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Gravitational Lensing -  
How to make dark matter 
visible
and what we learn about cosmology with this tool
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1. Die GrurtdZage 
dsr a l lgerndnm ReZat4&t&t8theor&; 

von A. EinsteBn. 

Die im nachfolgenden dargelegte Theorie bildet die denk- 
bar weitgehenclste Verallgemeherung der heute allgemein als 
. ,Rela tivi ta ts t heorie ' ' bezeichne ten Theorie ; die le tztere nenne 
ich im folgenden zur Unterscheidnng von der ersteren ,,spezielle 
RelativitHtstheorie" und setze sie als bekannt voraus. Die 
Versllgemeinerung der Relativitatstheorie wurde sehr er- 
leichtert durch die Gestalt, welche der speziellen Relativitgts- 
theorie durch Min ko ws k i  gegeben wurde, welcher Mathe- 
matiker zuerst die formale Gleichwertigkeit der raumlichen 
Koordinaten und der Zeitkoordinate klar erkannte und fiir 
den Aufbau der Theorie nutzbar machte. Die f i i r  die all- 
gemeine Relativitatstheorie notigen mathematischen Hilfs- 
mittel lagen fertig bereit in dem ,,absoluten Differentialkalkiil", 
welcher auf den Forschungen von Gauss ,  R i e m a n n  und 
Chris toff e l  uber nichteuklidische Mannigfaltigkeiten ruht und 
von Ricc i  und Levi -Civ i ta  in ein System gebracht und 
bereits auf Probleme der theoretischen Physik angewendet 
wurde. Ich habe im Abschnitt B der vorliegenden Abhand- 
lung alle fiir uns notigen, bei dem Physiker nicht als bekannt 
vorauszusetzenden mathematischen Rilfsmittel in moglichst 
einfacher uncl durchsichtiger Weise entwickelt, so daS ein 
Studium nisthematischer Literatur fiir das Verstandnis der 
vorliegenden Abhandlung nicht erforderlich ist . Endlich sei 
an dieser Stelle dankbar meines Freundes, des Mathematikers 
Grossmann,  gedacht, der rnir durch seine Hilfe nicht nur 
clas Studium der einschliigigen mathematischen Literatur er- 
sparte, sondern mich auch beim Snchen nach den Feldgleichun- 
gen der Gravitat,ion unt'erstutzte. 
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Gμν =
8πG
c4

Tμν

+ Robertson-Walker metric  
=> evolving Universe (FLRW)



Gμν + Λgμν =
8πG
c4

Tμν



v = H0 D

H0 ≈ 70
km

s Mpc



Cosmological redshift

λobs

λem
= (1 + z) =

1
a

z



Expansion depends on contents

• Normal matter


• Electromagnetic radiation (only important in the early universe)



Ω0 = 1 
critical density 

~ 10 atoms per m3



Ω0=1

Ω0<1

Ω0>1





Ωb = 0.05

Normal (baryonic) matter

Open Universe?



Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA), D. Carter and the Coma HST ACS Treasury Team







Expansion depends on contents

• Normal matter


• Electromagnetic radiation


• Dark matter



Ωdm = 0.25

Dark Matter



Dark Matter
• Collisionless


• Dissipationless


• Cold


• Just weak interaction and gravity


• WIMPs? Axions? Sterile Neutrinos? Primordial black holes?


• Alternative: Modification of general relativity



Ωm = Ωb + Ωdm = 0.3

Total matter density

Open Universe?



Planck - All-sky CMB map, foregrounds subtracted

Planck 2013 results I.

Spatial curvature?





Ω0 = 1 +/- 0.01



Expansion depends on contents

• Normal matter


• Electromagnetic radiation


• Dark matter


• …









Expansion depends on contents

• Normal matter


• Electromagnetic radiation


• Dark matter


• Cosmological constant / dark energy



Ωde = 0.7

Energy density of dark energy



Ω0 = Ωm + Ωde = 1



Cosmological Constant? 

Vacuum energy? 

Exotic particles? 

Modification of general relativity?







Observing dark energy
• Distance-redshift relation:


1. Supernovae type Ia


2. Baryon acoustic oscillations


• + Growth of structures:


3. Galaxy cluster mass function


4. Weak gravitational lensing



Gravitational Lensing





Galaxien direkt benutzen?



Credit: Michael Sachs 



MASS

Gravitational lens



Optical lens



Gravitational lens analogue

Spherical abberation!



Credit: R. Schirdewahn











Cosmic shear Sensitive to:

• Matter 

distribution

• Geometry


Observables:

• Ellipticities

• Photo-z 

Statistical 
measurement 
of many 
galaxies



2pt shear correlation functions8 Kilbinger et al.

intrinsic ellipticity as a Gaussian random variable with zero mean
and dispersion σε = 0.38. The latter is calculated as σ2

ε =
∑

i εiε
∗
i ,

where the sum goes over all CFHTLenS galaxies in our redshift
range. Therefore, the covariance between the 184 Clone lines of
sight gives us the total covariance D+M+V. Contrary to the case
of the 2PCFs (previous section), this covariance stems from a pure
ML estimate, and therefore the inverse needs to be de-biased by
the Anderson-Hartlap factor α. With a typical number of angular
scales of p = 10 to 15 the corresponding α is of order 0.9. We
show that our cosmological results are independent of the number
of realisations in Sect. 6.2. Note that for the all derived estimators,
the cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as KiDS5,
DES6, HSC7, Euclid8 (Laureijs et al. 2011) or LSST9, a much
larger suite of simulations will be necessary. The number of re-
alisations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magnifi-
cation. This necessitates on the order of a thousand and more inde-
pendent lines of sight. This number has to be multiplied by many
if a proper treatment of the cosmology-dependence is to be taken
into account. Moreover, a simple up-scaling of smaller simulated
fields to full survey size might not be easy because of the different
area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al.
(2012), which accounts for a potential additive shear bias c and
multiplicative bias m,

εobs = (1 +m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The sec-
ond ellipticity component ε2 shows a signal-to-noise ratio (S/N )
and size-dependent bias which we subtract for each galaxy. This
represents a correction which is on average at the level of 2×10−3.
The multiplicative bias m is modelled as a function of the galaxy
S/N and size r. It is fit simultaneously in 20 bins of S/N and r,
see Miller et al. (2013). We use the best-fitting function m(S/N, r)
and perform the global correction to the shear 2PCFs, see eqs. (19)
and (20) of Miller et al. (2013). Accordingly, we calculate the cali-
bration factor 1+K as the weighted correlation function of 1+m,

1 +K(ϑ) =

∑

ij wiwj(1 +mi)(1 +mj)
∑

ij wiwj
. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this un-
certainty, and show in Sect. 6.2 that the cosmological results remain
unchanged by adding this term to the analysis.

Figure 6 shows the combined and corrected 2PCFs, which are
the weighted averages over the four Wide patches with the number

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst
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Figure 6. The measured shear correlation functions ξ+ (black squares) and
ξ− (blue circles), combined from all four Wide patches. The error bars cor-
respond to the total covariance diagonal. Negative values are shown as thin
points with dotted error bars. The lines are the theoretical prediction using
the WMAP7 best-fitting cosmology and the non-linear model described in
Sect. 4.3. The data points and error bars are listed in Table B1.
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

of pairs as weights. Note that the data points are strongly corre-
lated, in particular ξ+ on scales larger than about 10 arcmin. Cos-
mological results using this data will be presented in Sect. 5. The
correlation signal split up into the contributions from the four Wide
patches is plotted in Fig. 7. There is no apparent outlier field. The
scatter is larger than suggested by the Poisson noise on large scales,
in agreement with the expected cosmic variance.

c© 2009 RAS, MNRAS 000, 1–18

Kilbinger et al. (2013)Very directly related to the matter power spectrum Pδ.
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γ̂(!) =

(
"21 − "22 + 2i"1"2

|!|2

)
κ̂(!) = e2iβ κ̂(!) , (12.19)

where β is the polar angle of the vector !; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
γ̂(!)γ̂∗(!′)

〉
= (2π)2 δD(! − !′)Pκ("). (12.20)

Hence, the power spectrum of the shear is the same as that of the surface mass density.

12.3.1 Shear correlation functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ (i.e. the polar angle of the separation
vector θ) is used to define the tangential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions 〈γtγt〉 (θ) and 〈γ×γ×〉 (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = 〈γtγt〉 (θ) ± 〈γ×γ×〉 (θ) , ξ×(θ) = 〈γtγ×〉 (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

d" "

2π
J0("θ)Pκ(") ; ξ−(θ) =

∫ ∞

0

d" "

2π
J4("θ)Pκ(") , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average 〈εti εtj〉 over all these

pairs; since εi = ε(s)i + γ(θi), the expectation value of 〈εti εtj〉 is 〈γtγt〉 (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
d" "Pκ(")WTH("θ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 εi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (εiε∗i ) = |γ(θi)|2 +σ2
ε . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i&=j

εi ε∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function

Observation     theory
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = 〈g1(ϕ1) g2(ϕ2)〉 ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(*) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(*) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
*

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/* is obtained from the 3-D power at
length scale fK(χ) (1/*), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(*) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
*

fK(χ)
,χ

)
. (12.16)
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No galaxy biasing on this slide! Cosmic shear typically goes to small scales.



• Measures the  
amount of 
clustered 
matter


• Also: Dark 
energy
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Figure 7. Mean and 68% error bars for the parameter �8 (⌦m/0.3)
↵, for various cosmic shear

observations, plotted as function of their publication date (first arXiv submission). All parameter
values are given in Table 7.1. Di↵erent surveys are distinguished by colour as indicated in the
figure. Data points are shown for second-order statistics (circles), third-order (diamonds), 3D lensing
(pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).

et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). The observations were taken with

di↵erent cameras and telescopes — the Prime Focus Imaging Camera (PFIC) on the William-Herschel

Telescope (WHT), UH8K and CFH12K on the Canada-France Hawaii Telscope (CFHT), and the

Big Throughput Camera (BTC) on Blanco — and covered sky areas between 0.5 and 1.5 deg2. These

early analyses measured correlations of galaxy ellipticities that were larger than the expected residual

systematics. Limits on ⌦m and �8 could be obtained.

Those exploratory results were very soon followed by other surveys from a wide range of

telescopes, for example CFH12K/CFHT with the Red-sequence Cluster Survey (RCS) and VIRMOS-

DESCART (Van Waerbeke et al. 2001, Van Waerbeke et al. 2002, Hoekstra et al. 2002b, Hoekstra

et al. 2002c, van Waerbeke et al. 2005), FORS1 (FOcal Reducer and Spectrograph)/VLT (Very Large

Telescope; Maoli et al. 2001), the 75-deg2 survey with BTC/Blanco-CTIO (Jarvis et al. 2003, Jarvis

et al. 2006), PFIC/WHT (Massey et al. 2005), ESI (Echelle Spectrograph and Imager)/Keck II

(Bacon et al. 2003), WFI at MPG/ESO 2.2m with the Garching-Bonn Deep Survey (GaBoDS;

Hetterscheidt et al. 2007), and Suprime-Cam/Subaru (Hamana et al. 2003).

Cosmic shear then was measured using MegaCam/CFHT on the Canada-France Hawaii Legacy

Survey (CFHTLS). During five years this large program observed 170 square degrees in five optical

bands. First results from the first data release were published over 22 deg2 of the wide part (Hoekstra

et al. 2006) and the 3 out of the 4 deg2 of the deep part (Semboloni et al. 2005).

Apart from those ground-based observations, cosmic shear was successfully detected with the
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Systematic challenges

• Observational


• Shape measurements


• Redshift distributions


• Theoretical


• Intrinsic alignments


• Baryon feedback


• Psychological
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Figure 1. Summary of recent LSS constraints in the σ8−Ωm plane, compared with Planck 2015 primary CMB constraints (TT+lowTEB,
closed contour repeated in each panel). Top left: Cosmic shear results from CFHTLenS, DES, and KiDS. Top right: Various tSZ effect
tests, including Planck cluster number counts, angular power spectrum, 1-point PDF, and a combined analysis of the skewness and
bi-spectrum of Planck Compton y map, a 1-point PDF constraints from the Atacama Cosmology Telescope (ACT), and tSZ cluster
count constraints from the South Pole Telescope (SPT). Bottom left: Combined galaxy clustering plus galaxy-galaxy lensing constraints
from SDSS main galaxy catalog (M13), SDSS main galaxy catalog plus Luminous Red Galaxies (C13), SDSS BOSS galaxy clustering
plus CFHTLenS lensing (M15), and SDSS BOSS galaxy clustering plus CFHTLenS and CS82 weak lensing data (L17). Bottom right:

Constraints from the Planck CMB lensing autocorrelation function and from the cross-correlation function between Planck CMB lensing
and Planck Sunyaev-Zel’dovich effect maps. The curves represent the derived 1-sigma uncertainties on the amplitudes of the best-fit
power laws describing the degeneracy between σ8 and Ωm in the different tests. To help compare the different LSS tests, we show in
each panel, as the black dashed curve, a power law of the form S8 ≡ σ8(Ωm/0.3)1/2 = 0.77. The various LSS constraints consistently
(at the ≈1-3 sigma level) point to lower values of σ8 at fixed Ωm (or lower values of Ωm at fixed σ8) compared to that derived from the
primary CMB alone.

that for some of the tSZ effect tests (data points with er-
rors), Ωm was held fixed at the primary CMB best-fit value
and only σ8 was constrained by the data.

The various LSS constraints consistently, at the ≈1-3
sigma level, prefer lower values of σ8 at fixed Ωm (or lower
values of Ωm at fixed σ8) compared to that derived from the
primary CMB alone. The consistency amongst the different
LSS tests is rather remarkable, given the very different na-
ture of the tests involved, which probe different aspects of
the matter distribution (i.e., galaxies vs. hot gas vs. total
matter) at different redshifts and on different scales, each
with their own differing sets of systematic errors. And note
that the constraints shown in Fig. 1 do not form an exhaus-
tive list. For example, other recent LSS tests, such as those
based on the cross-correlations between CMB lensing and

galaxy overdensity (Giannantonio et al. 2016), CMB lens-
ing and cosmic shear (Liu & Hill 2015; Harnois-Déraps et al.
2017), and cosmic shear and the tSZ effect (Hojjati et al.
2015, 2017), also find qualitative evidence for tension (and
in the same sense), but we do not plot them in Fig. 1 since
they have not formerly quantified their best-fit cosmological
parameter values and their uncertainties.

The role that remaining systematics in either the anal-
ysis of the CMB (e.g., Spergel, Flauger, & Hložek 2015;
Addison et al. 2016) or that of LSS (such as the neglect of
important baryon physics, which we will consider here) plays
in this tension has yet to be fully understood. In spite of this,
various extensions of the standard model have already been
proposed to try to reconcile the apparent tension. One of
the most interesting and well-motivated proposed solutions

c© 2016 RAS, MNRAS 000, 1–32

McCarthy et al. (2017)

Not a single late Universe 
LSS measurement yields 
an S8 higher than Planck.
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Figure 10. Left: Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the
w0 �wa plane for KiDS in green, Planck in red, JLA SNe in purple, KiDS+Planck in blue, and KiDS+Planck with informative H0 prior in grey (from Riess
et al. 2016). The dashed lines denote the ⇤CDM prediction.

direction. The realignment of the CMB contour along the lensing
degeneracy direction was also found for CFHTLenS and WMAP7
in Kilbinger et al. (2013), and the extension of the Planck contour
along the ⌦m axis is due to the same geometric degeneracy as in
the case of a nonzero curvature. As a result, the respective KiDS
and Planck S8 constraints agree at 1� (despite seemingly being
in tension in the w � S8 plane). Accounting for the full parame-
ter space, we find log I = 0.99, which effectively corresponds to
‘strong concordance’ between the KiDS and Planck datasets. In ad-
dition to removing the tension between these datasets, the Planck
constraint on the Hubble constant is now also wider than in ⇤CDM
(0.66 < h < 1.0 at 95% CL, where the upper bound is hitting
against the prior) and in agreement with the Riess et al. (2016) di-
rect measurement of H0.

In the w � S8 plane, KiDS and Planck are both in agree-
ment with a cosmological constant, while the combined analysis
of KiDS+Planck seems to favor a 2.6� deviation from ⇤CDM
(marginalized constraint of �1.93 < w < �1.06 at 99% CL). As
noted in Ade et al. (2016a), deviations from a cosmological con-
stant seem to be preferred by large values of the Hubble constant
(that are arguably ruled out), and so we also consider a ±5� uni-
form Riess et al. (2016) prior on H0. While the KiDS+Planck+H0

contour tightens and moves towards w = �1, we still find an ap-
proximately 2� deviation from a cosmological constant (marginal-
ized constraint of �1.42 < w < �1.01 at 95% CL). As in other
extended cosmologies, the intrinsic alignment amplitude remains
robustly determined when allowing w to vary, with 95% confidence
levels at �0.50 < AIA < 2.9 for KiDS, 0.27 < AIA < 3.0 for
KiDS+Planck, and 0.38 < AIA < 2.4 for KiDS+Planck+H0.

We have shown that the introduction of a constant dark en-
ergy equation of state seems to remove the discordance between
KiDS and Planck, and between local Hubble constant measure-
ments and Planck, while moreover deviating from a cosmologi-
cal constant when these measurements are combined. However,
we also want to know to what extent the constant w model is fa-
vored or disfavored by the data. We find that KiDS and Planck on
their own show no preference for w 6= �1, with �DIC = 2.3
for KiDS and �DIC = �0.20 for Planck (respectively degraded
from ��

2
e↵ = 0.074 and ��

2
e↵ = �3.1 due to the increased

Bayesian complexity). However, the combination of KiDS+Planck
seems to prefer the constant dark energy equation of state model
with �DIC = �5.4 (with near identical Bayesian complexity to
⇤CDM), while this preference reduces to �DIC = �2.9 when
further considering KiDS+Planck+H0 (marginally degraded from
��

2
e↵ = �3.4). Thus, from the point of model selection, we only

find weak preference in favor of a constant dark energy equation of
state model as compared to standard ⇤CDM.

3.5 Dark energy (w0-wa)

Although a constant dark energy equation of state as a free param-
eter constitutes the simplest deviation from a w = �1 model, there
is no strong theoretical motivation to keep the equation of state con-
stant once one has moved away from the cosmological constant
scenario. We therefore also consider a time-dependent parameter-
ization to the equation of state, in the form of a first-order Taylor
expansion with two free parameters:

w(a) = w0 + (1 � a)wa, (5)

where a is the cosmic scale factor, w0 is the dark energy equation
of state at present, and wa = �dw/da|a=1 (which can also be
expressed as wa = �2dw/d ln a|a=1/2; Linder 2003).

In Figure 1, we show the impact of a time dependence of the
equation of state on the shear correlation functions. Since a neg-
ative wa makes the overall equation of state more negative with
time, it has the opposite impact on the matter power spectrum and
lensing kernel (and thereby shear correlation functions) to the case
where w > �1 discussed in Section 3.4. Clearly the benefit of
two degrees of freedom to describe the dark energy is that more
complex behavior of the shear correlation functions is allowed than
when only a constant equation of state is considered, enhancing the
ability of the theoretical model to describe the data. Meanwhile,
the extra degree of freedom from nonzero wa further adds to the
geometric degeneracy of the CMB measurements.

Along with the case where the dark energy equation of state is
constant, HMCODE accurately accounts for the impact of w0 � wa

models on the nonlinear matter power spectrum, as demonstrated
by the N-body simulations in Mead et al. (2016), covering �1.0 <

c� 2016 RAS, MNRAS 000, 000–000

• Resolves tension between KiDS and Planck.

• Only extension that is moderately favoured by the data.

• Resolves H0 tension between SH0ES and Planck.

Joudaki et al. (2017b)
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Ground-based imaging
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Space-based imaging
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Summary

• Normal matter makes up only 5% of the energy density of the Universe.


• Dark matter can be made visible with gravitational lensing.


• What is dark energy? Cosmological constant?


• Discrepancies in current data (H0, S8) might be hints to a solution.


• ESA’s Euclid satellite will launch in 2022 and solve this riddle.


