme will naturally tend to less extreme values under subsequent
observations.

The mechanism to safeguard against this phenomenon is to ensure that your sample contains sources that
are both sensitive and insensitive to the effect you are trying to measure. In our example, this would mean
defining two samples:

One with extreme variability and residing in an interacting cluster
One with extreme variability and not residing in an interacting cluster

Thus we have Method 4 for invalidating your research:

Focussing on extrema, failing to account for the pathological selections,
and ignoring the properties global samples.

Non-astronomy Aside
This effect is extremely common in social and medical sciences, where it goes by another name: the
placebo effect. Contrary to popular belief, there is only very mild evidence that placebo’s actually have
(quantitative) pharmacological benefit. The overwhelming majority of reports claiming to show concrete
increases in medical well-being after the administration of a placebo are simply finding regression to the
mean.

Method 5: Fitting models to your data
The p-value
In this lecturers opinion, the p-value is easily the most misunderstood, misused, and/or misrepresented
concept in statistics. So what is the p-value, and what is it not.

What does the p-value tell you: The p-value represents the fraction of
samples that would produce a test statistic that is as extreme as the
one observed, given that the proposed (generally null) hypothesis is
true.

What is the p-value not tell you: The p-value does not tell you
anything about the probability that the proposed hypothesis is correct,
nor about whether or not the data can be explained as being produced
by random chance.

Nonetheless, the p-value is widely used in the academic literature as a tool for hypothesis testing, and/or
for justification that experimental evidence is incompatible with the null hypothesis (i.e. that there is no
underlying effect/difference).

Let’s assume that we are willing to believe an effect if it has a p-value of  or less; otherwise you reject the
effect in favour of the null hypothesis. The probability that you accept a hypothesis that is actually false, is
the fraction of samples that would give you a satisfactory p-value even though the null hypothesis was
true. But this value is just . So you can consider the p-value as being the probability that you have
accepted a hypothesis that is false.

Additional Observations
A significant statistical fallacy in significance estimation comes from the ability of researchers to adaptively
observe more data.

Consider an experiment where we make  observations of a variable . We compute our statistic of
choice, say the t.test, and calculate a p-value.

We find that our p-value is on the cusp of being “significant”. We therefore decide to perform some
additional observations, and find that the p-value decreases below our required threshold. Confident that
these additional data have confirmed our effect is real:

We Publish

Can you see a problem with this process?

Simulating the effect:
Again this is an effect that we can simulate easily. Let us create a dataset of  observations, and compute
the p-value.

## 
##  One Sample t-test
## 
## data:  obs
## t = -1.8105, df = 99, p-value = 0.07326
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.38179663  0.01748116
## sample estimates:
##  mean of x 
## -0.1821577

We now decide to observe more data, in a batch of  observations.

α

α

n X

n
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## 
##  One Sample t-test
## 
## data:  obs
## t = -2.3083, df = 109, p-value = 0.02287
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.40244042 -0.03061316
## sample estimates:
##  mean of x 
## -0.2165268

Bingo! We cross the threshold of  and we rush straight to the publisher.

But what happens if we were to continue observing data?

p-Hacking
This effect is known most colloquially as p-hacking (although that term can be applied to many of the
practices that we discuss here). Generally speaking the problem is that we can decide when to stop taking
observations based on the significance threshold we want to achieve. This allows us to keep observing
data until we work our way down to a significant result.

We can ask the question: how often can I hack my way to significance with up to  observations taken 
 at a time?

## published
## FALSE  TRUE 
##  0.71  0.29

So by selectively observing more data, we publish  of the time given a statistical significance
threshold of .

p < 0.05

1000
10

30%
0.05

Thus we have Method 5 for invalidating your research (a double whammy):

Failing to understand, and therefore abusing the meaning of, p-values
Modifying our analysis samples until we reach ‘significance’

Method 6: Trying to find “truth” in your
data
Variable Selection
We are scientists working to determine any interesting relationships present in our data.

Our dataset contains  observations (of galaxies, or particle collisions, etc), and we measured 
different variables for each observation.

We have theoretical expectations of what the data ought to show for each of our variables, which we have
already subtracted from each column. So the null hypothesis in these data is always , and we can
compare how our data differs from the null hypothesis using a t-test.

So let’s look at our first variable:

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.99309 -0.61669  0.08980  0.03251  0.66156  2.28665

## 
##  One Sample t-test
## 
## data:  obs$V1
## t = 0.31224, df = 99, p-value = 0.7555
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.1741130  0.2391426
## sample estimates:
##  mean of x 
## 0.03251482

Nothing significant there… what about for our second variable?

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.02468 -0.59150 -0.06929 -0.08748  0.46179  2.70189

n = 1e2 20

= 0θi

## 
##  One Sample t-test
## 
## data:  obs$V2
## t = -0.96755, df = 99, p-value = 0.3356
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.26689135  0.09192394
## sample estimates:
##   mean of x 
## -0.08748371

Also nothing… let’s keep going…

The fourth variable:

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -1.68248 -0.53272 -0.04569  0.03294  0.67478  2.42216

## 
##  One Sample t-test
## 
## data:  obs$V4
## t = 0.3759, df = 99, p-value = 0.7078
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.1409202  0.2067931
## sample estimates:
##  mean of x 
## 0.03293646

… the ninth…

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.55382 -0.66473  0.02398  0.06146  0.72420  3.21120

## 
##  One Sample t-test
## 
## data:  obs$V9
## t = 0.59221, df = 99, p-value = 0.5551
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.1444566  0.2673706
## sample estimates:
##  mean of x 
## 0.06145701

… the fourteenth…

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.5351 -0.6938 -0.1362 -0.1486  0.6043  1.7740

## 
##  One Sample t-test
## 
## data:  obs$V14
## t = -1.6282, df = 99, p-value = 0.1067
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.32963497  0.03248961
## sample estimates:
##  mean of x 
## -0.1485727

… the seventeenth…

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.0985 -0.2646  0.1909  0.2741  0.8566  3.5847

## 
##  One Sample t-test
## 
## data:  obs$V17
## t = 2.6839, df = 99, p-value = 0.008531
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.07145775 0.47674746
## sample estimates:
## mean of x 
## 0.2741026

Aha!! We’ve found a significant relationship! The  variable is discrepant from the null hypothesis with a
p-value of 0.0085308.

We write up our discovery, publish the result, and our discovery is enshrined in the literature forever.

What is the problem with this?
The process I’ve described above is known as data-dredging, the look-elsewhere effect, or the problem
of multiple comparisons.

The core issue here is that we’re looking at many different chunks of the data, any not taking that into
account when we decide whether what we’ve found is significant.

Recall the p-value for many experiments:

17th



We have used in this example a threshold of
. We therefore expect to find this p-value given random fluctuations in

 out of every
 cases. In our example we have
 variables. So it makes sense that we found a “significant” effect for

 variable.

Thus we have Method 6 for invalidating your research:

Data dredging, or analysing multiple hypotheses and not accounting for
this in our modelling.

Non-Astronomy Aside: An Empathetic
Fish
Do fish feel empathy?

This was a question posed by a group of researches working within the functional magnetic resonance
imaging (fMRI) community in 2009. fMRI studies use the magnetic resonance to produce highly detailed
internal images of people (and in this case, fish). The field uses analysis techniques that are designed to
identify activity within (particularly) the brain that can be correlated with an external stimulus, in order to
identify parts of the brain that are responsible for different things, or to just demonstrate that
comprehension is occurring.

The case of this experiment was to show whether or not an Atlantic Salmon would react differently when
shown images of people, rather than images of inanimate objects.

The researchers placed the fish in an MRI, and presented it with images of humans and other pictures.
They analysed the data using standard processing tools, and found a significant discovery of activity in the
brain of the salmon that correlated with the researchers presenting the fish with images of humans.

p < 0.05
1
20
20
1

The problem?

The salmon was frozen at the time of study

A Disturbing Aside: How much published
research is wrong?
Let’s assume that we’re looking at a field of research where there are  ongoing experiments, all
exploring different possible physical relationships. Of those  experiments,  of them are real physical
relationships.

If all researchers use a metric of  as their determination for whether an effect is real or not, and
researchers only publish when they find a significant result, what will the fraction of published results that
are wrong?

A simple simulation
We can construct a simulation to demonstrate this situation. We simply simulate  draws from a
Gaussian, where  draws have  and the rest have . We can then compute the p-value for
each of these experiments, and “publish” those with ‘significant’ findings. Assume that we know the true
parameter variance , for simplicity.

500
500 50

p < 0.05

500
50 μ ≠ 0 μ = 0

= 1s2

## All Results:
## 
##            NoEffect+NoResult   NoEffect+SignificantResult          TrueEffect+N
oResult 
##                        0.852                        0.048                        
0.023 
## TrueEffect+SignificantResult 
##                        0.077 
## Published Results:
## 
##   NoEffect+SignificantResult TrueEffect+SignificantResult 
##                        0.384                        0.616

Standard scientific practice is that only measured relationships get published, so while we have 
insignificant findings, these generally never see the light of day. Instead we only look at the significant
results.

So: If everything is working as it should, roughly one-third of all published papers that use  as a
threshold for publication ought to be false-positives. This fraction is determined by the following important
numbers:

The Statistical Power: how probable an experiment is to find a true relationship when one does
exist
The Ratio of true-to-false hypotheses: if we have many many more false hypotheses than true
ones, this effect is exacerbated
The Significance Threshold: what magic number people select for determining whether or not an
effect is significant (i.e. the p-value threshold).

If we have particularly insightful and disciplined researchers:

## Published Results:
## 
##   NoEffect+SignificantResult TrueEffect+SignificantResult 
##                   0.05870841                   0.94129159

But if, for example, researchers are incentivised to explore greater numbers of exotic hypotheses with less
and less prior justification:

## Published Results:
## 
##   NoEffect+SignificantResult TrueEffect+SignificantResult 
##                    0.8787879                    0.1212121

85%

p ≤ 0.05

Method 7: Reproducing previous work
Generally speaking, the reproduction of previous work is an extremely valuable task. Here we show the
dark side of being aware of the literature.

Take, as an example, measurements of the coefficient of charge-parity violation:



The figure above was taken from Jeng (2005), and was originally printed in Franklin (1984): “Forging,
cooking, trimming, and riding on the bandwagon”.

The figure shows Confirmation Bias.

Confirmation bias is the tendency for researchers to continue adapting their results until they agree with
some prior belief.

The figure demonstrates the problem nicely. Prior to 1973, there was a consensus on the value that 
ought to hold. However in the early seventies, there was a shift in the consensus: and all observations
began to cluster around that particular value.

The pre- and post-1973 distributions of  are catastrophically inconsistent with one-another. The cause:
confirmation bias. Similar effects have been seen in measurements of the speed of light, and in the build-
up to the discovery of the Higgs Boson.

Real World Example: the  penta-quark
Confirmation bias, however, need not require previous measurements. Humans can have a prior belief
about a particular result, and simply analyse their data until that result is observed.

Such was the case with the discovery of the  penta-quark.

In 2002, a japanese lab published the discovery of the  penta-quark at greater than  significance (a
false positive rate of 1 in ~20 million). Subsequently over the next  years  other research groups
searched for and found high-significance detections of the same penta-quark.

However, subsequent searches with more sensitive equipment failed to find any evidence for the penta-
quark. In the same year, one group quoted an  detection of the pentaquark, while another group
performing the exact same experiment at a different lab with comparable statistical power found nothing.

The problem here is that researchers were not blinded to their data. They knew the signal that they were
trying to detect, and they found it.
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As such blind analyses are now a staple in many fields within the natural sciences, including cosmology
and high-energy particle physics.

Thus we have Method 7 for invalidating your research:

Not blinding your analyses, and thereby (sub)consciously modifying
your data to reproduce your expectations.

Summary
Looking for correlations in your data and then assuming that these correlations are causal.
Failing to correct for observational selection functions present in every dataset.
Failing to account for the influence of observational uncertainties on your models and derived data
distributions.
Focussing on extrema, failing to account for the pathological selections, and ignoring the properties
global samples.
Failing to understand, and therefore abusing the meaning of, p-values
Modifying our analysis samples until we reach ‘significance’
Data dredging, or analysing multiple hypotheses and not accounting for this in our modelling.
Not blinding your analyses, and thereby (sub)consciously modifying your data to reproduce your
expectations.


