

Unfolding the cosmic ray spectrum using stopping muons in IceCube

Janina Bolles

29. October 2021

Experimentelle Physik 5b Fakultät Physik

Overview

Motivation

Event Selection and Reconstruction

Data-MC-Agreement

Unfolding Primary Spectrum

Outlook

Motivation

Motivation

[https://astro.desy.de/theory/multi_messenger_astrophysics/index_eng.html]

Charged Cosmic Rays

- 85% protons, 12% helium nuclei, 2% leptons, 1% heavier nuclei
- broken power law spectrum
 →"the knee" ≈ 5 PeV
 →"the ankle" ≈ 3 EeV
- for energies exceeding 1 × 10²⁰ eV cosmic ray flux drops
 →GZK-cutoff above 5 × 10¹⁹ eV

C. Patrignani et al. "Review of Particle Physics (RPP)"

Atmospheric Air Showers

- charged CRs engage in interactions with atmospheric molecules
 - →hadronic cascades
 - \rightarrow contain lots of secondary particles
 - \rightarrow secondarys can be detected by ground based telescopes
- muon component: charged pion decay $\pi^+ \to \mu^+ + \nu_\mu$ and $\pi^- \to \mu^- + \bar{\nu_\mu}$

A. Haungs et al. "The KASCADE Cosmic-ray Data Centre KCDC: granting open access to astroparticle physics research data"

The IceCube Detector

- located at geographical South Pole
- instrumented volume: 1 km^3
- 5160 digital optical modules (DOMs) at strings at depth between 1.5 km and 2.5 km
- DOMs detect Cherenkov light emited by charged particles entering the ice
- mainly observation of astrophysical neutrinos
- atmospheric muons are background to neutrino observations

The IceCube Collaboration. "The IceCube Neutrino Observatory: Instrumentation and Online Systems"

Stopping Muons

- atmospheric muons are created in bundles →contain hundreds up to thousands of individual muons
- only few muons stop in detector volume
 - →stopping muons
 - →usually most energetic muon in bundle
 - \rightarrow created early in air shower
- stopping muons carry information about primary particle
- goal: use stopping muons to reconstruct primary flux

Event Selection and Reconstruction

Event Selection and Reconstruction

- using Deep Neural Network to classify muon events as stopping or background
 →reconstructs key parameters (energy, stopping depth, direction)
- start with Level 2 data (basic reconstructed and filtered)
- combine two CORSIKA datasets:
 - →11058: 600 GeV 100 TeV
 - →11057: 100 TeV 100 EeV
 - →1291507 events

DNN Scores

- DNN predicts value between 0 and 1
 →0: most likely background
 →1: most likely stopping event
- visible seperation between signal and background
- upgoing background near value 1: coincident muon events

Precision and Efficiency

choose Score Cut at 0.95

Stopping Depth and Uncertainty for Score Cut at 0.95

E5b

Stopping Depth and Uncertainty for Score Cut at 0.95

Zenith and Uncertainty for Score Cut at 0.95

Zenith and Uncertainty for Score Cut at 0.95

Propagation Length for Score Cut at 0.95

propagation length depends on two observables: zenith angle and stopping depth

$$r = \sqrt{\left(R_{\rm E}^2 - \left(R_{\rm E} - z_{\rm stop}\right)^2\right)\sin\Theta_{\rm Z}^2 + R_{\rm E}^2\cos\Theta_{\rm Z}^2 - \left(R_{\rm E} - z_{\rm stop}\right)\cos\Theta_{\rm Z}}$$

Data-MC-Agreement

Data-MC-Agreement

- Score cut at 0.95
- 130 s of data from 08/28/2015

200

300

Data-MC-Agreement

Unfolding Primary Spectrum

Unfolding

- not all events in true spectrum are represented in oservable spectrum
- also, observable spectrum contains events not related to true physical events of interest
- measured observables related to true spectrum via detector response:

$$\vec{g} = A \cdot \vec{f} + \vec{b}$$

- instead of directly inverting: minimize negative log-likelihood
- approach still yields oscillation solutions →Tikhonov regularisation $\tau(f)$

$$-l(\vec{g}|\vec{f}) = \sum_{\mathbf{i}} (A \cdot f)_{\mathbf{i}} - g_{\mathbf{i}} \ln((A \cdot f)_{\mathbf{i}}) + \tau(f)$$

Eventrates for different regularisation parameters

Effective Area

- to calculate flux: effective area has to be considered
- accounts the efficiency of detector
- rescaling detector area with fraction of selected to generated events
- in this work: calculate generation probability
 →how many particles are generated per energy, area and solid angle
- to estimate effective area: invert generation probability and histogram

Effective Area

Unfolded Cosmic Ray Flux

Testing Unfolding with different spectra

- show that unfolded spectrum is independent of assumed training spectrum
- choose different training spectra for response matrix
- do unfolding with diffierent combinations of training and test spectra

Outlook

Outlook

- still need of fixing the MC-labeling for coincident muon events
- more bootstrapping iterations
- unfolding dependent on zenith angle
- due to high statistics choose higher binning
- test on burnsample

Thank you!